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Abstract
Recently, AB-fractional calculus has been introduced by Atangana and Baleanu and
attracted a large number of scientists in different scientific fields for the exploration of
diverse topics. An interesting aspect is the generalization of classical inequalities via
AB-fractional integral operators. In this paper, we aim to generalize Minkowski
inequality using the AB-fractional integral operator.
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1 Introduction
Nowadays the fractional calculus has an important role in diverse scientific fields due to its
several applications in dynamical problems including signals, hydrodynamics, dynamics,
fluid, viscoelastic theory, biology, control theory, image processing, computer network-
ing, and many others [1–5]. A large number of scientists have worked on generalizations
of existing results including theorems, definitions, models, and many more. A generaliza-
tion of classical inequalities by means of fractional-order integral operators is considered
as an interesting subject area. For instance, recently, Agarwal et al. [6] proved Hermite–
Hadamard-type inequalities by using generalized k-fractional-integrals. Aldhaifallah et
al. [7] used the (k, s)-fractional integral operator to generalize the inequalities for a fam-
ily/class of n positive functions. Set et al. [8] studied Hermite–Hadamard-type inequalities
for a generalized fractional integral operator for functions with convex absolute values of
derivatives. Khan et al. [9] produced the Minkowski inequality by using the Hahn integral
operator. On the other hand, noninteger-order calculus, usually referred to as fractional
calculus, is used to generalize integrals and derivatives, in particular, integrals involving
inequalities. Recently, Dumitru and Arran [10] introduced a new formula for fractional
derivatives and integrals by using the Mittag-Leffler kernel. More theoretical concepts re-
garding fractional operators with Mittag-Leffler kernels (Atangana–Baleanu operators)
and the higher-order case have been discussed in [11, 12], whereas the generalization to
the generalized Mittag-Leffler kernels to gain a semigroup property have been recently ini-
tiated in [13, 14]. Khan [15] studied inequalities for a class of n functions by means of Saigo
fractional calculus. Jarad et al. [16] presented a Gronwall-type inequality for the analysis
of the fractional-order Atangana–Baleanu differential equation and in [17] for generalized
fractional derivatives.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-019-2045-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-019-2045-3&domain=pdf
mailto:hasibkhan13@yahoo.com


Khan et al. Journal of Inequalities and Applications         (2019) 2019:96 Page 2 of 12

Shuang and Qi [18] proved some Hermite–Hadamard-type inequalities for a class of
s-convex functions and studied special means. Mehrez and Agarwal [19] produced new
integral inequalities by means of classical Hermite–Hadamard inequalities and obtained
particular cases of their results with applications to special means. Park et al. [20] investi-
gated new generalized inequalities, which then were utilized for stability analysis. Sarikaya
et al. [21] established fractional integral inequalities generalizing the classical results by
using the local fractional approach.

The integral inequalities with Mittag-Leffler functions have been studied as a generaliza-
tion of the classical inequalities. For instance, Farid et al. [22] generalized several classical
inequalities using an extended Mittag-Leffler function and evaluated particular cases of
their results. More related work can be found in [23–25].

In this paper, we use the AB-fractional integral operator for generalization of classical
Minkowski inequalities. Our results are more general and applicable than those in the
classical case. There are many definitions of fractional integrals, for example, Riemann–
Liouville, Hadamard, Liouville, Weyl, Erdelyi–Kober, and Katugampola [26–29], which
can be considered for getting the same results. Now we give some definitions and lemma
related to the AB-fractional operator.

Definition 1.1 ([30]) The fractional ABC-derivative in the Caputo sense of a function
f ∈ H∗(a, b) is defined by

ABC
aDν

τ f (τ ) =
B(ν)
1 – ν

∫ τ

a
f

′
(s)Eν

[
–ν(τ – s)μ

1 – ν

]
ds, (1.1)

where b > a and ν ∈ [0, 1], and B(ν) > 0 satisfies the property B(0) = B(1) = 1.

Definition 1.2 The fractional ABC-derivative in the Riemann–Liouville sense of a func-
tion f ∈ H∗(a, b) is defined by

ABR
aDν

τ f (τ ) =
B(ν)
1 – ν

d
dτ

∫ τ

a
f (s)Eν

[
–ν(τ – s)ν

1 – ν

]
ds, (1.2)

where b > a and ν ∈ [0, 1].

