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Abstract
Böröczky et al. proposed the log-Minkowski problem and established the plane
log-Minkowski inequality for origin-symmetric convex bodies. Recently, Stancu
proved the log-Minkowski inequality for mixed volumes; Wang, Xu, and Zhou gave
the Lp version of Stancu’s results. In this paper, we define the Lp-mixed
quermassintegrals probability measure and obtain the log-Minkowski inequality for
the Lp-mixed quermassintegrals. As its application, we establish the Lp-mixed affine
isoperimetric inequality. In addition, we also consider the dual log-Minkowski
inequalities for the Lp-dual mixed quermassintegrals.
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1 Introduction and main results
Let Kn denote a set of convex bodies (compact, convex subsets with non-empty interiors)
in Euclidean space Rn. For the set of convex bodies containing the origin in their interiors
and the set of origin-symmetric convex bodies in R

n, we write Kn
o and Kn

os, respectively.
Let Fn

o denote the subset of Kn
o that has a positive continuous curvature function. Besides,

let Sn
o denote the set of star bodies (with respect to the origin). Let Sn–1 denote the unit

sphere and V (K) denote the n-dimensional volume of the convex body K . For the standard
unit ball B, its volume is written by V (B) = ωn.

If K ∈Kn, then its support function, hK = h(K , ·) : Rn →R, is defined by (see [1, 2])

h(K , x) = max{x · y : y ∈ K}, x ∈ R
n, (1.1)

where x · y denotes the standard inner product of x and y. From the definition of support
function, we know that, for λ > 0,

h(λK , x) = λh(K , x). (1.2)

The Brunn–Minkowski inequality is of utmost importance in the theory of convex ge-
ometric analysis. The well-known Brunn–Minkowski inequality can be stated as follows.
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Brunn–Minkowski inequality If K , L ∈Kn, then

V (K + L)
1
n ≥ V (K)

1
n + V (L)

1
n ,

with equality if and only if K and L are homothetic. Here K + L = {x + y : x ∈ K and y ∈ L}
denotes the Minkowski sum of K and L.

As the first milestone of the Brunn–Minkowski theory, the Brunn–Minkowski inequal-
ity is a far-reaching generalization of the isoperimetric inequality. The Brunn–Minkowski
inequality exposes the crucial log-concavity property of the volume functional because
the Brunn–Minkowski inequality has an equivalent formulation as follows: If K , L ∈ Kn,
real λ ∈ [0, 1], then

V
(
(1 – λ)K + λL

) ≥ V (K)1–λV (L)λ, (1.3)

with equality if and only if K and L are translates. Here, (1 – λ)K + λL denotes the
Minkowski combination of K and L with respect to λ, and

(1 – λ)K + λL =
⋂

u∈Sn–1

{
x ∈R

n : x · u ≤ (1 – λ)hK (u) + λhL(u)
}

.

For more research on the classical Brunn–Minkowski inequality, see [1–3].
Similar to the definition of Minkowski combination, Böröczky et al. [4] gave the defi-

nition of log-Minkowski combination as follows: For K , L ∈ Kn
o and 0 ≤ λ ≤ 1, the log-

Minkowski combination, (1 – λ) · K +0 λ · L, of K and L is defined by

(1 – λ) · K +0 λ · L =
⋂

u∈Sn–1

{
x ∈R

n : x · u ≤ hK (u)1–λhL(u)λ
}

.

Meanwhile, according to the log-Minkowski combination, Böröczky et al. in [4] conjec-
ture that, for origin-symmetric bodies, there is a stronger inequality than inequality (1.3),
i.e., the following log-Brunn–Minkowski inequality.

The conjectured log-Brunn–Minkowski inequality Let K , L ∈ Kn
os, then for all λ ∈

[0, 1],

V
(
(1 – λ) · K +0 λ · L

) ≥ V (K)1–λV (L)λ. (1.4)

The case n = 2 of inequality (1.4) was proved by Böröczky et al. (see [4]). Afterwards,
Saroglou [5] showed that the log-Brunn–Minkowski inequality (1.4) is valid when K and
L are unconditional convex bodies with respect to the same orthonormal basis in R

n. For
further research on log-Brunn–Minkowski inequality, we also see [6–8].

Further, Böröczky et al. [4] proposed that log-Brunn–Minkowski inequality (1.4) is
equivalent to the following log-Minkowski inequality.

The conjectured log-Minkowski inequality Let K , L ∈Kn
os, then

∫

Sn–1
ln

(
hK

hL

)
dV L ≥ 1

n
ln

(
V (K)
V (L)

)
, (1.5)
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where dVL = 1
n hL(u) dS(L, u) denotes cone-volume measure of L for any u ∈ Sn–1, and dV L =

1
V (L) dVL denotes its normalization.

For the log-Minkowski inequality (1.5), Böröczky et al. [4] proved that it is true when
n = 2. In 2014, Zhu [9] solved the case of discrete measures and proved the log-Minkowski
inequality (1.5) for polytopes in R

n. Recently, Stancu [10] introduced the mixed cone-
volume measure dv1(L, K) of K , L ∈ Kn

o by dv1(L, K) = 1
n h(K , ·) dS(L, ·), and dV 1(L, K) =

dv1(L,K )
V1(L,K ) denotes its normalization, where V1(L, K) denotes the mixed volume of L and K ,
and S(L, ·) is the surface area measure of L (see [1]). According to this notion, Stancu [10]
proved a modified log-Minkowski inequality for n-dimensional convex bodies as follows.

Theorem 1.A (The log-Minkowski inequality for mixed volume) If K , L ∈Kn
o , then

∫

Sn–1
ln

(
hK

hL

)
dV 1(L, K) ≥ ln

(
V1(L, K)

V (L)

)
≥ 1

n
ln

(
V (K)
V (L)

)
, (1.6)

with equality if and only if K is homothetic to L.

