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Abstract
By using the method of weight function, the technique of real analysis, and the
theory of special functions, a multi-parameter Hilbert-type integral inequality and its
equivalent form are established, and their constant factors are proved to be the best
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results in the references and some new inequalities are obtained by assigning some
parameter values.
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1 Introduction
If f , g : (0,∞) → R are non-negative integrable functions, satisfying 0 <

∫ ∞
0 f 2(x) dx < ∞,

0 <
∫ ∞

0 g2(y) dy < ∞, the celebrated Hilbert integral inequality is as follows (see [1]):

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dx dy < π

{∫ ∞

0
f 2(x) dx

} 1
2
{∫ ∞

0
g2(y) dy

} 1
2

, (1)

where the constant factor π is the best possible. Inequality (1) is very important in har-
monic analysis and theory of partial differential equations (see [1, 2]). During decades,
inequality (1) has been extensively studied by numerous authors, evolved into a lot of
meaningful results, which include the research of parametric quantization, mixed kernels,
homogeneous kernels and non-homogeneous kernels, the extensions of fractal space, etc.
(see [3–15]). In 2011, Yang gave an integral inequality of Hilbert type with exponential
kernel as follows (see [16]):

∫ ∞

0

∫ ∞

0
e–xyf (x)g(y) dx dy <

√
π

{∫ ∞

0
f 2(x) dx

} 1
2
{∫ ∞

0
g2(y) dy

} 1
2

, (2)

where the constant factor
√

π is the best possible.
In this paper, by using the method of weight function, the technique of real analysis, and

the theory of special function, a Hilbert-type integral inequality and its equivalent form
with the kernel as (min{1,xy})α (max{1,xy})β

eγ xy are given, and their optimum constant factor in rela-
tion to Whittaker function and the application of the obtained results are briefly discussed.
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We configured with power parameters for each factor of the integral kernel. Besides, we
introduce a free parameter θ (it can take any real number) when using the weight func-
tion method based on “Hardy interpolation problem”. In practical applications, the con-
ditions 0 <

∫ ∞
0 xpθ–1f p(x) dx < ∞ and 0 <

∫ ∞
0 yqθ–1gq(y) dy < ∞ in the obtained results are

easily met by selecting the parameter θ as needed. On the other hand, a series of Hilbert-
type integral inequalities with single kernels, mixed kernels, and compound kernels can
be obtained by selecting appropriate parameter θ and other parameter values, so that the
obtained results can be used more widely.

2 Preliminaries
Some special functions are required in the following deduction (see [17]).

(1) Suppose that Re(s) > 0, then gamma function Γ (s) and incomplete gamma function
Γ (s, a) (a > 0) are defined by the expressions

Γ (s) :=
∫ ∞

0
e–tts–1 dt, (3)

Γ (s, a) :=
∫ ∞

a
e–tts–1 dt. (4)

(2) Beta function B(u, v) (u, v > 0) is defined by the expression

B(u, v) :=
∫ 1

0
(1 – t)u–1tv–1 dt =

Γ (u)Γ (v)
Γ (u + v)

. (5)

(3) Confluent hypergeometric function (also called Kummer function) 1F1(λ,μ, z)
(λ,μ, z > 0) is defined by the expression

1F1(λ,μ, z) :=
∞∑

n=0

(λ)n

n!(μ)n
zn =

Γ (μ)
Γ (λ)

∞∑

n=0

znΓ (n + λ)
n!Γ (n + μ)

, (6)

here, the mark (x)n = x(x + 1) · · · (x + n – 1) = Γ (n+x)
Γ (x) (x > 0). If γ > 0, α > θ – 1, by (6), we

obtain

1F1(1, 2 + α – θ ,γ ) = Γ (2 + α – θ )
∞∑

n=0

γ n

Γ (n + 2 + α – θ )
. (7)

(4) Whittaker function M(k, m, z) is defined as

M(k, m, z) := zm+ 1
2 e– z

2 1F1

(

m – k +
1
2

, 2m + 1, z
)

. (8)

By (7) and (8), we have

M
(

α – θ

2
,
α – θ

2
+

1
2

,γ
)

= γ
α–θ

2 +1e– γ
2 Γ (2 + α – θ )

∞∑

n=0

γ n

Γ (n + 2 + α – θ )
. (9)

When γ > 0, α > θ – 1, by (5) and (9), we find

I1 =
∫ 1

0
e–γ ttα–θ dt
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= e–γ

∫ 1

0
eγ (1–t)tα–θ dt

= e–γ

∞∑

n=0

γ n

n!

