
Noreen et al. Journal of Inequalities and Applications         (2019) 2019:94 
https://doi.org/10.1186/s13660-019-2044-4

R E S E A R C H Open Access

Certain geometric properties of
Mittag-Leffler functions
Saddaf Noreen1, Mohsan Raza1* and Sarfraz Nawaz Malik2

*Correspondence:
mohsan976@yahoo.com
1Department of Mathematics,
Government College University
Faisalabad, Faisalabad, Pakistan
Full list of author information is
available at the end of the article

Abstract
In this paper, some geometric properties of normalized Mittag-Leffler functions are
investigated. We focus on starlikeness of order 2μ + η – 1 and convexity in the
direction of imaginary axis. In addition, we study pre-starlikeness of Mittag-Leffler
functions. The results are obtained by using the positivity technique.

MSC: 33E12; 30C45

Keywords: Mittag-Leffler functions; Starlike functions; Close-to-convex functions;
Typically real function; Convex functions in the direction of imaginary axis; Pre-starlike
functions

1 Introduction
Recently, there has been overwhelming interest in the study of Mittag-Leffler functions.
The Mittag-Leffler type functions have widespread applications in physics, biology, chem-
istry, engineering, and some other applied sciences. Some other aspects of the applications
of these functions can be seen in fractional differential equations, stochastic systems, dy-
namical systems, statistical distributions, and chaotic systems. The geometric properties
like starlikeness, convexity, and close-to-convexity of these functions have been investi-
gated on a large scale by a number of researchers. We can easily see the direct usage of
these functions to many techniques of fractional calculus. Gorenflo et al. [9], Kilbas et
al. [14], and Srivastava et al. [34, 35] are a few leading precedents of these contributions.
The Swedish mathematician G. M. Mittag-Leffler gave the idea of so-called Mittag-Leffler
function Eα(z), see [17]. Later, it was studied by Wiman [37, 38] who defined it in terms
of power series depending on the complex parameter α. It may be regarded as a special
function of z ∈ C. We define it as follows:

Eα(z) =
∞∑

n=0

zn

Γ (αn + 1)
, z ∈C,α ∈C. (1.1)

We observe that the power series (1.1) converges in the whole complex plane for all
Reα > 0, whereas it diverges everywhere on C\{0} for all Reα < 0. We also note that for
Reα = 0, its radius of convergence is R = eπ/2| Im(z)|. Wiman [37, 38] gave the first two-
parametric generalizations of the function defined in (1.1). It was later studied by Agarwal
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[4], Humbert [10], and Agarwal and Humbert [11]. We define it as follows:

Eα,β (z) =
∞∑

n=0

zn

Γ (αn + β)
, α,β ∈C, Re(α) > 0, Re(β) > 0, z ∈C. (1.2)

For different values of parameters, the conditions of convergence vary. When α and β

are positive and real, the above given series converges in the entire complex plane. An-
other important and interesting fact about Mittag-Leffler functions is that the one and
two-parametric Mittag-Leffler functions are fractional extensions of the basic functions.
That is, E1(±z) = E1,1(±z) = e±z , E1,2(z) = (ez – 1)/z, E2(z) = E2,1(z) = cosh(

√
z), E2,2(z) =

sinh(
√

z)/
√

z. For more about Mittag-Leffler functions, see [1, 3, 12].
Let A denote the class of functions f of the form

f (z) = z +
∞∑

n=2

anzn, (1.3)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. Let S denote the class of all
functions in A which are univalent in U . Let S∗(μ), C(μ), and K(μ) denote the classes of
starlike, convex, and close-to-convex of order μ, respectively, defined as follows:

S∗(μ) =
{

f : f ∈A and Re

(
zf ′(z)
f (z)

)
> μ, z ∈ U ,μ ∈ [0, 1)

}
,

C(μ) =
{

f : f ∈A and Re

(
1 +

zf ′′(z)
f ′(z)

)
> μ, z ∈ U ,μ ∈ [0, 1)

}
,

and

K(μ) =
{

f : f ∈A and Re

(
zf ′(z)
g(z)

)
> μ, z ∈ U ,μ ∈ [0, 1), g ∈ S∗

}
.

It is clear that

S∗(0) = S∗, C(0) = C, and K(0) = K.