For K , L ∈Kn
o , i = 0, . . . , n – 1, we write the mixed quermassintegrals Wi(L, K) of L and K

for the mixed volume V (L, . . . , L︸ ︷︷ ︸
n–i–1

, K , B, . . . , B︸ ︷︷ ︸
i

), where B is the standard unit ball. The mixed

quermassintegrals Wi(L, K) have the following integral representation (see [11]):

Wi(L, K) =
1
n

∫

Sn–1
h(K , u) dSi(L, u), (1.7)

where Si(L, ·) denotes the mixed surface area measure of L. If K = L, then the quermassin-
tegrals Wi(L) of L are given by

Wi(L) =
1
n

∫

Sn–1
h(L, u) dSi(L, u). (1.8)

Obviously, when i = 0, then W0(L) = V (L).
From (1.7), Wang and Feng [12] defined the mixed quermassintegral measure dwi(L, K)

of L and K by

dwi(L, K) =
1
n

h(K , ·) dSi(L, ·). (1.9)

Combining with (1.7) and (1.9), the mixed quermassintegral probability measure is given
by

dW i(L, K) =
1

Wi(L, K)
dwi(L, K). (1.10)

Obviously, if i = 0 in (1.9) and (1.10), then dwi(L) = dV (L) and dW i(L) = dV (L).
If K = L, then (1.9) implies the quermassintegral measure dwi(L) by

dwi(L) =
1
n

h(L, ·) dSi(L, ·). (1.11)
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Equation (1.10) gives the quermassintegral probability measure dW i(L) by

dW i(L) =
1

Wi(L)
dwi(L). (1.12)

Obviously, if i = 0 in (1.11) and (1.12), then dwi(L) = dV (L) and dW i(L) = dV (L).
In relation to the mixed quermassintegrals, Wang and Feng [12] established the follow-

ing log-Minkowski inequality for mixed quermassintegrals, which is more general than
Stancu’s results.

Theorem 1.B (The log-Minkowski inequality for mixed quermassintegrals) If K , L ∈ Kn
o

and i = 0, . . . , n – 1, then

∫

Sn–1
ln

(
hK

hL

)
dW i(L, K) ≥ ln

(
Wi(L, K)

Wi(L)

)
≥ 1

n – i
ln

(
Wi(K)
Wi(L)

)
,

with equality if and only if K is homothetic to L.

The log-Minkowski inequality belongs to log-Minkowski theory. For more research on
log-Minkowski theory, we may refer to [13–22].

In 2017, Wang, Xu, and Zhou [23] proposed p-mixed cone-volume measure: For K , L ∈
Kn

o , p ≥ 1, the p-mixed cone-volume measure dVp(L, K) of L and K is defined by

dVp(L, K) =
1
n

h(K , ·)ph(L, ·)1–p dS(L, ·),

and dV p(L, K) = dVp(L,K )
Vp(L,K ) denotes its normalization, where Vp(L, K) is the Lp-mixed volume

of L and K (see [24]). Based on this notion, they [23] proved the log-Minkowski inequality
for Lp-mixed volumes as follows.

Theorem 1.C (The log-Minkowski inequality for Lp-mixed volume) If K , L ∈ Kn
o , p > 1,

then

∫

Sn–1
ln

(
hK

hL

)
dV p(L, K) ≥ 1

p
ln

(
Vp(L, K)

V (L)

)
≥ 1

n
ln

(
V (K)
V (L)

)
, (1.13)

with equality if and only if K and L are dilates.

In [11], Lutwak defined Lp-mixed quermassintegrals as follows: For K , L ∈Kn
o , p ≥ 1, and

i = 0, 1, . . . , n – 1, there exists a positive Borel measure Sp,i(L, ·) on Sn–1 such that Lp-mixed
quermassintegral Wp,i(L, K) has the following integral representation:

Wp,i(L, K) =
1
n

∫

sn–1
h(K , u)p dSp,i(L, ·). (1.14)

It turns out that the measure Sp,i(L, ·) (called the Lp-mixed surface area measure) on Sn–1

has the Radon–Nikodym derivative

dSp,i(L, ·)
dSi(L, ·) = h(L, ·)1–p. (1.15)
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In this paper, in relation to Lp-mixed quermassintegrals, we continuously study log-
Minkowski inequality. First, according to (1.14) and (1.15), we define the Lp-mixed quer-
massintegral probability measure as follows:

For K , L ∈ Kn
o , p ≥ 1, and i = 0, 1, . . . , n – 1, the Lp-mixed quermassintegral measure

dwp,i(L, K) of L and K is defined by

dwp,i(L, K) =
1
n

h(K , u)ph(L, u)1–p dSi(L, u). (1.16)

From this, the Lp-mixed quermassintegral probability measure is written by

dW p,i(L, K) =
1

Wp,i(L, K)
dwp,i(L, K). (1.17)

In particular, if p = 1 and i = 0 in (1.16) and (1.17), then dwp,i(L, K) = dv1(L, K) and
dW p,i(L, K) = dV 1(L, K).

Next, combined with the above Lp-mixed quermassintegral probability measure, we give
a generalization of the log-Minkowski inequalities (1.6) and (1.13).

Theorem 1.1 (The log-Minkowski inequality for Lp-mixed quermassintegral) If K , L ∈
Kn

o , p ≥ 1, and i = 0, 1, 2, . . . , n – 1, then

∫

Sn–1
ln

(
hK

hL

)
dW p,i(L, K) ≥ 1

p
ln

(
Wp,i(L, K)

Wi(L)

)
≥ 1

n – i
ln

(
Wi(K)
Wi(L)

)
, (1.18)

with equality, for p = 1 if and only if K and L are homothetic, for p > 1 if and only if K and
L are dilates.

Remark 1.1 If p = 1 and i = 0 in Theorem 1.1, then Theorem 1.A can be obtained. If p > 1
and i = 0, then Theorem 1.1 implies Theorem 1.C.

In addition, we also consider the log-Minkowski inequality for quermassintegrals. For
convenience, let

(
hK

hL

)

p-average
=

∫
Sn–1 ( hK

hL
)p dωi(L)

∫
Sn–1 dωi(L)

=
Wp,i(L, K)

Wi(L)
;

(
hK

hL

)

max

= max
u∈suppωi(L)

hK

hL
;

(
hK

hL

)

min

= min
u∈suppωi(L)

hK

hL
,

where suppωi(L) denotes the support of the quermassintegral measure of ωi(L). Our result
can be stated as follows.

Theorem 1.2 If K , L ∈Kn
o satisfy L ⊆ K , p ≥ 1, and i = 0, 1, 2, . . . , n – 1, then

∫

Sn–1
ln

(
hK

hL

)
dW i(L) ≥ ( hK

hL
)p-average

( hK
hL

)p
max

1
n – i

ln

(
Wi(K)
Wi(L)

)
, (1.19)

with equality if and only if K = L.
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In general, if K , L ∈Kn
o , then

∫

Sn–1
ln

(
hK

hL

)
dW i(L) ≥ ( hK

hL
)p-average

( hK
hL

)p
max

1
n – i

ln

(
Wi(K)
Wi(L)

)

+ ln

[(
hK

hL

)

min

][
1 –

( hK
hL

)p-average

( hK
hL

)p
max

]
, (1.20)

with equality if and only if K and L are dilates.