∫ 1

0
(1 – t)ntα–θ dt

= e–γ

∞∑

n=0

γ n

n!
Γ (n + 1)Γ (1 + α – θ )

Γ (n + 2 + α – θ )

=
γ

θ–α
2 –1e– γ

2 Γ (1 + α – θ )
Γ (2 + α – θ )

[

γ
α–θ

2 +1e– γ
2 Γ (2 + α – θ )

∞∑

n=0

γ n

Γ (n + 2 + α – θ )

]

=
γ

θ–α
2 –1e– γ

2

1 + α – θ
M

(
α – θ

2
,
α – θ

2
+

1
2

,γ
)

. (10)

Furthermore, setting γ t = u, when γ > 0, β > θ – 1, by (4), we find

I2 =
∫ ∞

1
e–γ ttβ–θ dt = γ θ–β–1

∫ ∞

γ

e–uuβ–θ du = γ θ–β–1Γ (1 + β – θ ,γ ). (11)

Lemma 1 If p > 1, 1
p + 1

q = 1, θ ∈ R, γ ≥ 0, when γ > 0, α > θ – 1, θ is an arbitrary real
number. The weight functions are defined by the following expressions:

ω(α,β ,γ , θ , x) :=
∫ ∞

0

(min{1, xy})α(max{1, xy})β
eγ xy

y–θ

xθ–1 dy, x ∈ (0, +∞),

ω(α,β ,γ , θ , y) :=
∫ ∞

0

(min{1, xy})α(max{1, xy})β
eγ xy

x–θ

yθ–1 dx, y ∈ (0, +∞),

then we have

ω(α,β ,γ , θ , x)

= ω(α,β ,γ , θ , y) = C(α,β ,γ , θ )

=

⎧
⎪⎨

⎪⎩

1
α–θ+1 + 1

β–θ+1 , γ = 0,α > θ ,β < θ – 1,

γ
θ–α

2 –1e– γ
2

1+α–θ
M( α–θ

2 , α–θ
2 + 1

2 ,γ ) + γ θ–β–1Γ (1 + β – θ ,γ ), γ > 0,α,β > θ – 1.

(12)

Proof Setting xy = t, when γ = 0, α > θ , β < θ – 1, we have

ω(α,β ,γ , θ , x) :=
∫ ∞

0

(min{1, xy})α(max{1, xy})β
eγ xy

y–θ

xθ–1 dy

=
∫ 1

0
tα–θ dt +

∫ ∞

1
tβ–θ dt

=
1

α – θ + 1
+

1
β – θ + 1

.

When γ > 0, α,β > θ – 1, we have

ω(α,β ,γ , θ , x) :=
∫ ∞

0

(min{1, xy})α(max{1, xy})β
eγ xy

y–θ

xθ–1 dy
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=
∫ ∞

0

(min{1, t})α(max{1, t})β
eγ t t–θ dt

=
∫ 1

0
e–γ ttα–θ dt +

∫ ∞

1
e–γ ttβ–θ dt = I1 + I2

=
γ

θ–α
2 –1e– γ

2

1 + α – θ
M

(
α – θ

2
,
α – θ

2
+

1
2

,γ
)

+ γ θ–β–1Γ (1 + β – θ ,γ ).