The functions z, z
(1–z) , z

1–z2 , z
1+z , z

1+z2 are starlike and univalent functions. It is convenient
for f to be close-to-convex, when the corresponding function g has one of the aforemen-
tioned forms.

Consider a function f ∈A which is real on the segment (–1, 1). If f satisfies the relation

Im(z) Im f (z) > 0, z ∈ U ,

then f is called a typically real function. The class of typically real functions T was intro-
duced by Robertson [26]. A function f ∈ S is said to be convex in the direction of imaginary
axis if and only if the domain f (U ) is convex in the direction of imaginary axis. That is, for
every w1, w2 ∈ f (U ), [w1, w2] ⊂ f (U ) such that Re w1 = Re w2. Robertson [26] showed that
a function f ∈A with real coefficients is convex in the direction of imaginary axis if zf ′(z)
is typically real. It is equivalent to

Re
[(

1 – z2)f ′(z)
]

> 0, z ∈ U .
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Ruscheweyh [27] proved that if a function f ∈ T and satisfies Re f ′(z) > 0 for z ∈ U , then
f is a starlike univalent function in U . The extension of this definition up to order μ was
given by Mondal and Swaminathan in [18].

Let f ∈A of the form (1.3) and g ∈A be given by

g(z) = z +
∞∑

n=2

bn zn.

Then convolution or Hadamard product of f and g is defined as

(f ∗ g)(z) = z +
∞∑

n=2

anbnzn (z ∈ U ).

We also focus on the class of pre-starlike functions, initiated in [28]. The class Rμ de-
notes the class of pre-starlike functions of order μ and is defined as follows:

Rμ =

{
f : f ∈A and

{
Re f (z)

z > 0, z ∈ U for μ = 1,
z

(1–z)2(1–μ) ∗ f (z) ∈ S∗(μ), z ∈ U for 0 ≤ μ < 1.

}

In particular, R1/2 = S∗(1/2) and R0 = C . Sheil-Small et al. [32] generalized the class Rμ

and defined the class R[ρ,μ]. A function f ∈ A is in the class R[ρ,μ] if f ∗ Sρ ∈ S∗(μ),
where Sρ = z

(1–z)2–2ρ , 0 ≤ ρ < 1. It is easy to see that R[μ,μ] = Rμ. For more details, see [8,
29].

Observe that Mittag-Leffler function Eα,β does not belong to the family A. Thus, it is
natural to consider the following normalization of Mittag-Leffler functions:

Eα,β (z) = zΓ (β)Eα,β(z) = z +
∞∑

n=2

Γ (β)
Γ (β + α(n – 1))

zn,

z,α,β ∈C, Re(α) > 0, Re(β) > 0. (1.4)

Formula (1.4) holds for complex parameters α, β , and z ∈ C. In this paper, we shall restrict
our attention to the case of real-valued α, β , and z ∈ U . For particular values of α and β ,
we obtain several functions, for example

E1,3(z) =
2(ez – z – 1)

z
, E1,4(z) =

6(ez – z – 1) – 3z2

z2 ,

E2,2(z) =
√

z sinh
√

z, E3,1(z) =
z
2

[
ez1/3

+ 2e– 1
2 z1/3

cos

(√
3

2
z1/3

)]
.

In some recent years, several researchers studied geometric properties such as starlike-
ness, convexity, and close-to-convexity of certain special functions; for details, see [5–7,
19, 21–25, 36] and the references therein. Also see [2, 13, 16, 30, 33] for some proper-
ties of special functions and mathematical inequalities. More recently, Sangal and Swami-
nathan [31] studied geometric properties of hypergeometric functions by using the posi-
tivity technique.
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In this paper, we study pre-starlikeness and deduce the convexity and starlikeness of
order 1/2. We also investigate the starlikeness of order 2μ + η – 1. Furthermore, we find
the convexity of Mittag-Leffler functions in the direction of imaginary axis. The main tool
in this investigation is the positivity technique.

2 Preliminaries
To obtain our main results, we need the following lemmas.

Lemma 2.1 ([18]) Let {ak}∞k=1 be a sequence of positive numbers such that a1 = 1. If, for
0 ≤ μ < 1,

(1) (1 – μ)a1 ≥ (2 – μ)a2 ≥ 2(μ+1)(3 – μ)a3,
(2) (k – 1 – μ)(k – μ)ak ≥ k(k + 1 – μ)ak+1, ∀k ≥ 3.

