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1 Introduction

Let A and B be two subsets of a normed linear space X. One may ask: how well A can
be approximated by B? In the theory of n-widths of A in X, B will be a simple subspace
of X. We will consider the possibility of allowing the simple subspaces to vary within X
and find the one best adjusted to A. In many cases very simple sets may approximate A in
an asymptotically optimal manner. It is then possible to judge whether it is worthwhile or
not to spend additional time and money in using better but more complicated subspaces.
The results of n-widths of A in R¥ may be found in [1-8].

It is well known that RN can be embedded in EN. Thus if we restrict d? -metric (see
Sect. 4) convergence and level convergence on RY, then these types of convergence both
become /,-metric (induced by || - ||,) convergence. Motivated by the study of #-widths
of A in RV, we introduce definitions of four #-widths of A in EN. Moreover, asymptotic
estimates of these n-widths of Zadeh’s extension of diagonal matrices are obtained.

2 Preliminaries
2.1 Fuzzy numbers
For a fuzzy set u : RN — [0, 1], suppose that:
(1) uis normal, i.e., there exists x € RN such that u(x) = 1;
(2) u is upper semi-continuous;
(3) suppu = cl{x € RN : u(x) > 0} is compact;
(4) u is fuzzy convex, i.e.,

u(rx+ (1-A)y) = min{ux),u(y)}, 0<i=<1,
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for all x,y € RN. Then u is called a fuzzy number. Let EN be the family of all fuzzy
numbers. RY can be embedded in EV, as any u € RN can be viewed as the fuzzy

number

1, u=ux

0, u+x.

u(x) =

For u,v € E", a € [0, 1], the a-cut of u is defined as follows:

[ {xeRN:u(x)>a), if0<a<l;
u =
supp u, ifa=0;

and the algebraic operations on EV are defined as
o +v]* = [u]* + [v]%, (kul® = k[u]*, keR,ae[0,1].

Iff: RN — RN is a function, we define Zadeh’s extension of f by

SUP, /-1 U(2), iff7' (%) #0;
0, if 7 (x) = 2.

Lemma 1 ([9]) Iff: RN — RN is continuous, thenf is a well-defined function and
Fa]” =f(ul*), Vael0,1],VueEN.

2.2 n-Widths of diagonal matrix
Definition 1 ([10]) Let (X, || - ||) be a normed linear space, and A C X.
(1) The Kolmogorov n-width of A in X is defined by

d,(A; X) = infsup inf |x -y,
Xn xeA ¥€Xn

where the left-most infimum is taken over all #-dimensional subspace X, of X.
(2) The Bernstein n-width of A in X is defined by

bu(A; X) = sup sup{A : AS(X,s41) C A}

Xn+1
= inf ,
sup _nf |
where X,,,1 is any (# + 1)-dimensional subspace of X, and S(Xj,,1) is the unit ball of
Xn+1 .
(3) The Gelfand n-width of A in X is defined as

d"(A;X) = iLI}qf sup |lx|l,

xeANL"

where the infimum is taken over all subspaces L” of X of codimension #.
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(4) The linear n-width is given by

8,(A;X) = inf sup”x—P,,(x)
Pn@4)x€A

|,

where the infimum is taken over all continuous linear operators P,, of X into X of

rank n.

Lemma 2 ([11]) Let X1 be any (n + 1)-dimensional subspace of a normed linear space
X |1 - 1), and let S(X,,11) denote the unit ball of X,,,1. Then

A (SXnn);X) =1, k=1,2,...,n.

Let l;\[ be the N-dimensional normed spaces of x = (x1,...,%y) € RV, with the normed

N
il i), 1< p<oo,
llxll, =
maxi<j<n x|, p=o00.