Similarly, we can get ω(α,β ,γ , θ , y) = C(α,β ,γ , θ ). �

Lemma 2 If p > 1, 1
p + 1

q = 1, θ ∈ R, γ ≥ 0, when γ = 0, α > θ , β < θ – 1, and when γ > 0,
α,β > θ –1, ε is a sufficiently small positive number, both real functions f̃ (x), g̃(y) are defined
as

f̃ (x) =

⎧
⎨

⎩

0, x ∈ (0, 1),

x–θ– ε
p , x ∈ [1,∞),

g̃(y) =

⎧
⎨

⎩

0, x ∈ (1,∞),

y–θ+ ε
q , y ∈ (0, 1],

then we have

J̃ ·ε =
[∫ ∞

0
xpθ–1 f̃ p(x) dx

] 1
p
[∫ ∞

0
yqθ–1g̃p(y) dy

] 1
q

·ε = 1, (13)

h̃ ·ε = ε

∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})β f̃ (x)g̃(y)
eγ xy dx dy

> C(α,β ,γ , θ )
(
1 – o(1)

) (
ε → 0+)

. (14)

Proof With the defined functions above, we can easily get

J̃ ·ε =
[∫ ∞

0
xpθ–1 f̃ p(x) dx

] 1
p
[∫ ∞

0
yqθ–1g̃p(y) dy

] 1
q

·ε

=
[∫ ∞

1
x–1–ε dx

] 1
p
[∫ 1

0
y–1+ε dy

] 1
q

·ε = 1.

Setting xy = t, when γ = 0, notice the condition as α > θ , β < θ – 1. By Fubini’s theorem
of commutative integral order (see [18]), we obtain

h̃ ·ε = ε

∫ ∞

0

∫ ∞

0

(
min{1, xy})α(

max{1, xy})β f̃ (x)g̃(y) dx dy

= ε

∫ ∞

1
x–1–ε dx

∫ x

0

(
min{1, t})α(

max{1, t})β t–θ+ ε
q dt

= ε

∫ ∞

1
x–1–ε dx

[∫ 1

0
tα–θ+ ε

q dt +
∫ x

1
tβ–θ+ ε

q dt
]

= ε

∫ ∞

1
x–1–ε dx

[∫ 1

0
tα–θ+ ε

q dt +
∫ ∞

1
tβ–θ+ ε

q dt –
∫ ∞

x
tβ–θ+ ε

q dt
]

=
1

α – θ + 1 + ε
q

+
1

β – θ + 1 + ε
q

– ε

∫ ∞

1
x–1–ε dx

∫ ∞

x
tβ–θ+ ε

q dt

>
1

α – θ + 1 + ε
q

+
1

β – θ + 1 + ε
q

– ε

∫ ∞

1
x–1 dx

∫ ∞

x
tβ–θ+ ε

q dt
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=
1

α – θ + 1 + ε
q

+
1

β – θ + 1 + ε
q

–
ε

(β – θ + 1 + ε
q )2

=
1

α – θ + 1
+

1
β – θ + 1

– o1(1).

In addition, when γ > 0, α,β > θ – 1, notice the fact e–γ t < 1, t ∈ [x,∞) (x ≥ 1). Making
use of (10) and (11), we also obtain

h̃ ·ε = ε

∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})β f̃ (x)g̃(y)
eγ xy dx dy

= ε

∫ ∞

1
x–1–ε dx

∫ x

0

(min{1, t})α(max{1, t})β
eγ t t–θ+ ε

q dt

= ε

∫ ∞

1
x–1–ε dx

[∫ 1

0
e–γ ttα–θ+ ε

q dt +
∫ x

1
e–γ ttβ–θ+ ε

q dt
]

= ε

∫ ∞

1
x–1–ε dx

[∫ 1

0
e–γ ttα–θ+ ε

q dt +
∫ ∞

1
e–γ ttβ–θ+ ε

q dt –
∫ ∞

x
e–γ ttβ–θ+ ε

q dt
]

=
γ

θ–α
2 –1– ε

2q e– γ
2

1 + α – θ + ε
q

M
(

α – θ

2
+

ε

2q
,
α – θ

2
+

1
2

+
ε

2q
,γ

)

+ γ
θ–β–1– ε

q Γ

(

1 + β – θ +
ε

q
,γ

)

– ε

∫ ∞

1
x–1–ε dx

∫ ∞

x
e–γ ttβ–θ+ ε

q dt

>
γ

θ–α
2 –1– ε

2q e– γ
2

1 + α – θ + ε
q

M
(

α – θ

2
+

ε

2q
,
α – θ

2
+

1
2

+
ε

2q
,γ

)

+ γ
θ–β–1– ε

q Γ

(

1 + β – θ +
ε

q
,γ

)

– ε

∫ ∞

1
x–1 dx

∫ ∞

x
tβ–θ+ ε

q dt

=
[

γ
θ–α

2 –1e– γ
2

1 + α – θ
M

(
α – θ

2
,
α – θ

2
+

1
2

,γ
)

+ γ θ–β–1Γ (1 + β – θ ,γ )
]
(
1 – o2(1)

)
.