Definition 1.3 ([31, 32]) The fractional AB-integral of the function f ∈ H∗(a, b) is given
by

AB
aIν

τ f (τ ) =
1 – ν

B(ν)
f (τ ) +

ν

B(ν)Γ (ν)

∫ τ

a
f (s)(τ – s)ν–1 ds, (1.3)

where b > a and 0 < ν < 1.

Remark 1.4 Since the normalization function B(ν) > 0 is positive, it immediately follows
that the AB-integral of a positive function is positive. We will rely on this fact throughout
the proofs of the main results.

Lemma 1.5 ([33]) The ABC-fractional derivative and AB-fractional integral of a function
f satisfy the Newton–Leibnitz formula

AB
aIν

τ

(ABC
aDν

τ f (τ )
)

= f (τ ) – f (a). (1.4)
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Organization of the paper. This paper includes four sections. Introduction is given in
Sect. 1, with a literature review, important definitions, and a lemma, which we will use
in the proofs. In Sect. 2, we prove Minkowski’s inequality for the AB-fractional integral
operator. Other AB-fractional integral inequalities are proved in Sect. 3. The summary is
given in Sect. 4.

2 The AB-fractional Minkowski inequality
Theorem 2.1 Let ν > 0 and p ≥ 1. Let u, v ∈ Cν[a, b] be two positive functions in [0,∞[ such
that AB

aIν
t u(t) < ∞ and AB

aIν
t v(t) < ∞ for all t > a. If 0 < α ≤ u(t)

v(t) ≤ θ for some α, θ ∈ R
∗
+

and all t ∈ [a, b], then

(AB
aIν

t up(t)
) 1

p +
(AB

aIν
t vp(t)

) 1
p ≤A

[AB
aIν

t
(
u(t) + v(t)

)p] 1
p , (2.1)

where

A =
θ (1 + α) + (θ + 1)

(1 + α)(θ + 1)
.

Proof From the condition u(t)
v(t) ≤ θ we obtain

u(t) ≤
(

θ

θ + 1

)(
u(t) + v(t)

)
. (2.2)

Taking the pth power of both sides of Eq. (2.2), we have

up(t) ≤
(

θ

θ + 1

)p(
u(t) + v(t)

)p. (2.3)

Multiplying both sides of (2.3) by 1–ν
B(ν) , we get

1 – ν

B(ν)
up(t) ≤

(
θ

θ + 1

)p 1 – ν

B(ν)
(
u(t) + v(t)

)p. (2.4)

Also, replacing t by s in Eq. (2.3) and multiplying both sides by ν(t–s)ν–1

B(ν)Γ (ν) , we get

ν(t – s)ν–1

B(ν)Γ (ν)
up(s) ≤

(
θ

θ + 1

)p
ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p. (2.5)

Integrating both sides of Eq. (2.4) with respect to s, we have

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
up(s) ds ≤

(
θ

θ + 1

)p ∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p ds. (2.6)

Adding (2.4) and (2.6), we obtain

1 – ν

B(ν)
up(t) +

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
up(s) ds ≤

(
θ

θ + 1

)p[1 – ν

B(ν)
(
u(t) + v(t)

)p

+
∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p ds
]

.
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This implies

AB
aIν

t up(s) ≤
(

θ

θ + 1

)p
AB

aIν
t
(
u(s) + v(s)

)p. (2.7)

Taking the 1
p th power of both sides of Eq. (2.7), we find

(AB
aIν

t up(t)
) 1

p ≤ θ

θ + 1
[AB

aIν
t
(
u(t) + v(t)

)p] 1
p . (2.8)

On the other hand, by using the condition 0 < α ≤ u(t)
v(t) we directly get

vp(t) ≤ 1
(1 + α)p

(
u(t) + v(t)

)p. (2.9)

Multiplying Eq. (2.9) by 1–ν
B(ν) , we get

1 – ν

B(ν)
vp(t) ≤ 1

(1 + α)p
1 – ν

B(ν)
(
u(t) + v(t)

)p. (2.10)