Then f (z) = z +
∑∞

k=2 akzk ∈ S∗(μ).

Lemma 2.2 ([20]) Let η ≥ 0, μ ∈ R such that 0 < μ + η < 1 and n ∈ N. If d0 = d1 = 1 and
d2k = d2k+1 = (1+η)n–kn!

(n–k)!(1+η)n
. (μ+η)k

k! for 1 ≤ k ≤ n, then
(i)

∑n
k=0 dk cos(kθ ) > 0 ⇔ μ + η ≤ μ∗( 1

2 ) = 0.691556 . . . ,
(ii)

∑2n+1
k=1 sin(kθ ) > 0 ⇔ μ + η ≤ μ∗( 1

2 ),
(iii)

∑2n
k=1 sin(kθ ) > 0 for μ + η ≤ 1+η

2 ,
where μ∗(γ ), γ ∈ (0, 1] is the unique solution in ]0, 1[ of

∫ (γ +1)π
0

sin(t–γπ )
t1–μ dt = 0.

Koumandos and Ruscheweyh [15] obtained the value of μ∗(γ ). In this work, we use the
particular value μ∗( 1

2 ) = μ∗
0.

Lemma 2.3 ([31]) Let 0 ≤ η ≤ 2μ∗
0 – 1, μ ∈R such that 0 < μ + η < 1 and n ∈N. If {ak}∞k=1

is a decreasing sequence of non-negative numbers satisfying a0 > 0 and

k(n – k + 1 + η)a2k ≤ (n – k + 1)(k + μ + η – 1)a2k–1 for 1 ≤ k ≤ n,

then, for all 0 < θ < π ,

n∑

k=0

ak sin kθ > 0 ⇔ μ + η ≤ 1 + η

2
.

Lemma 2.4 ([31]) Let 0 ≤ η ≤ 2μ∗
0 – 1 and –η < μ ≤ 1–η

2 , a1 = 1, ak ≥ 0 satisfy

[
k(1 + η)(1 – μ – η) – 1 + 2μ + η

]
ak

≥ [
(k + 1)(1 + η)(1 – μ – η) – 1 + 2μ + η

]
ak+1, (2.1)

(n – k + 1)(k + μ + η – 1)
[
2k(1 + η)(1 – μ – η) – 1 + 2μ + η

]
a2k

≥ k(n – k + 1 + η)
[
(2k + 1)(1 + η)(1 – μ – η) – 1 + 2μ + η

]
a2k+1 (2.2)

for 1 ≤ k ≤ n. Then fn(z) =
∑n

k=1 akzk is starlike of order 1–2μ–η

(1+η)(1–μ–η) . Moreover, in the lim-
iting case, f (z) = limn→∞ fn(z) =

∑∞
k=1 akzk is starlike of the same order if {ak} satisfy (2.1)

and in addition

(k + μ + η – 1)
[
2k(1 + η)(1 – μ – η) – 1 + 2μ + η

]
a2k

≥ k
[
(2k + 1)(1 + η)(1 – μ – η) – 1 + 2μ + η

]
a2k+1 for k ≥ 1. (2.3)
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Lemma 2.5 ([31]) Let μ ∈ R and η ≥ 0 such that 0 < μ + η < 1, and let a1 = 1 and ak ≥ 0
satisfy

0 ≤ nan ≤ · · · ≤ (k + 1)ak+1 ≤ kak ≤ · · · ≤ 3a3

≤ 2a2 ≤ μ + η

μ∗
0

, μ + η ∈ (
0,μ∗

0
]
, (2.4)

and

2(n – k + 1)(k + μ + η – 1)a2k ≥ (2k + 1)(n – k + 1 + η)a2k+1, 1 ≤ k ≤
[

n
2

]
. (2.5)

Then fn(z) = z +
∑n

k=2 akzk satisfies Re(f ′
n(z)) > 1 – μ+η

μ∗
0

.

