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Abstract
We investigate the isoperimetric deficit of the oval domain in the Euclidean plane. Via
the kinematic formulae of Poincaré and Blaschke, and Blaschke’s rolling theorem, we
obtain a sharp reverse Bonnesen-style inequality for a plane oval domain, which
improves Bottema’s result. Furthermore, we extend the isoperimetric deficit to the
symmetric mixed isoperimetric deficit for two plane oval domains, and we obtain two
reverse Bonnesen-style symmetric mixed inequalities, which are generalizations of
Bottema’s result and its strengthened form.
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1 Introduction and main results
Integral geometry originated from geometric probability. It is a very important branch of
the global differential geometry, which investigates the global properties of manifolds and
convex bodies. Geometric inequality is an important topic in integral geometry. Perhaps
the classical isoperimetric inequality is the oldest geometric inequality, that is, the disc
encloses the maximum area among all domains of fixed perimeter. Let K be a domain of
area A with simple boundary of perimeter P in R

2, then

P2 – 4πA ≥ 0, (1.1)

the equality sign holds if and only if K is a disc.
The root of the classical isoperimetric problem can be traced back to ancient Greece.

However, the rigorous mathematical proof of the isoperimetric inequality was obtained
in the 19th century. Via the variational method, the first rigorous mathematical proof of
the isoperimetric inequality was obtained by Weierstrass in 1870. By comparing a simple
closed curve and a circle, Schmidt found a concise proof of the isoperimetric inequality
in 1938. The isoperimetric inequality has been extended to the discrete case, the higher
dimensions, and the surface of constant curvature (see [1, 2, 6, 9–11, 15, 18, 22, 31–35]).

The quantity of the isoperimetric inequality (1.1)

�2(K) = P2 – 4πA (1.2)
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measures the deficit between K and a disc of radius P/2π , it is called the isoperimetric
deficit of K .

During the 1920s, Bonnesen proved some inequalities of the following form:

�2(K) = P2 – 4πA ≥ BK , (1.3)

where BK is a nonnegative invariant of geometric significance and BK = 0 if and only if K
is a disc. An inequality of the form (1.3) is called the Bonnesen-style inequality, and it is
stronger than the isoperimetric inequality (1.1). Many Bonnesen-style inequalities have
been found (see [1, 4, 12, 16, 19, 33]).

Conversely, we considered the upper bound of the isoperimetric deficit, that is,

�2(K) = P2 – 4πA ≤ UK , (1.4)

where UK is a nonnegative invariant of geometric significance, it is called the reverse
Bonnesen-style inequality.

For the oval domain K in R
2, Bottema obtained the following reverse Bonnesen-style

inequality (see [5]):

P2 – 4πA ≤ π2(ρM – ρm)2, (1.5)

where ρm and ρM are the minimum and maximum of the continuous curvature radius
ρ of the boundary ∂K , respectively. The equality holds if and only if ρm = ρM , that is,
K is a disc. Howard, Gao, Pan, Zhang, and others (see [8, 17, 29]) obtained some re-
verse Bonnesen-style inequalities with the methods of analysis and curvature flow as fol-
lows:

P2 – 4πA ≤ c|Ã|, (1.6)

where c is a constant and Ã is the area of K̃ , the domain K̃ is bounded by the locus of the
curvature centers of ∂K , where the equality sign holds if and only if K is a disc, that is, K̃
is a point. Some reverse Bonnesen-style inequalities for surface X2

ε of constant curvature
have been obtained in [13, 23, 27, 28]. Zhou et al. obtained some reverse Bonnesen-style
inequalities for any convex domain in [33].