Also, replacing t by s in Eq. (2.9) and multiplying both sides by ν(t–s)ν–1

B(ν)Γ (ν) , we get

ν(t – s)ν–1

B(ν)Γ (ν)
vp(s) ≤ 1

(1 + α)p
ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p. (2.11)

Integrating both sides of Eq. (2.11) with respect to s, we have

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
vp(s) ds ≤ 1

(1 + α)p

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p ds. (2.12)

Adding (2.10) and (2.12), we obtain

1 – ν

B(ν)
vp(t) +

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
vp(s) ds ≤ 1

(1 + α)p
1 – ν

B(ν)
(
u(t) + v(t)

)p

+
∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p ds]. (2.13)

This leads to the AB-fractional integral inequality

AB
aIν

t vp(t) ≤ 1
(1 + α)p

AB
aIν

t
(
u(t) + v(t)

)p. (2.14)

Taking the 1
p th power of both sides of Eq. (2.14), we find

(AB
aIν

t vp(t)
) 1

p ≤ 1
1 + α

[AB
aIν

t
(
u(t) + v(t)

)p] 1
p . (2.15)

By Eqs. (2.8) and (2.15) we obtain

(AB
aIν

t up(t)
) 1

p +
(AB

aIν
t vp(t)

) 1
p ≤A

[AB
aIν

t
(
u(t) + v(t)

)p] 1
p . (2.16)

Thus, the proof of the AB-fractional integral inequality is completed. �
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3 Other types of inequalities
Theorem 3.1 Let ν > 0 and p > 1, q > 1, 1

p + 1
q = 1. Let u, v ∈ Cν[a, b] be two positive func-

tions in [0,∞[ such that AB
aIν

t u(t) < ∞ and AB
aIν

t v(t) < ∞ for all t > a. If 0 < α ≤ u(t)
v(t) ≤ θ

for some α, θ ∈R
∗
+ and all t ∈ [a, b], then

(AB
aIν

t u(t)
) 1

p
(AB

aIν
t v(t)

) 1
q ≤

(
θ

α

) 1
pq [AB

aIν
t
(
u

1
p (t)v

1
q (t)

)]
. (3.1)

Proof Using the condition u(t)
v(t) ≤ θ , we get

u
1
q ≤ θ

1
q v

1
q . (3.2)

Multiplying (3.2) by u
1
p and using the condition 1

p + 1
q = 1, we have

u ≤ θ
1
q u

1
p v

1
q . (3.3)

Now let us use (3.3) twice. First, multiplying by 1–ν
B(ν) , we get

1 – ν

B(ν)
u ≤ θ

1
q

1 – ν

B(ν)
u

1
p v

1
q . (3.4)

Second, multiplying by ν(t–s)ν–1

B(ν)Γ (ν) , we obtain

ν(t – s)ν–1

B(ν)Γ (ν)
u ≤ θ

1
q
ν(t – s)ν–1

B(ν)Γ (ν)
u

1
p v

1
q . (3.5)

Integrating both sides of Eq. (3.5) from 0 to t, we have

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s) ds ≤ θ

1
q

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s)

1
p v(s)

1
q ds. (3.6)

Now, by adding Eq. (3.4) and Eq. (3.6) we find

1 – ν

B(ν)
u(t) +

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s) ds ≤ θ

1
q

[
1 – ν

B(ν)
u(t)

1
p v(t)

1
q

+
∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s)

1
p v(s)

1
q ds

]
.

This implies

AB
aIν

t u(t) ≤ θ
1
q
[AB

aIν
t
(
u

1
p (t)v

1
q (t)

)]
. (3.7)

Taking the 1
p th power of both sides of (3.7), we have

[AB
aIν

t u(t)
] 1

p ≤ θ
1

pq
[AB

aIν
t
(
u

1
p (t)v

1
q (t)

)] 1
p . (3.8)
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Now, by the condition α ≤ u(t)
v(t) we have

v
1
p ≤ α

–1
p u

1
p . (3.9)

Multiplying Eq. (3.9) by v
1
q , we get

v ≤ α
–1
p u

1
p v

1
q . (3.10)