To sum up, we have

h̃ ·ε = ε

∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})β f̃ (x)g̃(y)
eγ xy dx dy

> C(α,β ,γ , θ )
(
1 – o(1)

) (
ε → 0+)

. �

3 Main results
Theorem 1 If p > 1, 1

p + 1
q = 1, θ ∈R, f (x), g(y) ≥ 0, satisfying 0 <

∫ ∞
0 xpθ–1f p(x) dx < ∞, 0 <

∫ ∞
0 yqθ–1gq(y) dy < ∞. γ ≥ 0, and parameters α, β , γ , θ meet the following requirements:

when γ = 0, α > θ , β < θ – 1, and when γ > 0, α,β > θ – 1. Then the following inequality
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holds:
∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})β f (x)g(y)
eγ xy dx dy

< C(α,β ,γ , θ )
{∫ ∞

0
xpθ–1f p(x) dx

} 1
p
{∫ ∞

0
yqθ–1gq(y) dy

} 1
q

. (15)

The constant C(α,β ,γ , θ ) appearing on its right-hand side is the best possible, where
C(α,β ,γ , θ ) has the same expression as (12).

Proof By weighted Hölder’s inequality (see [19]) and Lemma 1, we have

∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})β f (x)g(y)
eγ xy dx dy

=
∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})β f (x)g(y)
eγ xy

[
y– θ

p

x– θ
q

][
x– θ

q

y– θ
p

]

dx dy

≤
{∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})β f p(x)
eγ xy

y–θ

x– pθ
q

dx dy
} 1

p

×
{∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})βgq(y)
eγ xy

x–θ

y– qθ
p

dx dy
} 1

q

=
{∫ ∞

0
ω(α,β ,γ , θ , x)xpθ–1f p(x) dx

} 1
p
{∫ ∞

0
ω(α,β ,γ , θ , y)yqθ–1gq(y) dy

} 1
q

= C(α,β ,γ , θ )
{∫ ∞

0
xpθ–1f p(x) dx

} 1
p
{∫ ∞

0
yqθ–1gq(y) dy

} 1
q

. (16)

Now, suppose that “≤” in (16) takes the form of equality, then by the conclusion of
Hölder’s inequality, there exist constants A and B, which are not all zero, such that

A
y–θ

x– pθ
q

f p(x) = B
x–θ

y– qθ
p

gq(y) a.e. in (0,∞) × (0,∞),

so there is a constant C �= 0, the expression

Axpθ f p(x) = Byqθ gq(y) = C a.e. in (0,∞) × (0,∞)

is valid. Assuming that A �= 0, we have xpθ–1f p(x) = C
Ax a.e. in (0,∞). The integral as

∫ ∞
0

C
Ax dx is divergent, which contradicts the fact that 0 <

∫ ∞
0 xpθ–1f p(x) dx < ∞. Hence

expression (16) only takes the form of strict inequality.
We will prove by counter-proof that the constant factor C(α,β ,γ , θ ) in (15) is the best

possible. If the constant factor C(α,β ,γ , θ ) in (15) is not the best possible, then there ex-
ists a positive number K < C(α,β ,γ , θ ) such that inequality (15) is still valid when replac-
ing C(α,β ,γ , θ ) by K . But employing expressions (13) and (14), we get C(α,β ,γ , θ )(1 –
o(1)) < K . Letting ε → 0+, it follows that K ≥ C(α,β ,γ , θ ), which contradicts the previ-
ous hypothesis that K < C(α,β ,γ , θ ), so the constant factor C(α,β ,γ , θ ) in (15) is the best
possible. �
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Theorem 2 Under the same conditions as Theorem 1, the inequality

∫ ∞

0
y

p
q (1–qθ )

{∫ ∞

0

(min{1, xy})α(max{1, xy})β f (x)
eγ xy dx

}p

dy

< Cp(α,β ,γ , θ )
∫ ∞

0
xpθ–1f p(x) dx (17)

holds and the constant factor Cp(α,β ,γ , θ ) appearing on its right-hand side is the best pos-
sible. In addition, inequality (17) is equivalent to inequality (15).