Remark 1.2 The case of p = 1 and i = 0 is just Stancu’s result (see [10]). If p > 1 and i = 0
in Theorem 1.2, then inequalities (1.19) and (1.20) can be found in [23].

In Sect. 2, we complete the proofs of Theorems 1.1–1.2 and obtain some results about
the log-Minkowski inequality. In Sect. 3, we establish the dual form of Theorem 1.1 and
obtain some related inequalities. Finally, as the application of Theorem 1.1, an Lp-mixed
affine isoperimetric inequality is given in Sect. 4.

2 Proofs of theorems
In this part, we will give the proofs of Theorems 1.1–1.2. First, in order to prove Theo-
rem 1.1, the following lemma is required.

Lemma 2.1 ([11]) If K , L ∈Kn
o , p ≥ 1 and i = 0, 1, 2, . . . , n – 1, then

Wp,i(L, K) ≥ Wi(L)
n–p–i

n–i Wi(K)
p

n–i , (2.1)

with equality, for p = 1 and 0 ≤ i < n – 1, if and only if L and K are homothetic; for p > 1, if
and only if L and K are dilates; for p = 1 and i = n – 1, (2.1) is identical.

Proof of Theorem 1.1 For K , L ∈Kn
o , p ≥ 1, and i = 0, 1, 2, . . . , n – 1, by (1.11) and (1.16) we

have that
∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dwi(L) =

∫

Sn–1
ln

(
hK

hL

)
dwp,i(L, K). (2.2)

From Lebesgue’s dominated convergence theorem, and combined with formula (1.11),
(1.14), (1.16), and (2.2), we obtain if t → ∞, then

∫

Sn–1

(
hK

hL

) pt
t+n

dwi(L) → Wp,i(L, K)

and

∫

Sn–1

(
hK

hL

) pt
t+n

ln

(
hK

hL

)
dwi(L) →

∫

Sn–1
ln

(
hK

hL

)
dwp,i(L, K).

Considering the function FK ,L(t) : [1,∞) →R by

FK ,L(t) =
1

Wp,i(L, K)

∫

Sn–1

(
hK

hL

) pt
t+n

dwi(L)
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and using L’Hôpital’s rule, we have

lim
t→∞ ln

[
FK ,L(t)t+n]

= lim
t→∞

ln FK ,L(t)
1

t+n

= lim
p→∞

F ′
K ,L(t)

– FK ,L(t)
(t+n)2

= lim
t→∞

1
Wp,i(L,K ) · pn

(t+n)2

∫
Sn–1 ( hK

hL
)

pt
t+n ln( hK

hL
) dwi(L)

– FK ,L(t)
(t+n)2

= lim
t→∞ –

pn
Wp,i(L,K )

∫
Sn–1 ( hK

hL
)

pt
t+n ln( hK

hL
) dwi(L)

1
Wp,i(L,K )

∫
Sn–1 ( hK

hL
)

pt
t+n dwi(L)

= –
pn

Wp,i(L, K)

∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dwi(L). (2.3)

Consequently, by (2.3) we obtain

exp

[
–

pn
Wp,i(L, K)

∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dwi(L)

]

= lim
t→∞ FK ,L(t)t+n

= lim
t→∞

[
1

Wp,i(L, K)

∫

Sn–1

(
hK

hL

) pt
t+n

dwi(L)
]t+n

. (2.4)

By Hölder’s inequality (see [25]), (1.9) and (1.14) deduce that

[∫

Sn–1

(
hK

hL

)p· t
t+n

dwi(L)
] t+n

t
·
[∫

Sn–1
dwi(L)

]– n
t

≤
∫

Sn–1

(
hK

hL

)p

dwi(L)

= Wp,i(L, K),

i.e.,

[
1

Wp,i(L, K)

∫

Sn–1

(
hK

hL

) pt
t+n

dwi(L)
]t+n

≤
(

Wi(L)
Wp,i(L, K)

)n

. (2.5)

By the equality condition of Hölder’s inequality, we see that equality holds in (2.5) if and
only if ( hK

hL
)p is a constant, i.e., L and K are dilates.

From this, together (2.5) with (2.4), we obtain

exp

[
–

pn
Wp,i(L, K)

∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dwi(L)

]
≤

(
Wi(L)

Wp,i(L, K)

)n

,
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i.e.,

p
Wp,i(L, K)

∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dwi(L) ≥ ln

(
Wp,i(L, K)

Wi(L)

)
. (2.6)

Therefore, by (2.6), (1.9), (1.16), (1.17), and (2.1), we have

∫

Sn–1
ln

(
hK

hL

)
dW p,i(L, K)

≥ 1
p

ln

(
Wp,i(L, K)

Wi(L)

)

≥ 1
p

ln

(
Wi(L)

n–p–i
n–i Wi(K)

p
n–i

Wi(L)

)

≥ 1
n – i

ln

(
Wi(K)
Wi(L)

)
.

This gives the desired inequality (1.18).
The equality conditions of inequalities (2.1) and (2.5) imply that equality holds in in-

equality (1.18) for p = 1 if and only if K is homothetic to L, for p > 1 if and only if L and K
are dilates. �

Remark 2.1 The case p = 1 of Theorem 1.1 is just Theorem 1.B which is obtained by Wang
and Feng (see [12]).

Using Theorem 1.1, we have the following result.

Corollary 2.1 If K , L ∈Kn
o with L ⊆ K , p ≥ 1, and i = 0, 1, 2, . . . , n – 1, then

∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dW i(L) ≥ 1

n – i

(
Wi(K)
Wi(L)

) p
n–i

ln

(
Wi(K)
Wi(L)

)
,

with equality, for p = 1 if and only if K and L are homothetic, for p > 1 if and only if K and
L are dilates.

Proof From (1.10), (2.2), (1.18), and (2.1), we have

∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dW i(L)

=
1

Wi(L)

∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dwi(L)

=
Wp,i(L, K)

Wi(L)

∫

Sn–1
ln

(
hK

hL

)
dW p,i(L, K)

≥ Wp,i(L, K)
Wi(L)

· 1
p

ln

(
Wp,i(L, K)

Wi(L)

)

≥ 1
n – i

(
Wi(K)
Wi(L)

) p
n–i

ln

(
Wi(K)
Wi(L)

)
.
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The equality conditions of (1.18) and (2.1) imply that the equality holds in Corollary 2.1
for p = 1 if and only if K and L are homothetic, for p > 1 if and only if K and L are dilates. �

Remark 2.2 If p = 1 and i = 0, then Corollary 2.1 can be found in [10].