Now let us use (3.10) twice. First, multiplying by 1–ν
B(ν) , we get

1 – ν

B(ν)
v ≤ α

–1
p

1 – ν

B(ν)
u

1
p v

1
q . (3.11)

Second, multiplying by ν(t–s)ν–1

B(ν)Γ (ν) , we obtain

ν(t – s)ν–1

B(ν)Γ (ν)
v ≤ α

–1
p

ν(t – s)ν–1

B(ν)Γ (ν)
u

1
p v

1
q . (3.12)

Integrating both sides of Eq. (3.12) from 0 to t, we have

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
v(s) ds ≤ α

–1
p

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s)

1
p v(s)

1
q ds. (3.13)

Now, by adding Eq. (3.11) and Eq. (3.13) we find

1 – ν

B(ν)
v(t) +

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
v(s) ds ≤ α

–1
p

[
1 – ν

B(ν)
u(t)

1
p v(t)

1
q

+
∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s)

1
p v(s)

1
q ds

]
. (3.14)

This implies

AB
aIν

t v(t) ≤ α
–1
p
[AB

aIν
t
(
u

1
p (t)v

1
q (t)

)]
. (3.15)

Taking the 1
q th power of both sides of (3.15), we have

[AB
aIν

t v(s)
] 1

q ≤ α
–1
pq

[AB
aIν

t
(
u

1
p (t)v

1
q (t)

)] 1
q . (3.16)

Finally, multiplying Eq. (3.8) and Eq. (3.16), we obtain

(AB
aIν

t u(t)
) 1

p
(AB

aIν
t v(t)

) 1
q ≤

(
θ

α

) 1
pq [AB

aIν
t
(
u

1
p (t)v

1
q (t)

)]
. (3.17)

�

Theorem 3.2 Let ν > 0 and p > 1, q > 1, 1
p + 1

q = 1. Let u, v ∈ Cν[a, b] be two posi-
tive functions in [0,∞[ such that AB

aIν
t up(t) < ∞, AB

aIν
t uq(t) < ∞, AB

aIν
t vp(t) < ∞, and

AB
aIν

t vq(t) < ∞ for all t > a. If 0 < α ≤ u(t)
v(t) ≤ θ for some α, θ ∈R

∗
+ and all t ∈ [a, b], then

AB
aIν

t
(
u(t) + v(t)

) ≤A∗AB
aIν

t
(
up(t) + vp(t)

)
+ B∗

m
AB

aIν
t
(
uq(t) + vq(t)

)
, (3.18)
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where

A∗ =
2p–1θp

p(θ + 1)p , B∗
m =

2q–1

q(1 + α)q.

Proof Using the condition u(t)
v(t) ≤ θ , we obtain

u(t) ≤
(

θ (u(t) + v(t))
1 + θ

)
. (3.19)

Taking the pth power of both sides of Eq. (2.2), we have

up(t) ≤
(

θ

θ + 1

)p(
u(t) + v(t)

)p. (3.20)

Multiplying both sides of (3.20) by 1–ν
B(ν) , we get

1 – ν

B(ν)
up(t) ≤

(
θ

θ + 1

)p 1 – ν

B(ν)
(
u(t) + v(t)

)p. (3.21)

Also, replacing t by s in Eq. (3.20) and multiplying both sides by ν(t–s)ν–1

B(ν)Γ (ν) , we get

ν(t – s)ν–1

B(ν)Γ (ν)
up(s) ≤

(
θ

θ + 1

)p
ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p. (3.22)

Integrating both sides of Eq. (3.21) with respect to s, we have

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
up(s) ds ≤

(
θ

θ + 1

)p ∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p ds. (3.23)

Adding (3.21) and (3.23), we obtain

1 – ν

B(ν)
up(t) +

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
up(s) ds

≤
(

θ

θ + 1

)p[1 – ν

B(ν)
(
u(t) + v(t)

)p +
∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p ds
]

.