By comparing a simple closed curve and a circle, Schmidt proved the isoperimetric in-
equality in 1938. We were motivated by Schmidt’s works, we compared the two simple
closed curves directly and obtained the symmetric mixed isoperimetric inequality (see
[14, 20, 21, 24–26, 30]). That is, let Kk (k = 0, 1) be two domains of areas Ak with simple
boundaries of perimeters Pk in R

2. Then

P2
0P2

1 – 16π2A0A1 ≥ 0, (1.7)

where the equality sign holds if and only if both K0 and K1 are discs. When one of the do-
mains is a disc, inequality (1.7) immediately reduces to (1.1). That is, the symmetric mixed
isoperimetric inequality (1.7) is a generalization of the isoperimetric inequality (1.1).
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The quantity

�2(K0, K1) = P2
0P2

1 – 16π2A0A1 (1.8)

is called the symmetric mixed isoperimetric deficit of K0 and K1.
We were motivated by Bonnesen’s works, we considered whether there is a nonnegative

invariant BK0,K1 of geometric significance such that

�2(K0, K1) = P2
0P2

1 – 16π2A0A1 ≥ BK0,K1 , (1.9)

where BK0,K1 = 0 if and only if both K0 and K1 are discs. An inequality of the form (1.9) is
called the Bonnesen-style symmetric mixed inequality, it is stronger than the symmetric
mixed isoperimetric inequality (1.7). Zhou, Xu, Zeng, and others (see [14, 20, 21, 24–26,
30]) obtained some Bonnesen-style symmetric mixed inequalities with the known kine-
matic formulae of Poincaré and Blaschke.

Conversely, we considered the upper bound of the symmetric mixed isoperimetric
deficit of K0 and K1, that is,

�2(K0, K1) = P2
0P2

1 – 16π2A0A1 ≤ UK0,K1 , (1.10)

where UK0,K1 is a nonnegative invariant of geometric significance, it is called the reverse
Bonnesen-style symmetric mixed inequality. When one of the domains is a disc, an in-
equality of the form (1.10) reduces to a reverse Bonnesen-style inequality. For any con-
vex domain Kk (k = 0, 1) of areas Ak and perimeters Pk in R

2, Zhou, Xu, Zeng, and
others obtained the following reverse Bonnesen-style symmetric mixed inequalities (see
[21, 25, 30]):

P2
0P2

1 – 16π2A0A1 ≤ 4π2P0P1
(
R01R2

1 – r01r2
1
)
, (1.11)

P2
0P2

1 – 16π2A0A1 ≤ 16π4(R2
0R2

1 – r2
0r2

1
)
, (1.12)

where r01 = max{t : t(gK1) ⊆ K0; g ∈ G2} and R01 = min{t : t(gK1) ⊇ K0; g ∈ G2} are the inra-
dius of K0 with respect to K1 and the outradius of K0 with respect to K1, respectively. G2

is a group of plane rigid motions. Rk and rk are the radius of the minimum circumscribed
disc and the radius of the maximum inscribed disc of Kk , respectively. Each equality sign
holds if and only if both K0 and K1 are discs.

The purpose of this paper is to find some new reverse Bonnesen-style inequalities for the
oval domain in R

2, which generalize known reverse Bonnesen-style inequalities. Via the
kinematic formulae of Poincaré and Blaschke, and Blaschke’s rolling theorem, we obtain
a sharp reverse Bonnesen-style inequality (3.10) in Theorem 3.2 as follows:

P2 – 4πA ≤ (2πρM – P)(P – 2πρm),

which improves Bottema’s result. Furthermore, we obtain two reverse Bonnesen-style
symmetric mixed inequalities (4.10) and (4.11) in Theorem 4.2 as follows:

P2
0P2

1 – 16π2A0A1 ≤ 4π2A2
1
(
ρM

01 – ρm
01

)2,

P2
0P2

1 – 16π2A0A1 ≤ 16π2A2
1

(
ρM

01 –
P0P1

4πA1

)(
P0P1

4πA1
– ρm

01

)
.



Wang Journal of Inequalities and Applications         (2019) 2019:87 Page 4 of 12

When K1 is a unit disc, (4.10) reduces to the known reverse Bonnesen-style inequality
(1.5) of Bottema, inequality (4.11) reduces to (3.10).

2 Preliminaries
A set of points K in R

n is convex if the line segment λx+(1–λ)y ∈ K for all x, y ∈ K and 0 ≤
λ ≤ 1. A domain is a set with nonempty interior, and an oval domain is a convex domain
of boundary at least C2. A convex body is a compact convex domain. The Minkowski sum
of convex sets K and L, the scalar product of convex set K with λ ≥ 0 are, respectively,
defined by

K + L = {x + y : x ∈ K , y ∈ L},

and

λK = {λx : x ∈ K}.