3 Main results
Theorem 3.1 Let α ≥ 1, β ≥ 1. Then Eα,β(z) ∈R[ρ,μ] for 0 ≤ μ < 1 and

Γ (α + β)
Γ (β)

≥

⎧
⎪⎪⎨

⎪⎪⎩

T1(ρ,μ), 0 ≤ ρ ≤ ρ1(μ),

max{T1(ρ,μ), T2(ρ,μ) 2Γ 2(α+β)
Γ (β)Γ (2α+β) , T3(ρ,μ) Γ (α(k–1)+β)

Γ (αk+β)
Γ (α+β)
Γ (β) },

ρ1(μ) ≤ ρ < 1,

where

T1(ρ,μ) =
2(2 – μ)(1 – ρ)

(1 – μ)
, T2(ρ,μ) =

2μ–1(3 – μ)(3 – 2ρ)
(2 – μ)

,

T3(ρ,μ) =
2(4 – μ)(2 – ρ)
(2 – μ)(3 – μ)

, ρ1(μ) = 1 –
2μ(3 – μ)(1 – μ)

4(2 – μ)2 – 2.2μ(3 – μ)(1 – μ)
.

Proof Consider the function g(z) = z +
∑∞

k=2 bkzk , where bk is given by

b1 = 1, bk+1 =
Γ (α(k – 1) + β)

Γ (αk + β)
(k + 1 – 2ρ)

k
bk , ∀k ≥ 1.

Now

(1 – μ)b1 – (2 – μ)b2

= (1 – μ) – 2(2 – μ)
Γ (β)

Γ (α + β)
(1 – ρ)

=
1

Γ (α + β)
[
(1 – μ)Γ (α + β) – 2(2 – μ)(1 – ρ)Γ (β)

] ≥ 0

implies Γ (α + β) ≥ T1(ρ,μ)Γ (β), where T1(ρ,μ) = 2(2–μ)(1–ρ)
(1–μ) . Again

(2 – μ)b2 – 2μ+1(3 – μ)b3

= (2 – μ)b2 – 2μ+1(3 – μ)
Γ (α + β)
Γ (2α + β)

(3 – 2ρ)
2

b2

=
2(2 – μ)b2

Γ (2α + β)

[
Γ (2α + β)

2
– T2(ρ,μ)Γ (α + β)

]
≥ 0
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with Γ (α+β)
Γ (β) ≥ 2T2(ρ,μ) Γ 2(α+β)

Γ (β)Γ (2α+β) , where T2(ρ,μ) = 2μ–1(3–μ)(3–2α)
(2–μ) . Also consider

(k – 1 – μ)(k – μ)bk – k(k + 1 – μ)bk+1

= (k – 1 – μ)(k – μ)bk – k(k + 1 – μ)
(k + 1 – 2ρ)

k
Γ (α(k – 1) + β)

Γ (αk + β)
bk

=
bk

Γ (αk + β)

× [
(k – 1 – μ)(k – μ)Γ (αk + β) – (k + 1 – μ)(k + 1 – 2ρ)Γ

(
α(k – 1) + β

)]

= A(k)M(k),

where A(k) = bk
Γ (αk+β) and

M(k) = (k – 1 – μ)(k – μ)Γ (αk + β) – (k + 1 – μ)(k + 1 – 2ρ)Γ
(
α(k – 1) + β

)

= A(ρ,μ)(k – 3)2 + B(ρ,μ)(k – 3) + D(ρ,μ).

Here

A(ρ,μ) = Γ (αk + β) – Γ
(
α(k – 1) + β

) ≥ 0,

B(ρ,μ) = (5 – 2μ)Γ (αk + β) – (8 – 2ρ – μ)Γ
(
α(k – 1) + β

) ≥ 0,

D(ρ,μ) = (2 – μ)(3 – μ)Γ (αk + β) – 2(4 – μ)(2 – ρ)Γ
(
α(k – 1) + β

) ≥ 0.

This implies that

Γ (α + β)
Γ (β)

≥ T3(ρ,μ)
Γ (α(k – 1) + β)

Γ (αk + β)
Γ (α + β)

Γ (β)
,

where T3(ρ,μ) = 2(4–μ)(2–α)
(2–μ)(3–μ) . It is clear that A(ρ,μ), B(ρ,μ), D(ρ,μ) are non-negative. Since

each coefficient of (k – 3) and the constant term in M(k) are non-negative, therefore M(k)
is an increasing function for k ≥ 3. Also, for M(3) > 0, we have (k – 1 – μ)(k – μ)bk ≥
k(k + 1 – μ)bk+1. Thus bk satisfies the conditions of Lemma 2.1 and hence g ∈ S∗(μ). After
simple computations, we observe that g(z) = Eα,β (z) ∗ z

(1–z)2–2ρ . Therefore, by the definition
of R[ρ,μ], we have Eα,β (z) ∈R[ρ,μ]. Now consider

T3(ρ,μ) – T1(ρ,μ) =
2(4 – μ)(2 – ρ)
(2 – μ)(3 – μ)

–
2(2 – μ)(1 – ρ)

(1 – μ)

=
2(1 – μ)(4 – μ)(2 – ρ) – 2(2 – μ)2(3 – μ)(1 – ρ)

(1 – μ)(2 – μ)(3 – μ)
.