Proof First, we will derive (17) from (15).
Define a real function as [f (x)]n := min{n, f (x)}. For 0 <

∫ ∞
0 xpθ–1f p(x) dx < ∞, there exists

n0 ∈ N such that 0 <
∫ n

1
n

xpθ–1f p(x) dx < ∞ (n ≥ n0). Setting a real function as

gn(y) := y
p
q (1–qθ )

[∫ n

1
n

(min{1, xy})α(max{1, xy})β [f (x)]n

eγ xy dx
] p

q
(

1
n

< y < n, n ≥ n0

)

when n ≥ n0, making use of (15), we find

0 <
∫ n

1
n

yqθ–1gq
n(y) dy

=
∫ n

1
n

yqθ–1gq–1
n (y)gn(y) dy

=
∫ n

1
n

∫ n

1
n

(min{1, xy})α(max{1, xy})β [f (x)]ngn(y)
eγ xy dx dy

< C(α,β ,γ , θ )
{∫ n

1
n

xpθ–1[f (x)
]p

n dx
} 1

p
{∫ n

1
n

yqθ–1gq
n(y) dy

} 1
q

. (18)

Moreover, making use of (18), we find

0 <
∫ n

1
n

yqθ–1gq
n(y) dy =

∫ n

1
n

y
p
q (1–qθ )

{∫ n

1
n

(min{1, xy})α(max{1, xy})β [f (x)]n

eγ xy dx
}p

dy

< Cp(α,β ,γ , θ )
∫ n

1
n

xpθ–1[f (x)
]p

n dx < ∞. (19)

For n → ∞, it follows that 0 <
∫ ∞

0 yqθ–1gq
∞(y) dy < ∞ and 0 <

∫ ∞
0 xpθ–1f p(x) dx < ∞.

By (15), we know that expressions (18) and (19) still keep the form of strict inequalities.
Hence, inequality (17) holds.

Next, we will derive (15) from (17). If inequality (17) holds, by Hölder’s inequality, we
have

∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})β f (x)g(y)
eγ xy dx dy

=
∫ ∞

0

[

y
1–qθ

q

∫ ∞

0

(min{1, xy})α(max{1, xy})β f (x)
eγ xy dx

]
[
y

qθ–1
q g(y)

]
dy

≤
{∫ ∞

0
y

p(1–qθ )
q

[∫ ∞

0

(min{1, xy})α(max{1, xy})β f (x)
eγ xy dx

]p

dy
} 1

p
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×
{∫ ∞

0
yqθ–1gq(y) dy

} 1
q

< C(α,β ,γ , θ )
{∫ ∞

0
xpθ–1f p(x) dx

} 1
p
{∫ ∞

0
yqθ–1gq(y) dy

} 1
q

.

It is shown above that inequality (15) holds, so inequality (17) is equivalent to inequality
(15).

In addition, suppose that the constant factor Cp(α,β ,γ , θ ) is not the best possible. Then
by (17), the constant factor C(α,β ,γ , θ ) we acquired in (15) is not the best possible too,
which contradicts the conclusion of Theorem 1. Thus the constant factor Cp(α,β ,γ , θ ) in
(17) is the best possible. �

4 Operator expression with norm
Suppose that p > 1, 1

p + 1
q = 1, γ ≥ 0, θ ∈R, f (x), g(y) ≥ 0, when γ = 0, α > θ , β < θ – 1, and

when γ > 0, α,β > θ – 1. ϕ(x) = xpθ–1, ψ(y) = yqθ–1 (x, y > 0), apparently, ψ1–p(y) = y
p
q (1–qθ ).