This implies

AB
aIν

t up(t) ≤
(

θ

θ + 1

)p
AB

aIν
t
(
u(t) + v(t)

)p. (3.24)

Multiplying (2.7) by the constant 1
p , we find

1
p
(AB

aIν
t up(t)

) ≤ 1
p

(
θ

θ + 1

)p[AB
aIν

t
(
u(t) + v(t)

)p]. (3.25)

On the other hand, by using the condition 0 < α ≤ u(t)
v(t) we directly get

vq(t) ≤ 1
(1 + α)q

(
u(t) + v(t)

)q. (3.26)
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Multiplying (3.26) by 1–ν
B(ν) , we get

1 – ν

B(ν)
vq(t) ≤ 1

(1 + α)q
1 – ν

B(ν)
(
u(t) + v(t)

)q. (3.27)

Also, replacing t by s in Eq. (3.26) and multiplying both sides by ν(t–s)ν–1

B(ν)Γ (ν) , we get

ν(t – s)ν–1

B(ν)Γ (ν)
vq(s) ≤ 1

(1 + α)q
ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)q. (3.28)

Integrating both sides of Eq. (3.28) with respect to s, we have

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
vq(s) ds ≤ 1

(1 + α)q

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)q ds. (3.29)

Adding (3.27) and (3.29), we obtain

1 – ν

B(ν)
vq(t) +

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
vq(s) ds ≤ 1

(1 + α)q

[
1 – ν

B(ν)
(
u(t) + v(t)

)q

+
∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)q ds
]

.

This implies

AB
aIν

t vq(t) ≤ 1
(1 + α)q

AB
aIν

t
(
u(t) + v(t)

)q. (3.30)

Multiplying (2.14) by 1
q , we have

1
q
(AB

aIν
t vq(t)

) ≤ 1
q

1
(1 + α)q

[AB
aIν

t
(
u(t) + v(t)

)q]. (3.31)

By means of Eqs. (3.25) and (3.31) we get

1
p
(AB

aIν
t up(t)

)
+

1
q
(AB

aIν
t vq(t)

)

≤ 1
p

(
θ

θ + 1

)p[AB
aIν

t
(
u(t) + v(t)

)p] +
1
q

1
(1 + α)q

[AB
aIν

t
(
u(t) + v(t)

)q]. (3.32)

To complete our proof, we have to use Young’s inequality

u(t)v(t) ≤ up(t)
p

+
vq(t)

q
. (3.33)

Multiplying (3.33) by 1–ν
B(ν) , we get

1 – ν

B(ν)
u(t)v(t) ≤ 1 – ν

B(ν)

(
up(t)

p
+

vq(t)
q

)
. (3.34)
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Also, replacing t by s in Eq. (3.33) and multiplying both sides by ν(t–s)ν–1

B(ν)Γ (ν) , we get

ν(t – s)ν–1

B(ν)Γ (ν)
u(s)v(s) ≤ ν(t – s)ν–1

pB(ν)Γ (ν)
up(s) +

ν(t – s)ν–1

qB(ν)Γ (ν)
vq(s). (3.35)

Integrating both sides of Eq. (3.35) with respect to s, we have

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s)v(s) ds ≤

∫ t

a

ν(t – s)ν–1

pB(ν)Γ (ν)
up(s) ds +

∫ t

a

ν(t – s)ν–1

qB(ν)Γ (ν)
vq(s) ds. (3.36)

Adding (3.34) and (3.36), we obtain

1 – ν

B(ν)
u(t)v(t) +

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s)v(s) ds

≤ 1 – ν

B(ν)

(
up(t)

p
+

vq(t)
q

)

+
∫ t

a

ν(t – s)ν–1

pB(ν)Γ (ν)
up(s) ds +

∫ t

a

ν(t – s)ν–1

qB(ν)Γ (ν)
vq(s) ds. (3.37)

This implies

AB
aIν

t u(t)v(t) ≤ 1
p

AB
aIν

t up(t) +
1
q

AB
aIν

t vq(t). (3.38)

Using (3.32) and (3.38), we have

AB
aIν

t u(t)v(t)

≤ 1
p

(
θ

θ + 1

)p[AB
aIν

t
(
u(t) + v(t)

)p] +
1
q

1
(1 + α)q

[AB
aIν

t
(
u(t) + v(t)

)q]. (3.39)

Using the inequality

(u + v)r ≤ 2r–1(ur + vr), u, v ≥ 0, r > 1, (3.40)

with r = p and multiplying (3.40) by the constant 1–ν
B(ν) , we find

1 – ν

B(ν)
(
u(t) + v(t)