Next, we give an improved version of the right-hand inequality of (1.18) in Theorem 1.1.

Theorem 2.1 If K , L ∈Kn
o , p ≥ 1, and i = 0, 1, 2, . . . , n – 1, then

1
p

ln

(
Wp,i(L, K)

Wi(L)

)
≥

∫

Sn–1
ln

(
hK

hL

)
dW i(L), (2.7)

with equality if and only if K and L are dilates.

Lemma 2.2 ([26, 27]) Let f (x) and g(x) be the probability density functions on a measure
space (X, v) for v-almost all x ∈ X, if

∫
X f (x) dv(x) = 1,

∫
X g(x) dv(x) = 1, then

∫

X
f (x) ln f (x) dv(x) ≥

∫

X
f (x) ln g(x) dv(x),

with equality if and only if f (x) = g(x).

Proof of Theorem 2.1 For K , L ∈Kn
o , p ≥ 1, i = 0, 1, 2, . . . , n – 1, and all u ∈ Sn–1, let

f (u) =
1

Wi(L)

(
hL

hK

)p

, g(u) =
1

Wp,i(L, K)
, dv(u) = dwp,i(L, K),

then we have
∫

Sn–1
f (u) dv(u) = 1,

∫

Sn–1
g(u) dv(u) = 1.

Thus by Lemma 2.2 we get

∫

Sn–1

1
Wi(L)

(
hL

hK

)p

ln

[
1

Wi(L)

(
hL

hK

)p]
dwp,i(L, K)

≥
∫

Sn–1

1
Wi(L)

(
hL

hK

)p

ln

(
1

Wp,i(L, K)

)
dwp,i(L, K),

i.e.,

∫

Sn–1

1
Wi(L)

(
hL

hK

)p

ln

(
hL

hK

)p

dwp,i(L, K)

≥ ln

(
Wi(L)

Wp,i(L, K)

)∫

Sn–1

1
Wi(L)

(
hL

hK

)p

dwp,i(L, K).

From this, and combined with (1.16), (1.11), and (1.12), we have

∫

Sn–1
ln

(
hL

hK

)p

dW i(L) ≥ ln

(
Wi(L)

Wp,i(L, K)

)
,
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i.e.,

∫

Sn–1
ln

(
hK

hL

)
dW i(L) ≤ 1

p
ln

(
Wp,i(L, K)

Wi(L)

)
.

According to Lemma 2.2, the equality holds in (2.7) if and only if 1
Wi(L) ( hL

hK
)p = 1

Wp,i(L,K ) ,
i.e., hK /hL is a constant. Hence the equality holds in (2.7) if and only if K and L are dilates. �

Actually, applying Lemma 2.2, we may give another proof of the left-hand inequality of
(1.18) in Theorem 1.1.

Another proof of the left-hand inequality of (1.18) Taking

f (u) =
1

Wp,i(L, K)
, g(u) =

1
Wi(L)

(
hL

hK

)p

, dv(u) = dwp,i(L, K),

by Lemma 2.2 we get

∫

Sn–1

1
Wp,i(L, K)

ln

(
1

Wp,i(L, K)

)
dwp,i(L, K)

≥
∫

Sn–1

1
Wp,i(L, K)

ln

[
1

Wi(L)

(
hL

hK

)p]
dwp,i(L, K).

This gives

ln

(
Wi(L)

Wp,i(L, K)

)∫

Sn–1

1
Wp,i(L, K)

dwp,i(L, K)

≥
∫

Sn–1

1
Wp,i(L, K)

ln

(
hL

hK

)p

dwp,i(L, K).

From this, combined with (1.17), we obtain

ln

(
Wi(L)

Wp,i(L, K)

)
≥

∫

Sn–1
ln

(
hL

hK

)p

dW p,i(L, K),

i.e.,

1
p

ln

(
Wp,i(L, K)

Wi(L)

)
≤

∫

Sn–1
ln

(
hK

hL

)
dW p,i(L, K). (2.8)

This is just the left-hand inequality of (1.18).
By Lemma 2.2, equality holds in (2.8) if and only if 1

Wp,i(L,K ) = 1
Wi(L) ( hL

hK
)p, i.e., hK /hL is a

constant. This means that equality holds in the left-hand inequality of (1.18) if and only if
K and L are dilates. �

From inequality (2.7) and the left-hand inequality of (1.18), we easily obtain the follow-
ing.
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Corollary 2.2 If K , L ∈Kn
o , p ≥ 1, and i = 0, 1, 2, . . . , n – 1, then

∫

Sn–1
ln

(
hK

hL

)
dW p,i(L, K) ≥ 1

p
ln

(
Wp,i(L, K)

Wi(L)

)
≥

∫

Sn–1
ln

(
hK

hL

)
dW i(L). (2.9)

In each case, equality holds if and only if K and L are dilates.

Corollary 2.2 shows that the log-Minkowski inequality for Lp-mixed quermassintegrals
is stronger than the log-Minkowski inequality for quermassintegrals.

Now, we give the proof of Theorem 1.2, the following lemma is necessary.

Lemma 2.3 (Hadamard type inequality [28]) Let f be a positive, log-convex function on
[a, b], then

1
b – a

∫ b

a
f (t) dt ≤ f (b) – f (a)

ln f (b) – ln f (a)
. (2.10)

Proof of Theorem 1.2 For K , L ∈Kn
o , if L ⊆ K , we define the function

G(q) =
∫

Sn–1

(
hK

hL

)pq

ln

(
hK

hL

)
dwi(L), q ∈R, (2.11)

then G(q) is non-negative. If u → ln( hK
hL

)(u) is zero on the support of the quermassintegral
measure of L, then G is identically zero. If G is not identically zero, then by (2.9) we know
G(1) ≥ G(0) > 0. If G(1) = G(0), then K must be equal to L. So assume G(1) > G(0).

Here, we show that G(q) is a log-convex function. In fact, for α ∈ (0, 1) and β ,γ ∈ R, by
(2.11) and Hölder’s inequality [25], we have

G
(
(1 – α)β + αγ

)

=
∫

Sn–1

(
hK

hL

)p((1–α)β+αγ )

ln

(
hK

hL

)
dwi(L)

=
∫

Sn–1

(
hK

hL

)pβ(1–α)(hK

hL

)pαγ

ln

(
hK

hL

)
dwi(L)

≤
(∫

Sn–1

(
hK

hL

)pβ

ln

(
hK

hL

)
dwi(L)

)(1–α)(∫

Sn–1

(
hK

hL

)pγ

ln

(
hK

hL

)
dwi(L)

)α

= G(β)1–αG(γ )α .