Now, define normed linear spaces as

Lp
ϕ(0,∞) :=

{

f : ‖f ‖p,ϕ =
[∫ ∞

0
ϕ(x)

∣
∣f (x)

∣
∣p dx

] 1
p

< ∞
}

,

Lq
ψ (0,∞) :=

{

g : ‖g‖q,ψ =
[∫ ∞

0
ψ(y)

∣
∣g(y)

∣
∣q dy

] 1
q

< ∞
}

,

Lp
ψ1–p (0,∞) :=

{

h : ‖h‖p,ψ1–p =
[∫ ∞

0
ψ1–p(y)

∣
∣h(y)

∣
∣p dy

] 1
p

< ∞
}

.

If f ∈ Lp
ϕ(0,∞), a singular integral operator is defined as T : Lp

ϕ(0,∞) → Lp
ψ1–p (0,∞),

T(f )(y) :=
∫ ∞

0

(min{1, xy})α(max{1, xy})β
eγ xy f (x) dx, y ∈ (0,∞).

For f ∈ Lp
ϕ(0,∞), g ∈ Lq

ψ (0,∞), the formal inner product of Tf and g is defined as

(Tf , g) :=
∫ ∞

0

∫ ∞

0

(min{1, xy})α(max{1, xy})β f (x)g(y)
eγ xy dx dy.

With regard to (17), we have

∥
∥T(f )

∥
∥p

p,ψ1–p =
∫ ∞

0
ψ1–p(y)

∣
∣T(f )

∣
∣p dy < Cp(α,β ,γ , θ )‖f ‖p

p,ϕ < ∞. (20)

According to the expression (20), the operator T is bounded, that is,

‖T‖ := sup
f ( �=0)∈Lp

ϕ1–p (0,∞)

‖T(f )‖p,ϕ1–p

‖f ‖p,ϕ
≤ C(α,β ,γ , θ ).

Because the constant factor C(α,β ,γ , θ ) is optimal, therefore ‖T‖ = C(α,β ,γ , θ ).
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Theorem 3 By the preceding Theorems 1 and 2, inequalities (15) and (17) can be expressed
as the following operator expressions with norm:

(Tf , g) < ‖T‖‖f ‖p,ϕ‖g‖q,ψ , (21)
∥
∥T(f )

∥
∥p

p,ψ1–p < ‖T‖p‖f ‖p
p,ϕ . (22)

5 Simple applications
We select the appropriate parameter values in (15) and (17) (first selecting the values of γ

and θ , then determining the range of α and β) and calculate the value of constant factor
C(α,β ,γ , θ ) using Maple mathematical software. At the same time, combining with the
representation methods of (21) and (22), some results in the references and some hand-
some Hilbert-type integral inequalities and their equivalent forms with single kernels or
mixed kernels are obtained.

Example 1 Letting γ = 1, θ = 1
2 , α = β = 0, p = q = 2, we can get C(0, 0, 1, 1

2 ) =
√

π by
calculating formula (12). If f , g > 0, ϕ(x) = 1, satisfying 0 < ‖f ‖2, ‖g‖2 < ∞, then we obtain
(2) and its equivalent form

∫ ∞

0

[∫ ∞

0
e–xyf (x) dx

]2

dy < π‖f ‖2
2, (23)

where the constant factor π is the best possible.

Example 2 Letting γ = 0, θ = 1
2 , α = 1, β = –1, p = q = 2, we can get C(1, –1, 0, 1

2 ) = 8
3 by

calculating formula (12). If f , g > 0, ϕ(x) = 1, satisfying 0 < ‖f ‖2, ‖g‖2 < ∞, then we have
the equivalent inequalities

∫ ∞

0

∫ ∞

0

min{1, xy}
max{1, xy} f (x)g(y) dx dy <

8
3
‖f ‖2‖g‖2, (24)

∫ ∞

0

[∫ ∞

0

min{1, xy}
max{1, xy} f (x) dx

]2

dy <
64
9

‖f ‖2
2, (25)

where the constant factors 8
3 , 64

9 are the best possible.