The numerator is negative for all μ and hence T3(ρ,μ) ≤ T1(ρ,μ) for 0 ≤ ρ ≤ ρ0(μ). Sim-
ilarly, if 0 ≤ ρ ≤ ρ1(μ), T1(ρ,μ) ≥ T2(ρ,μ) for all μ. Here,

ρ0(μ) = 1 –
(4 – μ)(1 – μ)

(2 – μ)2(3 – μ) – (4 – μ)(1 – μ)
,

ρ1(μ) = 1 –
2μ(3 – μ)(1 – μ)

4(2 – μ)2 – 2.2μ(3 – μ)(1 – μ)
.
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Clearly, we can investigate that, for 0 ≤ ρ ≤ min{ρ0(μ),ρ1(μ)},

max
i=1,2,3

{
Ti(ρ,μ)

}
= T1(ρ,μ).

Now, we only need to check the min{ρ0(μ),ρ1(μ)}. Consider

ρ1 – ρ0 = –
2μ(3 – μ)(1 – μ)

4(2 – μ)2 – 2.2μ(3 – μ)(1 – μ)
+

(4 – μ)(1 – μ)
(2 – μ)2(3 – μ) – (4 – μ)(1 – μ)

=
N(μ)

(4(2 – μ)2 – 2.2μ(3 – μ)(1 – μ))((2 – μ)2(3 – μ) – (4 – μ)(1 – μ))
,

where

N(μ) = 2μ(3 – μ)(1 – μ)
{

(2 – μ)2(3 – μ) – (4 – μ)(1 – μ)
}

+ (4 – μ)(1 – μ)
{

4(2 – μ)2 – 2.2μ(3 – μ)(1 – μ)
}

< 0.

This implies ρ0(μ) = min{ρ0(μ),ρ1(μ)}, and the proof is complete. �

Theorem 3.2 Let 0 ≤ μ < 1, α ≥ 1, β ≥ 1. If Γ (α+β)
Γ (β) ≥ 2(2 – μ), then Eα,β (z) is pre-starlike

of order μ in U .

Proof Consider Ti(ρ,μ), i = 1, 2, 3, as in Theorem 3.1. Replacing ρ by μ, we get

T1(μ) = 2(2 – μ),

T2(μ) =
2μ–1(3 – μ)(3 – 2μ)

(2 – μ)
,

T3(μ) =
2(4 – μ)
(3 – μ)

.

It is noticed that, for 0 ≤ μ < 1,

T1(μ) – T2(μ) = 2(2 – μ) –
2μ–1(3 – μ)(3 – 2μ)

(2 – μ)

=
2(2 – μ)2 – 2μ–1(3 – μ)(3 – 2μ)

(2 – μ)
> 0.

Similarly,

T1(μ) – T3(μ) = 2(2 – μ) –
2(4 – μ)
(3 – μ)

=
2(2 – μ)(3 – μ) – 2(4 – μ)

(3 – μ)
> 0.

Therefore, T1(μ) is maximum. Hence

Γ (α + β)
Γ (β)

≥ max

{
T1(μ), T2(μ) 2Γ 2(α+β)

Γ (β)Γ (2α+β) ,
T3(μ) Γ (α(k–1)+β)

Γ (αk+β)
Γ (α+β)
Γ (β)

}
= T1(μ).
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This is equivalent to

Γ (α + β)
Γ (β)

≥ 2(2 – μ). (3.1)

�

Corollary 3.3 Let α ≥ 1, β ≥ 1. Then Eα,β (z) ∈ C if Γ (α+β)
Γ (β) ≥ 4.

Proof It is noticed that, for μ = 0, we have z
(1–z)2 ∗ f (z) ∈ S∗. By using the definition of

convolution, it is easy to see that zf ′(z) ∈ S∗. Therefore, by Alexander relation it follows
that f ∈ C . We also see from Theorem 3.2 that

T1(0) = 4, T2(0) =
9
4

, T3(0) =
8
3

.