Let D = diag{D;,...,Dy} be an N x N diagonal matrix. Without loss of generality, we
assume that

Dy >Dy>--->Dy>0.
n-widths of ®, = {Dx : ||x||, < 1} can be found in [1, 2, 10].
Theorem A ([2, 10]) For1 <p < o0,

dn(Dpily) = A" (Dp3ly ) = ba(Dp3ly ) = 8u(Dpily)) = Dy

Theorem B ([1]) Given1 <gq<p <oo.Let1/r=1/q—1/p. Then
N 1/r
dn(Dpi L)) = d" (Dps 1)) = ba(D; 1Y) = 8,(Dp3 1) = ( > D;> .
k=n+1

3 n-Widths of fuzzy numbers
The following notation will be used throughout this paper. Let X,, be an n-dimensional
subspace of RN, L be subspaces of RV of codimension #. §(X,,) denotes the unit ball of
X,. Set

X, ={u:ueEN,[u° C X,},

[n= {u:u e EN, [u]® gL”},

S(Xpa1) = {u:d(w,0) < 1,u € X }.
Let P, be Zadeh’s extension of the continuous linear operators P, of R¥ into RN of rank 7.

Definition 2 Let (EN,d) be a metric space, and A C EV,
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(1) The Kolmogorov n-width of A in EV is defined by

d, (A;EN) =infsup inf d(u,v),
Xn ucA veXy

where the left-most infimum is taken over all 5(:, C EN,
(2) The Bernstein n-width of A in EV is defined by

bn(A;EN) = sup sup{k:k > 0, AS(X,11) gA}.

Xnr1
(3) The Gelfand n-width of A in EN is defined as

d"(A;EN) =inf sup d(u,0),

L" yeantn

where the infimum is taken over all subspaces L of EN.
(4) The linear n-width of A in EN is given by

8a(A;EN) = igfsupd(u,ﬁ,,(u)),
Py ucA

where the infimum is taken over all 17,4
Proposition 1 Let (EN,d) be a metric space, and A C EN.
(i) 8u(A;EN) > d(A; EN).
(i) 8,(A;EN) = d"(A; EN).

Proof Let P, be Zadeh’s extension of the continuous linear operators P, of RY into RN of
rank 7.
(i) From Lemma 1 and rank P, = n, we know that there exists an z-dimensional subspace
X,, of RN subject to the following relation:
[22@)]° = P([]°) S X,, ueACEN,
Then B, (u) € X,,, i.e., P,(A) C X,,. By the definitions of d,,(4; EN) and §,(4; EN)
8a(A;EN) > d, (A EN).
(ii) If P, (u) = 0, then
~ 10
[Pn(u)] = Pn([u]o) =1{0},

and [1]° € L", i.e., u € L". Therefore

supd(u,]s;(u))z sup d(u,0),
ucA _U€EA
Py (u)=0

whence it follows that §,(4; EN) > d"(A; EN). O
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4 n-Widths of D
We first choose a suitable metric d(-,-) on EN to establish a relation between |lx - y||, and
d(u,v), x,y € 12’, u,v C EN. Then the distance between subsets of EN can be estimated by

llx = yllp.
Let KC(RV) be the family of nonempty compact subsets of £)/. I A, B € K(RV), 1 < p < 00,
the Hausdorff distance between A and B is defined by

& (A,B) = { inf |a — ||, sup inf [|a — b }
(A, B) = max 225223”“ Il xggAIIa Il

Foru,ve EN,1 <s< 00, a € [0,1], we define

1 1/s
df(u, V) = (/ d;il([u]a’ [V]Ot)s da> )
0

then & is called the L,-metric on EN [12]. Let LQ; = (EN,db).
Proposition 2 ([12]) (EN,d?) is a metric space for 1 <s,p < cc.

Let D = diag{D;,...,Dn}, D1 > Dy > --- > Dy >0, be an N x N diagonal matrix, and D
be Zadeh’s extension of D.