Example 3 Letting γ = 0, θ = – 1
2 , α = 0, β = –2, p = q = 2, we get C(0, –2, 0, – 1

2 ) = 8
3 by

calculating formula (12). If f , g > 0, ϕ(x) = 1
x2 , satisfying 0 < ‖f ‖2,ϕ , ‖g‖2,ϕ < ∞, then we

have the equivalent inequalities

∫ ∞

0

∫ ∞

0

f (x)g(y)
(max{1, xy})2 dx dy <

8
3
‖f ‖2,ϕ‖g‖2,ϕ , (26)

∫ ∞

0
y2

[∫ ∞

0

f (x)
(max{1, xy})2 dx

]2

dy <
64
9

‖f ‖2
2,ϕ , (27)

where the constant factors 8
3 , 64

9 are the best possible.

Example 4 Letting γ = 0, θ = 3
2 , α = 2, β = 0, p = q = 2, we get C(2, 0, 0, 3

2 ) = 8
3 by calculat-

ing formula (12). If f , g > 0, ϕ(x) = x2, satisfying 0 < ‖f ‖2,ϕ , ‖g‖2,ϕ < ∞, then we have the
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equivalent inequalities

∫ ∞

0

∫ ∞

0

(
min{1, xy})2f (x)g(y) dx dy <

8
3
‖f ‖2,ϕ‖g‖2,ϕ , (28)

∫ ∞

0

1
y2

[∫ ∞

0

(
min{1, xy})2f (x) dx

]2

dy <
64
9

‖f ‖2
2,ϕ , (29)

where the constant factors 8
3 , 64

9 are the best possible.

Example 5 Letting γ = 1, θ = 0, α = 1, β = 0, p = q = 2, we get C(1, 0, 1, 0) = e–1
e by calcu-

lating formula (12). If f , g > 0, ϕ(x) = 1
x , satisfying 0 < ‖f ‖2,ϕ , ‖g‖2,ϕ < ∞, then we have the

equivalent inequalities

∫ ∞

0

∫ ∞

0

min{1, xy}f (x)g(y)
exy dx dy <

e – 1
e

‖f ‖2,ϕ‖g‖2,ϕ , (30)

∫ ∞

0
y
[∫ ∞

0

min{1, xy}f (x)
exy dx

]2

dy <
(

e – 1
e

)2

‖f ‖2
2,ϕ , (31)

where the constant factors e–1
e , ( e–1

e )2 are the best possible.

Example 6 Letting γ = 1, θ = 0, α = 0, β = 1, p = q = 2, we get C(0, 1, 1, 0) = e+1
e by calcu-

lating formula (12). If f , g > 0, ϕ(x) = 1
x , satisfying 0 < ‖f ‖2,ϕ , ‖g‖2,ϕ < ∞, then we have the

equivalent inequalities

∫ ∞

0

∫ ∞

0

max{1, xy}f (x)g(y)
exy dx dy <

e + 1
e

‖f ‖2,ϕ‖g‖2,ϕ , (32)

∫ ∞

0
y
[∫ ∞

0

max{1, xy}f (x)
exy dx

]2

dy <
(

e + 1
e

)2

‖f ‖2
2,ϕ , (33)

where the constant factors e+1
e , ( e+1

e )2 are the best possible.

Example 7 Letting γ = 1, θ = 1
2 , α = 1, β = –1, p = q = 2, we get C(1, –1, 1, 1

2 ) =√
π

2 (5erf (1) – 4) + e–1 = 0.5570924045+ by calculating formula (12). If f , g > 0, ϕ(x) = 1,
satisfying 0 < ‖f ‖2,ϕ , ‖g‖2,ϕ < ∞, then we have the equivalent inequalities

∫ ∞

0

∫ ∞

0

min{1, xy}f (x)g(y)
max{1, xy}exy dx dy <

(√
π

2
(
5 erf(1) – 4

)
+ e–1

)

‖f ‖2,ϕ‖g‖2,ϕ , (34)

∫ ∞

0

[∫ ∞

0

min{1, xy}f (x)
max{1, xy}exy dx

]2

dy <
(√

π

2
(
5 erf(1) – 4

)
+ e–1

)2

‖f ‖2
2,ϕ , (35)

where the constant factors
√

π

2 (5 erf(1) – 4) + e–1, (
√

π

2 (5 erf(1) – 4) + e–1)2 are the best pos-
sible, and erf(x) = 2√

π

∫ x
0 e–t2 dt is an error function.
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