From this, by (2.11) and Hadamard type inequality (2.10), we obtain

G(1) – G(0)
ln G(1) – ln G(0)

≥
∫ 1

0

[∫

Sn–1

((
hK

hL

)p)q

ln

(
hK

hL

)
dwi(L)

]
dq. (2.12)

Since G(1) > G(0), combined with (2.12) and Fubini–Toneli’s theorem, we have

G(0) ≥ G(1) · exp

[
–

G(1) – G(0)
∫ 1

0
∫

Sn–1 ( hK
hL

)pq ln( hK
hL

) dwi(L) dq

]



Li and Wang Journal of Inequalities and Applications         (2019) 2019:85 Page 12 of 21

= G(1) · exp

[
–

G(1) – G(0)
∫

Sn–1 [
∫ 1

0 ( hK
hL

)pq ln( hK
hL

) dq] dwi(L)

]

= G(1) · exp

[
–p

G(1) – G(0)
∫

Sn–1 [( hK
hL

)p – 1] dwi(L)

]
. (2.13)

In (2.13), note that

G(1) – G(0)
∫

Sn–1 [( hK
hL

)p – 1] dwi(L)
=

∫
Sn–1 ln( hK

hL
)[( hK

hL
)p – 1] dwi(L)

∫
Sn–1 [( hK

hL
)p – 1] dwi(L)

≤ ln

(
hK

hL

)

max

. (2.14)

Thus, together with (2.13) and (2.14), we get

∫

Sn–1
ln

(
hK

hL

)
dwi(L) ≥

∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dwi(L) · exp

[
–p ln

(
hK

hL

)

max

]
,

namely,

1
Wi(L)

∫

Sn–1
ln

(
hK

hL

)
dwi(L)

≥ Wp,i(L, K)
Wi(L)

· 1
Wp,i(L, K)

·
(

hK

hL

)–p

max

·
∫

Sn–1

(
hK

hL

)p

ln

(
hK

hL

)
dwi(L).

This yields

∫

Sn–1
ln

(
hK

hL

)
dW i(L) ≥ Wp,i(L, K)

Wi(L)
·
(

hK

hL

)–p

max

·
∫

Sn–1
ln

(
hK

hL

)
dW p,i(L, K)

≥ ( hK
hL

)p-average

( hK
hL

)p
max

∫

Sn–1
ln

(
hK

hL

)
dW p,i(L, K)

≥ ( hK
hL

)p-average

( hK
hL

)p
max

1
n – i

ln

(
Wi(K)
Wi(L)

)
.

The last inequality is obtained by the left-hand inequality of (1.18). This is the desired
inequality (1.19).

Assume that G(q) is identically zero, then h(K , u) = h(L, u) for almost all u in the
support of the quermassintegral measure of L, or equivalently with respect to the Lp-
surface area measure of L. This implies Wp,i(L, K) = Wi(L). By (2.1), we can obtain
Wi(L)

n–p–i
n–i Wi(K)

p
n–i ≤ Wp,i(L, K) = Wi(L), i.e., Wi(K) ≤ Wi(L), with L ⊆ K , we know that

Wi(K) = Wi(L). Since L ⊆ K are convex bodies and with the equality condition of (2.1),
thus K = L.

When L is not included in K , since K , L ∈ Kn
o , thus there exist λ ∈ R and 0 < λ < 1 such

that λL ⊆ K . From this, by (1.19) we have

∫

Sn–1
ln

(
hK

hλL

)
dW i(λL) ≥ ( hK

hλL
)p-average

( hK
hλL

)p
max

1
n – i

ln

(
Wi(K)
Wi(λL)

)
.



Li and Wang Journal of Inequalities and Applications         (2019) 2019:85 Page 13 of 21

This and (1.2) give

∫

Sn–1
ln

(
hK

λhL

)
dW i(L) ≥ ( hK

hL
)p-average

( hK
hL

)p
max

1
n – i

ln

(
Wi(K)

λn–iWi(L)

)
,

i.e.,

∫

Sn–1
ln

(
hK

hL

)
dW i(L)

≥ ( hK
hL

)p-average

( hK
hL

)p
max

1
n – i

ln

(
Wi(K)
Wi(L)

)
+ lnλ ·

[
1 –

( hK
hL

)p-average

( hK
hL

)p
max

]
. (2.15)

Now let λ = ( hK
hL

)min in (2.15), then (2.15) yields inequality (1.20). According to λL ⊆ K and
the equality condition of inequality (1.19), we see that equality holds in (1.20) if and only
if K and L are dilates. �

Remark 2.3 If p = 1 in Theorem 1.2, we can obtain Wang and Feng’s result (see [12]).

Obviously, if there exists λ ∈ [0, 1] such that λL ⊆ K is valid as well as λhL(u) = hK (u),
( hK

hL
)p-average

( hK
hL

)p
max

= 1 in Theorem 1.2, the following result is obtained.

Corollary 2.3 Let K , L ∈ Kn
o such that there exists a positive constant λ > 0 with λhL(u) =

hK (u) for each u in the support of the quermassintegral measure of L. Then

∫

Sn–1
ln

(
hK

hL

)
dW i(L) ≥ 1

n – i
ln

(
Wi(K)
Wi(L)

)
,

with equality if and only if K = λL.

Remark 2.4 If i = 0 in Corollary 2.3, then this inequality was firstly obtained by Gardner,
Hug, and Weil (see [29]).

3 Dual log-Minkowski inequalities for the Lp-dual mixed quermassintegrals
Let K be a compact star-shaped (about the origin) set in R

n, its radial function, ρK =
ρ(K , ·) : Rn\{0} → [0, +∞), is defined by [1, 2]

ρ(K , x) = max{λ ≥ 0 : λx ∈ K}, x ∈R
n\{0}. (3.1)

If ρK is positive and continuous, K will be called a star body (about the origin).
If K ∈Kn

o , the polar body K∗ of K is defined by (see [1, 2])

K∗ =
{

x ∈R
n : x · y ≤ 1, y ∈ K

}
.