Lemma3 LetucEN,keR,1<s<oo,ac|[0,1]. Then

1 s 1/s
d? (Du, k0) = < / ('sup 1Dall,) da> ,
0

ac[u]®

and
d? (D(ku),0) = |k|d? (D(u), 0).
Proof Since supp 0 = {0}, it follows that

dyy (IDu)*, k[01%) = dy (D([u]*), k[0]*)

:maxl sup inf || Da-bl,, sup inf ||Da—b||p}

acu]® bek[f)]“ bek[()]a aclul®
= sup || Dallp.
aclu]®
Hence
- . 1 s 1/s
d?(Du, kO) = ( / ( sup ||Da||p) da) .
0 ‘“aelu]*
Similarly, we can get the second equation. g

In this paper we are concerned with the estimate of #-widths of

—~

gs,p = {ijbi ‘U e Edef(ur()) = 1}
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and
©,1={Du:ueEN,d(u,0) <1}.
It is often the case, see examples in [10], that a very simple form of b,(4;X) =
supy ., infreaanx,,,) x|l is used. We introduce a similar definition of b (’Dsp,L ) for easy

computation.

Definition 3 For 1 <s,p < 0o,

b, (@;Lé\;) =sup inf d(Du, 0).
X 1 “Exnﬂ
¥ (u,0)=1

Now we state our main results.

Theorem 1 For1 <s,p < oo,
di(Dopi L) = d" (DspiL}),) = ba(DepiLYy) = 8a(Dspi L) = Dt

Theorem 2 Given1 <s<oo,1 <g<p<oo.Letl/r=1/q—1/p. Then

1/r
dhn (QSP’LN) dn(@SP’LN) QSP’LN (Z Dk) .

k=n+1

Remark For 1 < q < p < 00, Theorem 1 and 2 are obvious generalizations of Theorems A
and B.

Before proving these two theorems, we need some lemmas.

Lemma4 Forl <s,p< oo,

() 3x(Dsp3 LYy) = dn(Dspi L) = bu(Dspi LY.
(i) an@sp,LN) > d"(Dy i LN) = by(D; LY,).

Proof From Proposition 1 the following results are known:
a . IN a9 . IN 5 . IN 5 . IN
8” (QS:P;Ls,p) z d” (g&P;Ls,p)’ 8”’ (gS:P;Ls,p) z d" (stP;Ls,p)‘

Now we prove that d, (ZDSI,,LN )>b (”Dsp, ) If )»S(X,,J,l) CD,,, then from the defini-

tion of d,,(A; EN)

S,pr

d (gsp,LN ) > dn (AS(XZI):LQ;) > dn()\S(XrHl)ngg) (1)
Fora € AS(X,;41), v € )?:,, a direct computation shows that

dZ({a},[v] )—bstllp]) la—->bl,> 1nf lla—bll,
e[v]¥
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and

1 1/s
d?(a,v) = (/ dZ({a}, [v]"’)s dot) > inf |la—b|,.
0 beXyl

Therefore

sup inf d¥(a,v)> sup inf la-b|,,
4€2S(Xy41) VEXnt1 aerS(Xyy1) bEXn

which implies that

dn ()‘-S(Xrul); Lé\;) = dn ()\S(prl); 12])
From (1) and Lemma 2

d(DspiLY,) = A

By the definition of b,(A; EN) in Definition 2 (2), we have d,,(?S:;,;LQ;) > bn(%;Lg‘;),
The procif/of d”(évs,p;Li\;) > bn(@,;Li\;) is totally analogous to the proof of d,,(ﬁs;;
LQ;) > b,,(@s,p;LQ;), here we omit it. The theorem is proved. O

Let a = (a1,...,ay) € RN, A,B C RN, we write a L A if Zﬁlaixi =0 for all x = (x1,
oxy)€Aand A L Bif YN, ab; = 0 forVa=(ay,...,an) €A, b= (b,...,by) € B. Set

N
At = yeRN:inyi=0,Vx=(x1,...,xN)eA .

i=1
Letue EN, CC EN,wewrite u L Cif [u]° L [v]°, Vv e C.