Now

T1(0) – T2(0) = 4 –
9
4

=
7
4

> 0,

similarly,

T1(0) – T3(0) = 4 –
8
3

=
4
3

> 0.

Therefore, T1(0) is maximum. Hence

Γ (α + β)
Γ (β)

≥ 4.

This shows that Eα,β (z) ∈ C . �

Example 3.4 For α = 3, β = 1, we have Γ (α+β)
Γ (β) ≥ 4, therefore the function

E3,1(z) =
z
2

[
ez1/3

+ 2e– 1
2 z1/3

cos

(√
3

2
z1/3

)]

is in C .

Example 3.5 For α = 1, β = 4, we have Γ (α+β)
Γ (β) = 4, therefore the function

E1,4(z) =
6(ez – z – 1) – 3z2

z2

is in C .

The mappings of these functions are given in Fig. 1.
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Figure 1 The mapping of U by the indicated functions

Corollary 3.6 Let α ≥ 1, β ≥ 1. Then Eα,β (z) ∈ S∗( 1
2 ) if Γ (α+β)

Γ (β) ≥ 3.

Proof Consider Ti(ρ,μ), i = 1, 2, 3, as in Theorem 3.1. Replacing ρ by μ, we get

T1(μ) = 2(2 – μ),

T2(μ) =
2μ–1(3 – μ)(3 – 2μ)

(2 – μ)
,

T3(μ) =
2(4 – μ)
(3 – μ)

.

For μ = 1
2 ,

T1

(
1
2

)
= 3, T2

(
1
2

)
=

5
√

2
3

, T3

(
1
2

)
=

14
5

.

Now

T1

(
1
2

)
– T2

(
1
2

)
= 3 –

5
√

2
3

=
9 – 5

√
2

3
> 0.

Similarly,

T1

(
1
2

)
– T3

(
1
2

)
= 3 –

14
5

=
1
5

> 0.

Therefore, T1( 1
2 ) is maximum. Hence

Γ (α + β)
Γ (β)

≥ 3.

Therefore, for α ≥ 1, β ≥ 1, and Γ (α+β)
Γ (β) ≥ 3, Eα,β(z) ∈ S∗( 1

2 ). �
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Figure 2 The mapping of U by the indicated functions

Example 3.7 For α = 1, β = 3, we have Γ (α+β)
Γ (β) = 3, therefore the function

E1,3(z) =
2(ez – z – 1)

z

is in S∗( 1
2 ).

Example 3.8 For α = 2, β = 2, we have Γ (α+β)
Γ (β) = 6, therefore the function

E2,2(z) =
√

z sinh
√

z

is in S∗( 1
2 ).

The mappings of these functions are given in Fig. 2.

Theorem 3.9 Let μ ≥ 1, η ≥ –μ+
√

μ2+4μ–4
2 with α ≥ 1, β ≥ 2 If M1 = (1 + η)(1 – μ – η) > 0

and M2 = +2μ + η – 1 > 0, then Eα,β (z) is starlike of order 2μ + η – 1.

Proof It is observed that (Eα,β )n(z) =
∑∞

k=1 akzk gives a1 = 1 and ak = Γ (β)
Γ (α(k–1)+β) for k ≥ 2.

The relation between ak and ak+1 is

ak+1 =
Γ (α(k – 1) + β)

Γ (αk + β)
ak for k ≥ 1.

To prove this theorem, it is enough to show that {ak} satisfies conditions (2.1) and (2.3) of
Lemma 2.4. Using the above relation and simple computations yields

[
k(1 + η)(1 – μ – η) – 1 + 2μ + η

]
ak –

[
(k + 1)(1 + η)(1 – μ – η) – 1 + 2μ + η

]
ak+1

=
Γ (α(k – 1) + β)ak

Γ (αk + β)
h(k),
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where h(k) is defined as follows:

h(k) =
Γ (αk + β)

Γ (α(k – 1) + β)
[
k(1 + η)(1 – μ – η) – 1 + 2μ + η

]

–
[
(k + 1)(1 + η)(1 – μ – η) – 1 + 2μ + α

]

=
Γ (αk + β)

Γ (α(k – 1) + β)
(kM1 + M2) –

[
(k + 1)M1 + M2

]