A homothety of the convex set K is of the form x + λK for x ∈R
n, λ > 0.

For the proof of the main theorem, we cite Blaschke’s rolling theorem in R
2 from [3, 7,

13, 25].

Lemma 2.1 (Blaschke’s rolling theorem) Let K be an oval domain in R
2, ρm and ρM be

the minimum and maximum of the curvature radius of ∂K , respectively, Bt be a circle of
radius t in R

2.
If t ∈ (0,ρm] and Bt is tangent to ∂K inside, then Bt has no other common point with ∂K .
If t ∈ [ρM, +∞) and Bt is tangent to ∂K outside, then Bt has no other common point with

∂K .

By Lemma 2.1, we obtain the following corollary.

Corollary 2.1 Let K be an oval domain in R
2, ρm and ρM be the minimum and maximum

of the curvature radius of ∂K , respectively, Bt be a circle of radius t in R
2. When t ∈ (0,ρm]

or t ∈ [ρM, +∞), and ∂K ∩ ∂(Bt) 	= ∅, then Bt has two common points with ∂K or Bt is
tangent to ∂K .

Proof Suppose that Bt has more than two common points with ∂K when t ∈ (0,ρm] or
t ∈ [ρM, +∞), then we can move Bt properly so that it is tangent to ∂K and has other
common point with ∂K ; this is inconsistent with Blaschke’s rolling theorem. �

Corollary 2.2 Let Kk (k = 0, 1) be two oval domains in R
2, ρm(∂Kk) and ρM(∂Kk) be the

minimum and maximum of the curvature radius of ∂Kk , respectively. When ρM(∂K1) ≤
ρm(∂K0) or ρm(∂K1) ≥ ρM(∂K0), and ∂K0 ∩ ∂K1 	= ∅, then ∂K0 has two common points with
∂K1 or ∂K0 is tangent to ∂K1.

Proof Suppose that ∂K0 has more than two common points with ∂K1, we can draw a circle
Bt of radius t through three points among these common points. Therefore, we have t ∈
(ρm(∂K0),ρM(∂K0)) and t ∈ (ρm(∂K1),ρM(∂K1)); this is inconsistent with the conditions of
Corollary 2.2. �
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3 Reverse Bonnesen-style inequalities
Let K be an oval domain of area A and perimeter P inR

2. Let ρ(∂K) be the curvature radius
of boundary ∂K and ρm = min{ρ(∂K)}, ρM = max{ρ(∂K)}. Let dg denote the kinematic
density of the group G2 of plane rigid motions, and Bt be a circle of radius t in R

2. Let
n{∂K ∩ ∂(gBt)} denote the number of points of intersection ∂K ∩ ∂(gBt) and χ{K ∩ gBt} be
the Euler–Poincaré characteristics of the intersection K ∩ gBt . Then we have the following
kinematic formula of Poincaré (see [18]):

∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
n
{
∂K ∩ ∂(gBt)

}
dg = 8πPt (3.1)

and the kinematic formula of Blaschke
∫

{g∈G2:K∩gBt 	=∅}
χ{K ∩ gBt}dg = 2π2t2 + 2πPt + 2πA. (3.2)

If μ denotes a set of all positions of Bt in which either gBt ⊂ K or gBt ⊃ K , then the kine-
matic formula of Blaschke (3.2) can be rewritten as

∫

μ

dg = 2π2t2 + 2πPt + 2πA –
∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
χ{K ∩ gBt}dg. (3.3)

Since K is an oval domain in R
2, then

∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
χ{K ∩ gBt}dg =

∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
dg. (3.4)

When t ∈ (0,ρm] or t ∈ [ρM, +∞), by Corollary 2.1, we have n{∂K ∩ ∂(gBt)} = 2 or gBt is
tangent to ∂K . When gBt is tangent to ∂K , we have

∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
n
{
∂K ∩ ∂(gBt)

}
dg = 0, (3.5)

therefore,
∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
n
{
∂K ∩ ∂(gBt)