Lemma 5 For u € EN, the following properties are equivalent.
() u L Xy
(i) ueX,

Proof (i) = (ii). Since u L )?1\7-:1, we know that for Vv € )?]\7_/,,, ie., [v]° € Xy_n, we have
(u]® L [v]°.

[]® C X5,

Note that X;_, = X,,. Then (ii) follows.
(ii) = (i). If u € X,,, i.e., [u]°  X,,, then for all x € [u]® there is an (N — n)-dimensional

subspace Xy_, such that x 1 Xy_,. Consequently, we have [u]° | Xy_,, i.e., u L m O

Lemma 6 Forl <s,p<oo,n<N,

—~

by (D LY )dN "7 (D5}

S'q,Lf;) =1.
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Proof By the definition of d™~"~ 1(@S;,LN ) and Lemma 5, we have

an=—"- 1(@ ! LN) = min max df(ﬁu,ﬁ)

P XN-n-1 u€Xyi1
a2 (u,0)<1
d?(D1u,0)
= min  max_ AT
XN 1wl XN ds (u,0)
u;/O
[ d’ (u,0) T
= min max |—————| .
XN-n- 1141-)@7/1 dl (D~ 1” O)
u;/O
Setting v = Dy, by Lemma 1 we have
[V]a = D_l [u]ot, Ya € [0: 1];
and
[u]* = DD u]® = [D‘lu]a =D[v]* = [Bv]“, Yo € [0,1].

—~—

Since D is invertible, hence v L Xx_,_1. Now

d,,(Dv,0)77"
dN-"- 1(59”11,LN) = min  max _ [M}
dl(v,0)

XNt vAXN 1
V0

[ dp(ﬁvf>]1
max mln
Xn+1 VEX}’I+1 d (V; 0)

V;/O

= [bu(D5p L)) D
Proof of Theorem 1 Let P, = diag(Dy,...,D,,0,...,0). Forany u € EV,

dy (IDu]?), [Pu)”) = dby(D([u]”), P ([u]))

:max{ sup inf |Da—P,b|,, sup 1nf |Da — Pb||p}

acu)® belulv belu]® aclu]®

I'él[ai( || (D-P )a” (2)

Then

8,,(35:,7;@;) < max df(ﬁu,ﬁ,,u)

’ & (u,0)<1
d? (Du, P,u)
max ————
uto  d(u,0)
(fol(maxtze[u]“ Il (D - Pn)a”p)s da)l/s

= max 1 1/

u7#0 (f() (maxae[u]“ ”a”p)s dor)l/s

(fy (Maxgepue (XN .1 1D |P)VP) da)s

”7!6 fo maxge[y)« ”ﬂ”p) da)l/s
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s N 1/ 1/
< max Dn+1(f0 (niaxae[u]a(zi:ml |a;|P)VP)S dr) Vs
"0 (Jo (maxaerue llall,)s der)ts

= Dn+1'

In a similar way,

—_~

8u(D4LY,) < 1/Dyi.

From Lemma 6

—~

bu(DspiLyy) = (@ (DL L))

—~

> (3D L3y)) -

Thus
bn (5:,17» Li\;) = Dn+1 .

By Lemma 4, we prove that these four n-widths equal D,,,;. O

Let1 <p,g<oo,and 1/p + 1/p’ = 1/q + 1/q’ = 1. We use the notation «x'(x) = (x,x) for

N ./ N s ans N : : . IN N Ep /. IN
xNe Ly, % € lp,, and similarly for /. Diagonal matrix D: [, — [}’ has an adjoint D': lq, —
l

e defined by (Dx,y') = (x,D'y’) for x € lg[ andy € lf;{ . It is well known that D = D'. Let L"
be subspaces of )’ of codimension # and L' ={ueEN :[u]° C L"), set

Lt ={x:x€ lg{, (x,4") = 0,allx € L"},

L ={viveEN, M’ c Lt}

It is well known that dim L’} = #.