=
[

kΓ (αk + β)
Γ (α(k – 1) + β)

– (k + 1)
]

M1 +
[

Γ (αk + β)
Γ (α(k – 1) + β)

– 1
]

M2 > 0. (3.2)

It is observed that under the conditions μ ≥ 1, η ≥ –μ+
√

μ2+4μ–4
2 , α ≥ 1, and β ≥ 3, expres-

sion (3.2) is positive for k ≥ 1. It remains to verify (2.3). That is,

(k + μ + η – 1)
[
2k(1 + η)(1 – μ – η) – 1 + 2μ + η

]
a2k

≥ k
[
(2k + 1)(1 + η)(1 – μ – η) – 1 + 2μ + η

]
a2k+1.

Clearly,

(k + μ + η – 1)
[
2k(1 + η)(1 – μ – η) – 1 + 2μ + η

]
a2k

– k
[
(2k + 1)(1 + η)(1 – μ – η) – 1 + 2μ + η

]
a2k+1 =

Γ (α(2k – 1) + β)a2k

2Γ (α(2k) + β)
g(k),

where g(k) is defined as follows:

g(k) =
Γ (α(2k) + β)

Γ (α(2k – 1) + β)
(
k + μ + η′ – 1

)[
2k(1 + η)(1 – μ – η) – 1 + 2μ + η)

]

–
[
(2k + 1)(1 + η)(1 – μ – η) – 1 + 2μ + η

]

=
Γ (α(2k) + β)

Γ (α(2k – 1) + β)
(k + μ + η – 1)[2kM1 + M2] – k

[
(2k + 1)M1 + M2

]

=
[

Γ (α(2k) + β)
Γ (α(2k – 1) + β)

2k(k + μ + η – 1) – k(2k + 1)
]

M1

+
[

Γ (α(2k) + β)
Γ (α(2k – 1) + β)

(k + μ + η – 1) – k
]

M2 > 0. (3.3)

It is observed that under the conditions μ ≥ 1, η ≥ –μ+
√

μ2+4μ–4
2 , 2μ + η > 1, α ≥ 1, and

β ≥ 2, expression (3.3) is positive for k ≥ 1, which completes the proof. �

Theorem 3.10 Let μ ≥ 1, η ≥ –μ+
√

μ2+4μ–4
2 , 2μ + η > 1, α ≥ 1, β ≥ 2, a1 = 1, ak ≥ 0 satisfy

kak – (k + 1)ak+1 ≥ 0, k = 1, 2, 3, . . . , n – 1,

(n – k + 1)(k + μ + η – 1)(2k – 1)a2k–1 ≥ 2k2(n – k + 1 + η)a2k ,

k = 4, 5, . . . ,
[

n + 3
2

]
,

(3.4)

for k ≥ 4. Then (Eα,β )n(z) =
∑n

k=4 akzk is convex in the direction of imaginary axis.
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Proof To show that Mittag-Leffler function is convex in the direction of imaginary axis, we
will prove that z(Eα,β )′n(z) is a typically real function. Also (Eα,β)n(z) has real coefficients.
Set

z(Eα,β )′n(z) = z +
n∑

k=2

Γ (β)
Γ (α(k – 1) + β)

zk

= z +
n∑

k=2

bkzk ,

where bk = Γ (β)
Γ (α(k–1)+β) . To get the result, it is required that {bk} must satisfy the conditions

mentioned in Lemma 2.3. Consider

kbk – (k + 1)bk+1 = Γ (β)
[

k
Γ (α(k – 1) + β)

–
k + 1

Γ (αk + β)

]

= Γ (β)
[

kΓ (αk + β) – (k + 1)Γ (α(k – 1) + β)
Γ (αk + β)Γ (α(k – 1) + β)

]
> 0

for k = 1, 2, 3, . . . , n – 1. Take

(n – k + 1)(k + μ + η – 1)b2k–1 – k(n – k + 1 + η)b2k =
b2kΓ (α(2k – 1) + β)
Γ (α(2k – 2) + β)

q(k),

here q(k) is defined as

q(k) = (k + μ + η – 1)(n – k + 1) – k(n – k + 1 + η)
Γ (α(2k – 2) + β)
Γ (α(2k – 1) + β)

. (3.5)

Since Γ is an increasing function in [ 3
2 ,∞), therefore (3.5) becomes positive when μ ≥

1, η ≥ –μ+
√

μ2+4μ–4
2 , 2μ + η > 1, α ≥ 1, and β ≥ 2. Thus {bk} satisfies the conditions of

Lemma 2.3. Therefore, by using the minimum principle for harmonic functions under the
conditions μ + η ∈ (0, 1+η

2 ],

Im
(
zf ′

n(z)
)

=
n∑

k=1

bkrk sin kθ > 0, where θ ∈ ]0,π [ and r ∈ ]0, 1[

and

Im
(
zf ′

n(z)
)

= 0 for z ∈ (0, 1).