}
dg =

∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
2dg. (3.6)

By (3.4) and (3.6), we have

∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
χ{K ∩ gBt}dg =

1
2

∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
n
{
∂K ∩ ∂(gBt)

}
dg. (3.7)

Therefore, when t ∈ (0,ρm] or t ∈ [ρM, +∞), by (3.3), (3.7), and (3.1), we obtain

∫

μ

dg = 2π2t2 + 2πPt + 2πA –
∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
χ{K ∩ gBt}dg

= 2π2t2 + 2πPt + 2πA –
1
2

∫

{g∈G2:∂K∩∂(gBt ) 	=∅}
n
{
∂K ∩ ∂(gBt)

}
dg

= 2π2t2 + 2πPt + 2πA – 4πPt
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= 2π2t2 – 2πPt + 2πA

≥ 0. (3.8)

Theorem 3.1 Let K be an oval domain of area A and perimeter P in R
2, then

π t2 – Pt + A ≥ 0; t ∈ (0,ρm] or t ∈ [ρM, +∞). (3.9)

The inequality is strict whenever t ∈ (0,ρm) or t ∈ (ρM, +∞). When t = ρm or t = ρM , the
equality holds if and only if K is a disc.

Proof We obtain inequality (3.9) directly from (3.8)

∫

μ

dg = 2π2t2 – 2πPt + 2πA ≥ 0; t ∈ (0,ρm] or t ∈ [ρM, +∞).

By Blaschke’s rolling theorem (Lemma 2.1), we know Bt has no other common point with
∂K when Bt is tangent to ∂K inside with t ∈ (0,ρm], or Bt is tangent to ∂K outside with
t ∈ [ρM, +∞). Therefore, we have gBt ⊂ K when t ∈ (0,ρm), gBt ⊃ K when t ∈ (ρM, +∞),
and ∂(gBt) has no common point with ∂K , then

∫
μ

dg > 0 when t ∈ (0,ρm) or t ∈ (ρM, +∞).
That is, inequality (3.9) is strict whenever t ∈ (0,ρm) or t ∈ (ρM, +∞).

When t = ρm or t = ρM , the equality holds clearly in inequality (3.9) if K is a disc. Con-
versely, if K is not a disc, by Blaschke’s rolling theorem (Lemma 2.1), we know that Bρm has
no other common point with ∂K when Bρm is tangent to ∂K inside, and BρM has no other
common point with ∂K when BρM is tangent to ∂K outside. Therefore, if K is not a disc,
we have gBρm ⊂ K and ∂(gBρm ) has no common point with ∂K , gBρM ⊃ K and ∂(gBρM ) has
no common point with ∂K , then

∫
μ

dg > 0 when K is not a disc. That is, K is a disc when
∫
μ

dg = 0. Therefore, when t = ρm or t = ρM , the equality holds in (3.9) if and only if K is a
disc. �

Theorem 3.2 Let K be an oval domain of area A and perimeter P in R
2, then

P2 – 4πA ≤ (2πρM – P)(P – 2πρm), (3.10)

where ρm and ρM are the minimum and maximum of the continuous curvature radius ρ

of the boundary ∂K , respectively. The equality holds if and only if K is a disc.

Proof By inequality (3.9),

π t2 – Pt + A ≥ 0; t ∈ (0,ρm] or t ∈ [ρM, +∞),

we have

πρm
2 – Pρm + A ≥ 0,

πρM
2 – PρM + A ≥ 0,
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that is,

–4πA ≤ 4π2ρm
2 – 4πPρm,

–4πA ≤ 4π2ρM
2 – 4πPρM .

Therefore, we have

P2 – 4πA ≤ P2 – 4πPρm + 4π2ρm
2

= (P – 2πρm)2,

and

P2 – 4πA ≤ P2 – 4πPρM + 4π2ρM
2

= (2πρM – P)2.

Since B(t) = π t2 – Pt + A reaches the minimum when t = P
2π

and inequality (3.9), we have
ρm ≤ P

2π
≤ ρM , that is, 2πρm ≤ P ≤ 2πρM . Therefore,

√
P2 – 4πA ≤ P – 2πρm,

√
P2 – 4πA ≤ 2πρM – P.