Lemma?7 Letl <s,p,g<oo,and l/p+1/p' =1/q+1/q =1. Then
d, (@S,p;Lilq) > d”(@s,q/;Lﬁ\;,).

Proof LetA; ={ueEN:d (u,0) <1}. Then

sup sup ||Dall; = sup sup sup (Da,b’)

ueApﬂﬁ’ aelu)® ueﬁ;,ﬂﬁ’ acu)® 16", <1

< sup sup sup sup (Da,b)

ueApni aelu)® ve;l;/ Ve
= sup sup sup sup (a,D'b). (3)
veg;/ ueA,nii b' eVl aelu)®

Letuc A; NL"andd € L".Then (a,a’) =0, Va € [u]°. Hence

(@, D'¥)=(a,D'b' -~ a') < |all,| Db - a

<|Db -a

r p’
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For u’ € L'}, we have

sup sup (a,D'b') < sup inf |Db -d || (4)

VeVl aelu]® peve d €]

Following (3), (4), and D =D’

sup sup sup sup (@, D'b') < sup inf sup inf |Db'-a

VGA-;// ueApnii b' eVl aelu)® veA, 7Y el] pelyje a €l d
< sup inf 4 (u’,ﬁv). (5)
veA;r wel’}
Combining Lemma 3, (3), and (5)
sup d?(Du,0) < sup inf d’ (u,Dv),
ueA,nin veA U EL
then taking the infimum over L, we have the result. O

Proof of Theorem 2 We first prove that SW(%;LQ’{I) < (O3, DY
Let P, = diag(Dy, ..., D,,0,...,0). For any u € EV, as (2) in the proof of Theorem 1

dl,(IDu)®), [Pul”) = 51[11])a |(D-P)al,

1/q
= sup (Z |Dkak|q) .

acul” k=n+1

From 1/r = 1/q — 1/p and Hoélder’s inequality

( i leﬂqu> h < ( i |Dk|’> m( fj mw) 1/,,’

k=n+1 k=n+1 k=n+1
we have
N 1/r N l/p
df,((Dul®), [P,u]®) < sup (Z |Dk|f> (Z |ak|f’)
a€lul® \g=ps1 k=n+1
N 1/r 1/p
< (Z |Dk|') sup (Z |ak|P)
k=n+1 acul®
1/r
(Z | D ) (], [0]%).
k=n+1
Then

SH(@,;L?[) < max dq([Du] ), [P, u]%)
g & (u,0)<1

< mox ([t 0(u1).2. (1) de

d¥ (u,0)<1

1/s
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N 1/r
< max (Z IDk|’> df(u,f))

df(u,())gl k=n+1
N 1/r
< (Z |Dk|') :
k=n+1

Now we are to prove d”(@sp,LN )= (4,1 1DV, From Lemma 3

a7, ([Du]”), [01*) = af, (D([u]*), [01%)

max ||[Da
max [|Dall

aclu]® 1

N 1/q
max (Z |Dkak|q>

and

1/p
by ([u]%), [0 )—max<Z|ak|p) :

By the definition of 4" ) LA,[q) and Theorem B

S,pr

1/r
d"(Dsp, L) = d"(D,, LN ) = d"(D,, 1)) = (Z D’) :

k=n+1
Combine (6), (7), and Proposition 1(ii),
1/r
8u(Depi L) = A" (D, LY) = (Z D’) .
k=n+1
Similarly, we can have
N 1/7‘
8u(DsgiLY,) = (Z D;)
k=n+1
and
1/r
d"(Ds g, L (Z Dk) .
k=n+1
By Proposition 1(i) and Lemma 7
1/r
dn(Dspi L) = (Z Dk) :
k=n+1

The theorem is proved.

(6)
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