From (1.1) and (3.1), it follows that if K ∈Kn
o , then

h
(
K∗, ·) =

1
ρ(K , ·) , ρ

(
K∗, ·) =

1
h(K , ·) . (3.2)
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The notion of dual quermassintegrals was given by Lutwak [30]. For L ∈ Sn
o , i is any real,

the dual quermassintegral W̃i(L) of L is defined by

W̃i(L) =
1
n

∫

Sn–1
ρ(L, u)n–i dS(u). (3.3)

Associated with (3.3), the dual quermassintegral measure dwρ
i (L) of L is written as follows:

dwρ
i (L) =

1
n

ρ(L, u)n–i dS(u). (3.4)

From this, the dual quermassintegral probability measure is given by

dW̃ ρ
i (L) =

1
W̃i(L)

dwρ
i (L). (3.5)

Besides, Wang and Yan [31] gave the Lp-dual mixed quermassintegrals as follows: For
K , L ∈ Sn

o , p 
= 0, and real i 
= n, the Lp-dual mixed quermassintegral W̃p,i(L, K) of L and K
is defined by

W̃p,i(L, K) =
1
n

∫

Sn–1
ρ(L, u)n–p–iρ(K , u)p dS(u). (3.6)

Based on (3.6), we define the Lp-dual mixed quermassintegral measure dwρ
p,i(L, K) of L

and K by

dwρ
p,i(L, K) =

1
n

ρ(L, u)n–p–iρ(K , u)p dS(u). (3.7)

According to (3.7), the Lp-dual mixed quermassintegral probability measure is written by

dW̃ ρ
p,i(L, K) =

1
W̃p,i(L, K)

dwρ
p,i(L, K). (3.8)

For the Lp-dual mixed quermassintegrals, Wang and Yan [31] established the Lp-dual
Minkowski inequality as follows.

Lemma 3.1 Let K , L ∈ Sn
o , p 
= 0, and real i 
= n. If p > 0, then for i < n – p,

W̃p,i(L, K) ≤ W̃i(L)
n–p–i

n–i W̃i(K)
p

n–i ; (3.9)

for n – p < i < n or i > n,

W̃p,i(L, K) ≥ W̃i(L)
n–p–i

n–i W̃i(K)
p

n–i . (3.10)

In each case, equality holds if and only if K and L are dilates. If p < 0, then for i > n – p,
inequality (3.9) holds; for i < n or n < i < n – p, inequality (3.10) holds. If i = n – p, (3.9) (or
(3.10)) is identic.

Recently, the dual log-Minkowski inequality was established by Gardner et al. [32]. In
2017, Wang, Xu, and Zhou [23] obtained the dual log-Minkowski inequality for Lp-dual
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mixed volumes. In this part, we will establish the following dual log-Minkowski inequality
for Lp-dual mixed quermassintegrals.

Theorem 3.1 Let K , L ∈ Sn
o , if p > 0 and n – p < i < n or i > n, then

∫

Sn–1
ln

(
ρK

ρL

)
dW̃ ρ

p,i(L, K) ≥ 1
p

ln

(
W̃p,i(L, K)

W̃i(L)

)
≥ 1

n – i
ln

(
W̃i(K)
W̃i(L)

)
, (3.11)

with equality if and only if K and L are dilates. If p < 0 and i > n – p, inequality (3.11) is
reverse.

Proof of Theorem 3.1 For all u ∈ Sn–1, we take

f (u) =
1

W̃p,i(L, K)
, g(u) =

1
W̃i(L)

(
ρL(u)
ρK (u)

)p

, dv(u) = dwρ
p,i(L, K),

then we can obtain
∫

Sn–1
f (u) dv(u) = 1,

∫

Sn–1
g(u) dv(u) = 1.

Thus, by Lemma 2.2, we have
∫

Sn–1

1
W̃p,i(L, K)

ln

(
1

W̃p,i(L, K)

)
dwρ

p,i(L, K)

≥
∫

Sn–1

1
W̃p,i(L, K)

ln

[
1

W̃i(L)

(
ρL

ρK

)p]
dwρ

p,i(L, K),

i.e.,

ln

(
W̃i(L)

W̃p,i(L, K)

)∫

Sn–1

1
W̃p,i(L, K)

dwρ
p,i(L, K)

≥
∫

Sn–1

1
W̃p,i(L, K)

ln

(
ρL

ρK

)p

dwρ
p,i(L, K). (3.12)

According to the equality condition of Lemma 2.2, we see that equality holds in (3.12) if
and only if 1

W̃p,i(L,K ) = 1
W̃i(L) ( ρL

ρK
)p, i.e., ρL

ρK
is a constant. Thus K and L are dilates.

From (3.8), inequality (3.12) can be written as follows:
∫

Sn–1
ln

(
ρK

ρL

)p

dW̃ ρ
p,i(L, K) ≥ ln

(
W̃p,i(L, K)

W̃i(L)

)
.

By (3.10), if p > 0 and n – p < i < n or i > n, then
∫

Sn–1
ln

(
ρK

ρL

)
dW̃ ρ

p,i(L, K) ≥ 1
p

ln

(
W̃p,i(L, K)

W̃i(L)

)

≥ 1
p

ln

(
W̃i(L)

n–p–i
n–i W̃i(K)

p
n–i

W̃i(L)

)

≥ 1
n – i

ln

(
W̃i(K)
W̃i(L)

)
.

If p < 0 and i > n – p, then by (3.9) and (3.12), we obtain inequality (3.11) is reverse.
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According to the equality conditions of inequalities (3.10) and (3.12), we see that equality
holds in (3.11) if and only if K and L are dilates. �

In addition, the left-hand inequality in (3.11) can be written as follows.

Corollary 3.1 Let K , L ∈ Sn
o , if p > 0 and n – p < i < n or i > n, then

∫

Sn–1

(
ρK

ρL

)p

ln

(
ρK

ρL

)
dW̃ ρ

i (L) ≥ 1
n – i

(
W̃i(K)
W̃i(L)

) p
n–i

ln

(
W̃i(K)
W̃i(L)

)
,

with equality if and only if K and L are dilates. If p < 0 and i > n – p, the inequality is
reverse.

Proof From (3.5), (3.4), (3.7), (3.8), (3.11), and (3.10), we can obtain

∫

Sn–1

(
ρK

ρL

)p

ln

(
ρK

ρL

)
dW̃ ρ

i (L)

=
1

W̃i(L)

∫

Sn–1

(
ρK

ρL

)p

ln

(
ρK

ρL

)
dwρ

i (L)

=
W̃p,i(L, K)

W̃i(L)

∫

Sn–1
ln

(
ρK

ρL

)
dW̃ ρ

p,i(L, K)

≥ W̃p,i(L, K)
W̃i(L)

· 1
p

ln

(
W̃p,i(L, K)

W̃i(L)

)

≥ 1
n – i

(
W̃i(K)
W̃i(L)

) p
n–i

ln

(
W̃i(K)
W̃i(L)

)
.