By multiplying the last inequalities side by side, we have

P2 – 4πA ≤ (2πρM – P)(P – 2πρm).

The equality holds in (3.10) if and only if the two equalities hold in (3.9) when t = ρm and
t = ρM , that is, K is a disc. �

For all a ≥ 0, b ≥ 0, we have 4ab ≤ (a + b)2, that is,

(2πρM – P)(P – 2πρm) ≤ π2(ρM – ρm)2.

Therefore, the upper bound of the isoperimetric deficit in inequality (3.10) is better than
the upper bound in inequality (1.5), that is, the reverse Bonnesen-style inequality (3.10)
strengthens Bottema’s result.

4 Reverse Bonnesen-style symmetric mixed inequalities
Let Kk (k = 0, 1) be two oval domains inR

2. Let ρ(∂Kk) be the curvature radii of boundaries
∂Kk , and let ρm(∂Kk) = min{ρ(∂Kk)}, ρM(∂Kk) = max{ρ(∂Kk)}. Let

ρg
m(K0, K1) = max

{
t : ρM

(
∂
(
t(gK1)

)) ≤ ρm(∂K0); g ∈ G2
}

and

ρ
g
M(K0, K1) = min

{
t : ρm

(
∂
(
t(gK1)

)) ≥ ρM(∂K0); g ∈ G2
}
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be the inradius and the outradius of curvature, K0 with respect to K1, where G2 is a group of
plane rigid motions. It is obvious that ρ

g
m(K0, K1) ≤ ρ

g
M(K0, K1). Since both ρ

g
m(K0, K1) and

ρ
g
M(K0, K1) are rigid invariant, we simply denote them by ρm

01 and ρM
01, respectively. Note

that, if K1 is a unit disc, then ρm
01 and ρM

01 are the minimum ρm(∂K0) and the maximum
ρM(∂K0) of the continuous curvature radius of the boundary ∂K0, respectively.

Let Kk (k = 0, 1) be two oval domains of areas Ak and perimeters Pk in R
2. Let dg denote

the kinematic density of the group G2 of plane rigid motions. Let n{∂K0 ∩ ∂(t(gK1))} de-
note the number of points of intersection ∂K0 ∩ ∂(t(gK1)), and let χ{K0 ∩ t(gK1)} be the
Euler–Poincaré characteristics of the intersection K0 ∩ t(gK1). Then we have the following
kinematic formula of Poincaré (see [14, 20, 21, 24–26, 30]):

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
n
{
∂K0 ∩ ∂

(
t(gK1)

)}
dg = 4tP0P1 (4.1)

and the kinematic formula of Blaschke

∫

{g∈G2:K0∩t(gK1) 	=∅}
χ

{
K0 ∩ t(gK1)

}
dg = 2π

(
t2A1 + A0

)
+ tP0P1. (4.2)

Let μ denote a set of all positions of K1 in which either t(gK1) ⊂ K0 or t(gK1) ⊃ K0, then
(4.2) can be rewritten as

∫

μ

dg = 2π
(
t2A1 + A0

)
+ tP0P1 –

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
χ

{
K0 ∩ t(gK1)

}
dg. (4.3)

Since Kk (k = 0, 1) are two oval domains in R
2, then

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
χ

{
K0 ∩ t(gK1)

}
dg =

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
dg. (4.4)

When t ∈ (0,ρm
01] or t ∈ [ρM

01, +∞), we can obtain ρM(∂(t(gK1))) ≤ ρm(∂K0) or
ρm(∂(t(gK1))) ≥ ρM(∂K0). By Corollary 2.2, we have n{∂K0 ∩ ∂(t(gK1))} = 2 or ∂(t(gK1))
is tangent to ∂K0. When ∂(t(gK1)) is tangent to ∂K0, we have

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
n
{
∂K0 ∩ ∂

(
t(gK1)

)}
dg = 0, (4.5)

therefore,

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
n
{
∂K0 ∩ ∂

(
t(gK1)

)}
dg =

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
2dg. (4.6)