)p ≤ 2p–1 1 – ν

B(ν)
(
u(t)p + v(t)p). (3.41)

Then multiplying Eq. (3.40) with r = p by ν(t–s)ν–1

B(ν)Γ (ν) , we get

ν(t – s)ν–1

B(ν)Γ (ν)
(u + v)p ≤ 2p–1 ν(t – s)ν–1

B(ν)Γ (ν)
(
up + vp). (3.42)

Integrating Eq. (3.42) from a to t, we have

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p ds ≤ 2p–1
∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
up(s) + vp(s)

)
ds. (3.43)
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Adding Eq. (3.41) and Eq. (3.43), we obtain

1 – ν

B(ν)
(
u(t) + v(t)

)p +
∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
u(s) + v(s)

)p ds

≤ 2p–1
(

1 – ν

B(ν)
(
u(t)p + v(t)p) +

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(
up(s) + vp(s)

)
ds

)
. (3.44)

This implies

AB
aIν

t
(
u(t) + v(t)

)p ≤ 2p–1AB
aIν

t
(
up(t) + vp(t)

)
. (3.45)

Repeating the same process with r = q, we get

AB
aIν

t
(
u(t) + v(t)

)q ≤ 2q–1AB
aIν

t
(
uq(t) + vq(t)

)
. (3.46)

Substituting by (3.45) and (3.46) into Eq. (3.39), the proof completed. �

Theorem 3.3 Let ν > 0, and let u, v ∈ Cν[a, b] be two positive functions in [0,∞[ such that
AB

aIν
t u(t) < ∞ and AB

aIν
t v(t) < ∞ for all t > a, If 0 < α ≤ u(t)

v(t) ≤ θ for some α, θ ∈ R
∗
+ and

all t ∈ [a, b], then

1
θ

AB
aIν

t
(
u(t)v(t)

) ≤ AB
aIν

t
(
u(t) + v(t)

)2 ≤ 1
α

AB
aIν

t
(
u(t)v(t)

)
, (3.47)

Proof Using the condition

0 < α ≤ u(t)
v(t)

≤ θ , (3.48)

we conclude that

(1 + α)v(t) ≤ (
u(t) + v(t)

) ≤ (θ + 1)v(t), (3.49)

θ + 1
θ

u(t) ≤ (
u(t) + v(t)

) ≤ 1 + α

α
u(t). (3.50)

By (3.49) and (3.50) we obtain

1
θ

u(t)v(t) ≤ (u(t) + v(t))2

(1 + α)(θ + 1)
≤ 1

α
u(t)v(t). (3.51)

Multiplying (3.51) by 1–ν
B(ν) and then by ν(t–s)ν–1

B(ν)Γ (ν) , we get

1
θ

1 – ν

B(ν)
u(t)v(t) ≤ 1 – ν

B(ν)
(u(t) + v(t))2

(1 + α)(θ + 1)
≤ 1

α

1 – ν

B(ν)
u(t)v(t), (3.52)

1
θ

ν(t – s)ν–1

B(ν)Γ (ν)
u(t)v(t) ≤ ν(t – s)ν–1

B(ν)Γ (ν)
(u(t) + v(t))2

(1 + α)(θ + 1)
≤ 1

α

ν(t – s)ν–1

B(ν)Γ (ν)
u(t)v(t). (3.53)

Integrating Eq. (3.53) from 0 to t with respect to s, we have

1
θ

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s)v(s) ds ≤

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
(u(s) + v(s))2

(1 + α)(θ + 1)
ds (3.54)
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≤ 1
α

∫ t

a

ν(t – s)ν–1

B(ν)Γ (ν)
u(s)v(s) ds.

Adding Eqs. (3.52) and Eq. (3.54), we obtain the required inequality. �

4 Conclusion
In this paper, we have considered Minkowski’s inequality for the AB-fractional integral
operator. We have also obtained some other types of integral inequalities for the AB-
fractional integral operator. By the help of this work we obtained more general inequalities
than in the classical cases. For possible further work, we suggest to apply the obtained in-
equalities to prove the existence of solutions of fractional differential equations.
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