If p < 0 and i > n – p, then by (3.9) and (3.11), we obtain this inequality is reverse.
The equality conditions of (3.10) and (3.11) imply the equality holds in Corollary 3.1 if

and only if K and L are dilates. �

In the following, we obtain a more general form than the dual log-Minkowski inequality.

Theorem 3.2 Let K , L ∈ Sn
o and ϕ(x) : (0,∞) → (0,∞) be a monotonous convex function.

If p > 0, real i 
= n and i < n – p, then

ϕ

[∫

Sn–1
ϕ–1

((
ρK

ρL

)p)
dW̃ ρ

i (L)
]

≤
(

W̃i(K)
W̃i(L)

) p
n–i

, (3.13)

with equality if and only if K and L are dilates.

Lemma 3.2 (Jessen’s inequality [25]) Suppose that μ is a probability measure on a space
X and g : X → I ⊂ R is a μ-integrable function, where I is a possibly infinite interval. If
ϕ : X → I ⊂R is a strictly convex function, then

∫

X
ϕ
(
g(x)

)
dμ(x) ≥ ϕ

(∫

X
g(x) dμ(x)

)
, (3.14)

with equality if and only if g(x) is a constant for μ-almost all x ∈ X.
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Proof of Theorem 3.2 For K , L ∈ Sn
o and ϕ(x) : (0,∞) → (0,∞) is a monotonous convex

function. From (3.6), (3.4), (3.5), and (3.14), we have

W̃p,i(L, K) =
1
n

∫

Sn–1
ρ(L, u)n–p–iρ(K , u)p dS(u)

=
1
n

∫

Sn–1
ρ(L, u)n–i

(
ρ(K , u)
ρ(L, u)

)p

dS(u)

= W̃i(L)
∫

Sn–1

(
ρ(K , u)
ρ(L, u)

)p

dW̃ ρ
i (L)

= W̃i(L)
∫

Sn–1
ϕ

[
ϕ–1

((
ρ(K , u)
ρ(L, u)

)p)]
dW̃ ρ

i (L)

≥ W̃i(L)ϕ
[∫

Sn–1
ϕ–1

((
ρ(K , u)
ρ(L, u)

)p)
dW̃ ρ

i (L)
]

,

i.e.,

W̃p,i(L, K)
W̃i(L)

≥ ϕ

[∫

Sn–1
ϕ–1

((
ρ(K , u)
ρ(L, u)

)p)
dW̃ ρ

i (L)
]

. (3.15)

By the equality condition of inequality (3.14), we know that the equality holds in (3.15) if
and only if ϕ–1(( ρ(K ,u)

ρ(L,u) )p) is a constant, i.e., ρ(K ,u)
ρ(L,u) = λ is a constant, then K and L are dilates.

Combining with (3.15) and Minkowski inequality (3.9), we obtain

ϕ

[∫

Sn–1
ϕ–1

((
ρ(K , u)
ρ(L, u)

)p)
dW̃ ρ

i (L)
]

≤ W̃p,i(L, K)
W̃i(L)

≤
(

W̃i(K)
W̃i(L)

) p
n–i

.

This yields inequality (3.13).
According to the equality conditions of (3.9) and (3.15), we can know that the equality

holds in (3.13) if and only if K and L are dilates. �

Theorem 3.3 Let K , L ∈ Sn
o and ϕ(x) : (0,∞) → (0,∞) be a monotonous convex function.

If p > 0, real i 
= n, and i < n – p, then

ϕ

[∫

Sn–1
ϕ–1

((
ρL

ρK

)n–p–i)
dW̃ ρ

i (K)
]

≤
(

W̃i(L)
W̃i(K)

) n–p–i
n–i

, (3.16)

with equality if and only if K and L are dilates.

Proof of Theorem 3.3 Since ϕ(x) : (0,∞) → (0,∞) is a monotonous convex function, thus
by (3.6), (3.4), (3.5), and (3.14), we obtain

W̃p,i(L, K) =
1
n

∫

Sn–1
ρ(L, u)n–p–iρ(K , u)p dS(u)

=
1
n

∫

Sn–1
ρ(K , u)n–i

(
ρ(L, u)
ρ(K , u)

)n–p–i

dS(u)

= W̃i(K)
∫

Sn–1

(
ρ(L, u)
ρ(K , u)

)n–p–i

dW̃ ρ
i (K)
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= W̃i(K)
∫

Sn–1
ϕ

[
ϕ–1

((
ρ(L, u)
ρ(K , u)

)n–p–i)]
dW̃ ρ

i (K)

≥ W̃i(K)ϕ
[∫

Sn–1
ϕ–1

((
ρ(L, u)
ρ(K , u)

)n–p–i)
dW̃ ρ

i (K)
]

,

equivalently,

W̃p,i(L, K)
W̃i(K)

≥ ϕ

[∫

Sn–1
ϕ–1

((
ρ(L, u)
ρ(K , u)

)n–p–i)
dW̃ ρ

i (K)
]

. (3.17)

By the equality condition of inequality (3.14), we see that the equality holds in (3.17) if and
only if ϕ–1(( ρ(L,u)

ρ(K ,u) )n–p–i) is constant, i.e., ρ(L,u)
ρ(K ,u) = λ is constant, then K and L are dilates.

Together with (3.17) and Minkowski inequality (3.9), we get

ϕ

[∫

Sn–1
ϕ–1

((
ρ(L, u)
ρ(K , u)

)n–p–i)
dW̃ ρ

i (K)
]

≤ W̃p,i(L, K)
W̃i(K)

≤
(

W̃i(L)
W̃i(K)

) n–p–i
n–i

.

This is the desired inequality (3.16).
According to the equality conditions of (3.9) and (3.17), we know that the equality holds

in (3.16) if and only if K and L are dilates. �

In particular, let ϕ(x) = exp(x) in Theorem 3.2 and Theorem 3.3, then we can obtain the
following dual log-Minkowski inequality of dual quermassintegrals probability measure.

Corollary 3.2 If K , L ∈ Sn
o , p > 0, and real i 
= n, then

∫

Sn–1
ln

(
ρK

ρL

)
dW̃ ρ

i (K) ≥ 1
n – i

ln

(
W̃i(K)
W̃i(L)

)
≥

∫

Sn–1
ln

(
ρK

ρL

)
dW̃ ρ

i (L),

with equality if and only if K and L are dilates.

Remark 3.1 If i = 0 in Corollary 3.2, then this inequality firstly was obtain by Gardner et
al. (see [32]).