By (4.4) and (4.6), we have

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
χ

{
K0 ∩ t(gK1)

}
dg

=
1
2

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
n
{
∂K0 ∩ ∂

(
t(gK1)

)}
dg. (4.7)
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Therefore, when t ∈ (0,ρm
01] or t ∈ [ρM

01, +∞), by (4.3), (4.7), and (4.1), we obtain
∫

μ

dg = 2π
(
t2A1 + A0

)
+ tP0P1 –

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
χ

{
K0 ∩ t(gK1)

}
dg

= 2π
(
t2A1 + A0

)
+ tP0P1 –

1
2

∫

{g∈G2:∂K0∩∂(t(gK1)) 	=∅}
n
{
∂K0 ∩ ∂

(
t(gK1)

)}
dg

= 2πA1t2 – P0P1t + 2πA0

≥ 0. (4.8)

Theorem 4.1 Let Kk (k = 0, 1) be two oval domains of areas Ak and perimeters Pk in R
2,

then

2πA1t2 – P0P1t + 2πA0 ≥ 0; t ∈ (
0,ρm

01
]

or t ∈ [
ρM

01, +∞)
. (4.9)

The inequality is strict whenever t ∈ (0,ρm
01) or t ∈ (ρM

01, +∞). When t = ρm
01 or t = ρM

01, the
equality holds if and only if both K0 and K1 are discs.

Proof We obtain inequality (4.9) directly from (4.8)
∫

μ

dg = 2πA1t2 – P0P1t + 2πA0 ≥ 0; t ∈ (
0,ρm

01
]

or t ∈ [
ρM

01, +∞)
.

When t ∈ (0,ρm
01), that is, ρM(∂(t(gK1))) < ρm(∂K0), we have

t(gK1) ⊂ BρM(∂(t(gK1))) ⊂ Bρm(∂K0) ⊂ K0; t ∈ (
0,ρm

01
)
,

where ∂(BρM(∂(t(gK1)))) has no common point with ∂(Bρm(∂K0)). Therefore, we have t(gK1) ⊂
K0, and ∂(t(gK1)) has no common point with ∂(K0) when t ∈ (0,ρm

01). When t ∈ (ρM
01, +∞),

that is, ρm(∂(t(gK1))) > ρM(∂K0), we have

t(gK1) ⊃ Bρm(∂(t(gK1))) ⊃ BρM(∂K0) ⊃ K0; t ∈ (
ρM

01, +∞)
,

where ∂(Bρm(∂(t(gK1)))) has no common point with ∂(BρM(∂K0)). Therefore, we have t(gK1) ⊃
K0, and ∂(t(gK1)) has no common point with ∂(K0) when t ∈ (ρM

01, +∞). In summary, we
have

∫
μ

dg > 0 when t ∈ (0,ρm
01) or t ∈ (ρM

01, +∞). That is, inequality (4.9) is strict whenever
t ∈ (0,ρm

01) or t ∈ (ρM
01, +∞).

When t = ρm
01 or t = ρM

01, the equality holds clearly in inequality (4.9) if both K0 and K1 are
discs. Conversely, if K0 and K1 of which at least one is not a disc, it includes the following
two types: Only one of them is not a disc; K0 and K1 are not discs. When only one of K0

and K1 is not a disc, we have ρm
01(gK1) ⊂ K0 and ∂(ρm

01(gK1)) has no common point with
∂K0, ρM

01(gK1) ⊃ K0 and ∂(ρM
01(gK1)) has no common point with ∂K0, then

∫
μ

dg > 0 when
only one of K0 and K1 is not a disc. When K0 and K1 are not discs, we have

ρm
01(gK1) ⊂ BρM(∂(ρm

01(gK1)) ⊂ Bρm(∂K0) ⊂ K0,

where ∂(ρm
01(gK1)) has no common point with ∂K0, and

ρM
01(gK1) ⊃ Bρm(∂(ρM

01(gK1))) ⊃ BρM(∂K0) ⊃ K0,
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where ∂(ρM
01(gK1)) has no common point with ∂K0, then

∫
μ

dg > 0 when K0 and K1 are not
discs. In summary,

∫
μ

dg > 0 when K0 and K1 of which at least one is not a disc. That is,
both K0 and K1 are discs when

∫
μ

dg = 0. Therefore, when t = ρm
01 or t = ρM

01, the equality
holds in inequality (4.9) if and only if both K0 and K1 are discs. �

When K1 is a unit disc, inequality (4.9) immediately reduces to inequality (3.9).
We now obtain the following reverse Bonnesen-style symmetric mixed inequalities.