The Schwarz reflection principle yields that Im(zf ′
n(z)) < 0 for θ ∈ (π , 2π ). So zf ′

n(z) is a
typically real function, which is equivalent to saying that fn(z) is convex in the direction of
imaginary axis. �

Theorem 3.11 Let μ ∈ R and η ≥ 0 such that 2μ + η > 1, and let a1 = 1 and ak ≥ 0 satisfy

0 ≤ nan ≤ · · · ≤ (k + 1)ak+1 ≤ kak ≤ · · · ≤ 3a3 ≤ 2a2 ≤ μ + η

μ∗
0

, μ + η ∈ (
0,μ∗

0
]
, (3.6)
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and

2(n – k + 1)(k + μ + η – 1)a2k ≥ (2k + 1)(n – k + 1 + η)a2k+1, 1 ≤ k ≤
[

n
2

]
. (3.7)

If α ≥ 1 and β ≥ 2, then (Eα,β )n(z) = z +
∑n

k=2 akzk satisfies Re(f ′
n(z)) > 1 – μ+η

μ∗
0

.

Proof Let σ – 1 = – μ+η

μ∗
0

and (Eα,β)n(z) = z +
∑n

k=2
Γ (β)

Γ (α(k–1)+β) zk , where ak = Γ (β)
Γ (α(k–1)+β) . Then

(Eα,β )′n(z) – σ

1 – σ
=

n–1∑

k=0

ckzk ,

where ck = (k+1)bk+1
1–σ

and c0 = 1 for 1 ≤ k ≤ n – 1. It is observed that under the conditions
α ≥ 1 and β ≥ 2 the coefficients ak are positive. Therefore, ck > 0 for k ≥ 1. To prove this
theorem, we will show that the coefficients {ck} are decreasing and satisfy (2.5). Now, for
this, consider

(k + 1)ak+1 – (k + 2)ak+2 = Γ (β)
[

k + 1
Γ (αk + β)

–
k + 2

Γ (α(k + 1) + β)

]

= Γ (β)
[

(k + 1)Γ (α(k + 1) + β) – (k + 2)Γ (αk + β)
Γ (αk + β)Γ (α(k + 1) + β)

]
> 0

for k = 1, 2, 3, . . . , n – 2. This shows that the coefficients of Mittag-Leffler function are de-
creasing and c1 < c0 ⇒ 2b2 < 1 – σ . Now to have (2.5), consider

(n – k + 1)(μ + η + k – 1)a2k – (n – k + 1 + η)(2k + 1)a2k+1

=
(n – k + 1)(μ + η + k – 1)Γ (β)

Γ (α(2k – 1) + β)
–

(n – k + 1 + η)(2k + 1)Γ (β)
Γ (α(2k) + β)

= Γ (β)

×
[

(n – k + 1)(μ + η + k – 1)Γ (α(2k) + β) – (n – k + 1 + η)(2k + 1)Γ (α(2k – 1) + β)
Γ (α(2k) + β)Γ (α(2k – 1) + β)

]

> 0, for 1 ≤ k ≤
[

n
2

]
.

It is clear that the above relation is positive for n ≥ k, α ≥ 1, and β ≥ 2. Also, Γ is an
increasing function in [ 3

2 ,∞). This yields (3.7). Using similar arguments and the minimum
principle for harmonic function gives the required result. �

4 Conclusion
In this paper, we have studied the normalized Mittag-Leffler function of two parameters.
We have investigated new properties including pre-starlikeness, convexity, and starlike-
ness of order 1/2. Sufficient conditions for the normalized Mittag-Leffler function to be
starlike of order 2μ + η – 1 have also been studied. Moreover, we have found the convexity
of Mittag-Leffler functions in the direction of imaginary axis.
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