4 Lp-Mixed affine isoperimetric inequality
For p ≥ 1 and i = 0, 1, . . . , n – 1. A convex body K ∈ Kn

o is said to have a generalized Lp-
curvature function (see [33]) fp,i(K , ·) : Sn–1 → R if measure Sp,i(K , ·) is absolutely contin-
uous with respect to spherical Lebesgue measure S, and

dSp,i(K , ·)
dS

= fp,i(K , ·). (4.1)

Obviously, fp,0(K , ·) = fp(K , ·). Here fp(K , ·) is the Lp-curvature function of K ∈ Kn
o (see

[24]). Let Fn
o denote the subset of Kn

o that has a positive continuous curvature function.
For K ∈Fn

o , p ≥ 1, and i = 0, 1, . . . , n – 1, the Lp-mixed curvature image Λp,iK ∈ Sn
o of K

is defined by (see [33])

ρ(Λp,iK , ·)n+p–i =
W̃i(Λp,iK)

ωn
fp,i(K , ·). (4.2)
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In relation to the Lp-dual mixed quermassintegrals, Li and Wang [34] gave the notion
of Lp-mixed affine surface area Ωp,i(K) of K and obtained the following result: If K ∈ Fn

o ,
p ≥ 1, and i = 0, 1, . . . , n – 1, then

Ωp,i(K)n+p–i = nn+p–iωn–i
n W̃i(Λp,iK)p. (4.3)

By (3.3), (4.2), and (4.3), we have the following integral formula of Lp-mixed affine surface
area Ωp,i(K): If K ∈Fn

o , p ≥ 1, and i = 0, 1, . . . , n – 1, then

Ωp,i(K) =
∫

Sn–1
fp,i(K , u)

n–i
n+p–i dS(u). (4.4)

Obviously, let i = 0 in (4.4), then Ωp,0(K) is just the Lp-affine surface area Ωp(K) (see
[24]).

As the application of Theorem 1.1, associated with the Lp-mixed affine surface areas, we
establish the following Lp-mixed affine isoperimetric inequality.

Theorem 4.1 If K ∈Kn
o , L ∈Fn

o , p > 1, and i = 0, 1, . . . , n – 1, then

[
Wi(K)Wi

(
K∗)]p ≥ 1

nn+p–iH(K , L, p)
Ωp,i(L)n+p–i

Wi(L)n–p–i

(
Wi(K)
Wi(L)

)p

, (4.5)

with equality if and only if K and L are dilate balls centered at the origin. Here H(K , L, p) =
[exp(

∫
Sn–1 ln( hK

hL
)p dW p,i(L, K))]n–i.

Proof Suppose that K and L are distinct, according to the left-hand inequality of (1.18),
(1.14), (1.15), and (4.1), we have

exp

(∫

Sn–1
ln

(
hK

hL

)p

dW p,i(L, K)
)

≥ Wp,i(L, K)
Wi(L)

=
1
n

· 1
Wi(L)

·
∫

Sn–1
h(K , u)p dSp,i(L, u)

=
1
n

· 1
Wi(L)

·
∫

Sn–1
h(K , u)pfp,i(L, u) dS(u). (4.6)

By the equality conditions of inequality (1.18), we see that equality holds in (4.6) for p > 1
if and only if K and L are dilates.

In fact, for p > 1 and i = 0, 1, . . . , n – 1, since – n–i
p < 0, thus by Hölder’s inequality (see

[25]), (3.2), (3.3), and (4.4), we have
∫

Sn–1
h(K , u)pfp,i(L, u) dS(u)

≥
(∫

Sn–1

[
h(K , u)p]– n–i

p dS(u)
)– p

n–i
(∫

Sn–1
fp,i(L, u)

n–i
n+p–i dS(u)

) n+p–i
n–i

=
(∫

Sn–1
h(K , u)–(n–i) dS(u)

)– p
n–i

(∫

Sn–1
fp,i(L, u)

n–i
n+p–i dS(u)

) n+p–i
n–i

=
(
nW̃i

(
K∗))– p

n–i Ωp,i(L)
n+p–i

n–i . (4.7)
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From the equality condition of Hölder’s inequality, we see that equality holds in (4.7) if
and only if fp,i(L, u) = λh(K , u)–(n+p–i) for all u ∈ Sn–1, where λ is a constant.

Therefore, by (4.6) and (4.7), we obtain

exp

(∫

Sn–1
ln

(
hK

hL

)p

dW p,i(L, K)
)

≥ 1
nWi(L)

(
nW̃i

(
K∗))– p

n–i Ωp,i(L)
n+p–i

n–i

=
1

Wi(L)
Ωp,i(L)

n+p–i
n–i

n
n+p–i

n–i W̃i(K∗)
p

n–i
.

Equivalently,

[
exp

(∫

Sn–1
ln

(
hK

hL

)p

dW p,i(L, K)
)]n–i

≥
(

1
Wi(L)

)n–i
Ωp,i(L)n+p–i

nn+p–iW̃i(K∗)p

=
1

nn+p–i
Ωp,i(L)n+p–i

Wi(L)n–p–i

(
Wi(K)
Wi(L)

)p( 1
Wi(K)W̃i(K∗)

)p

. (4.8)

In addition, for K ∈Kn
o and i = 1, 2, . . . , n – 1, it is well known that (see [1, 2])

W̃i(K) ≤ Wi(K), (4.9)

with equality if and only if K is a ball centered at the origin.
Let H(K , L, p) = [exp(

∫
Sn–1 ln( hK

hL
)p dW p,i(L, K))]n–i in (4.8), then by (4.9) we obtain

1
nn+p–iH(K , L, p)

Ωp,i(L)n+p–i

Wi(L)n–p–i

(
Wi(K)
Wi(L)

)p

≤ [
Wi(K)W̃i

(
K∗)]p ≤ [

Wi(K)Wi
(
K∗)]p.

This yields inequality (4.5).
Because of the equality conditions of inequalities (4.6) and (4.9), we deduce that K and L

are dilate balls centered at the origin, these imply the equality condition of (4.7): fp,i(L, u) =
λh(K , u)–(n+p–i). Hence, we see that equality holds in (4.5) if and only if K and L are dilate
balls centered at the origin. �

Specially, if K = L in Theorem 4.1, then

H(K , L, p) =
[

exp

(∫

Sn–1
ln

(
hK

hL

)p

dW p,i(L, K)
)](n–i)

= 1.

Thus, we immediately obtain the following result.

Corollary 4.1 If K ∈Fn
o , p > 1, and i = 0, 1, . . . , n – 1, then

Ωp,i(K)n+p–i ≤ nn+p–iWi(K)n–iWi
(
K∗)p,

with equality if and only if K is a ball centered at the origin.
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