Theorem 4.2 Let Kk (k = 0, 1) be two oval domains of areas Ak and perimeters Pk in R
2,

then

P2
0P2

1 – 16π2A0A1 ≤ 4π2A2
1
(
ρM

01 – ρm
01

)2, (4.10)

P2
0P2

1 – 16π2A0A1 ≤ 16π2A2
1

(
ρM

01 –
P0P1

4πA1

)(
P0P1

4πA1
– ρm

01

)
, (4.11)

where each equality holds if and only if both K0 and K1 are discs.

Proof By inequality (4.9),

2πA1t2 – P0P1t + 2πA0 ≥ 0; t ∈ (
0,ρm

01
]

or t ∈ [
ρM

01, +∞)
,

we have

2πA1
(
ρm

01
)2 – P0P1ρ

m
01 + 2πA0 ≥ 0,

2πA1
(
ρM

01
)2 – P0P1ρ

M
01 + 2πA0 ≥ 0,

that is,

–16π2A0A1 ≤ 16π2A2
1
(
ρm

01
)2 – 8πA1P0P1ρ

m
01,

–16π2A0A1 ≤ 16π2A2
1
(
ρM

01
)2 – 8πA1P0P1ρ

M
01.

Therefore, we have

P2
0P2

1 – 16π2A0A1 ≤ P2
0P2

1 + 16π2A2
1
(
ρm

01
)2 – 8πA1P0P1ρ

m
01

=
(
P0P1 – 4πA1ρ

m
01

)2

and

P2
0P2

1 – 16π2A0A1 ≤ P2
0P2

1 + 16π2A2
1
(
ρM

01
)2 – 8πA1P0P1ρ

M
01

=
(
P0P1 – 4πA1ρ

M
01

)2.

Since BK0,K1 (t) = 2πA1t2 – P0P1t + 2πA0 reaches the minimum at t = P0P1
4πA1

, and inequality
(4.9), we have ρm

01 ≤ P0P1
4πA1

≤ ρM
01, that is, 4πA1ρ

m
01 ≤ P0P1 ≤ 4πA1ρ

M
01. Therefore,

√
P2

0P2
1 – 16π2A0A1 ≤ P0P1 – 4πA1ρ

m
01,

√
P2

0P2
1 – 16π2A0A1 ≤ 4πA1ρ

M
01 – P0P1.
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By adding and multiplying the last inequalities side by side, we have

P2
0P2

1 – 16π2A0A1 ≤ 4π2A2
1
(
ρM

01 – ρm
01

)2

and

P2
0P2

1 – 16π2A0A1 ≤ 16π2A2
1

(
ρM

01 –
P0P1

4πA1

)(
P0P1

4πA1
– ρm

01

)
.

Each equality holds in (4.10) and (4.11) if and only if the equalities hold in (4.9) when
t = ρm

01 and t = ρM
01, that is, both K0 and K1 are discs. �

When K1 is a unit disc, the reverse Bonnesen-style symmetric mixed inequality (4.10)
immediately reduces to the known reverse Bonnesen-style inequality (1.5) of Bottema,
inequality (4.11) reduces to inequality (3.10). For all a ≥ 0, b ≥ 0, we have 4ab ≤ (a + b)2,
that is,

16π2A2
1

(
ρM

01 –
P0P1

4πA1

)(
P0P1

4πA1
– ρm

01

)
≤ 4π2A2

1
(
ρM

01 – ρm
01

)2.

Therefore, the upper bound of the symmetric mixed isoperimetric deficit in inequality
(4.11) is better than the upper bound in inequality (4.10), that is, the reverse Bonnesen-
style symmetric mixed inequality (4.11) is stronger than inequality (4.10).
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