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1 Introduction
Let X be a reflexive, strictly convex and smooth Banach space with the dual space X∗, A :
X ⇒ X∗ a general maximal monotone operator, and C a closed convex set in X. We denote
by NC the normal cone to C. In this work, we study the following variational inequality
problem: find x in a Banach space X such that

0 ∈ A(x) + NC(x). (1)

Problem (1) is a very important format for certain concrete problems in machine learning,
linear inverse and many nonlinear problems such as convex programming, split feasibility
problem, see [3, 4, 15, 17]. The set of solutions of (1) is supposed to be nonempty and is
denoted by S . In [3], the authors provided a generic framework, the so called backward–
backward splitting method, for solving (1) in a Hilbert space:

xn+1 = (I + λnβn∂Ψ )–1(I + λnA)–1(xn), (2)

where Ψ is a penalization function and λn, βn are sequences of positive parameters. In [3],
convergence results have been obtained for the backward–backward splitting method (2)
under the key Fenchel conjugate assumption that

+∞∑

n=1

λnβn

[
Ψ ∗

(
p∗

βn

)
– σC

(
p∗

βn

)]
< +∞, ∀p∗ ∈ R(NC),
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where Ψ ∗ is the Fenchel conjugate of Ψ , σC is the support function of C and R(NC) de-
notes the range of NC . This condition somehow relates the growth of the sequence {βn}
to the shape of Ψ around its minimizing set C. The reader is referred to [14] for further
discussion.

When the penalization function Ψ is Gâteaux differentiable, it is rather natural to con-
sider the following forward–backward splitting method (FBS):

xn+1 = (I + λnA)–1(xn – λnβn∇Ψ (xn)
)
. (3)

The forward–backward method has the advantage of being easier to compute than the
backward–backward method, which ensures enhanced applicability to real-life problems.
Iterations have lower computational cost and can be computed exactly. A special case of
this method is the projected subgradient algorithm aimed at solving constrained min-
imization problems. There have been many works concerning the problem of finding
zero points of the sum of two monotone operators. For further information on forward–
backward splitting methods and their applications, see [4, 6, 9, 11, 12].

Let X = H be a Hilbert space. If A = ∂Φ is the subdifferential of a proper, lower-
semicontinuous and convex function Φ : H → (–∞, +∞], the variational inequality prob-
lem (1) becomes the following minimization problem:

x ∈ Argmin
{
Φ(z) : z ∈ ArgminΨ

}
.

It is convenient to reformulate method (3) as

xn – xn+1

λn
– βn∇Ψ (xn) ∈ ∂Φ(xn+1).

This is equivalent to

xn+1 = argmin
y∈X

{
1
2
‖xn – y‖2 + λnβn

〈∇Ψ (xn), y
〉
+ λnΦ(y)

}
.

In [4], the authors prove that every sequence generated by the forward–backward
splitting method converges weakly to a solution of the minimization problem if either
the penalization function or the objective function is inf-compact. However, this inf-
compactness assumption is not necessary. In [13], the authors prove that every sequence
generated by the forward–backward splitting method converges weakly to a solution with-
out the inf-compactness assumption.

A generalization of this method from Hilbert to Banach space is not immediate. The
main difficulties are due to the fact that the inner product structure of a Hilbert space is
missing in a Banach space. In [18], the authors prove that every sequence generated by
a projection iterative method converges strongly to a common minimum norm solution
of a variational inequality problem for an inverse strongly monotone mapping in Banach
spaces.

In this paper, we extend the forward–backward splitting method (3) to a Banach space,
that is,

xn+1 = (cJ + λnA)–1(cJ(xn) – λnβn∇Ψ (xn)
)
, (4)
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where J is the duality mapping and c is constant. If A = ∂Φ is the subdifferential of a proper,
lower-semicontinuous and convex function Φ : X → (–∞, +∞], the forward–backward
splitting method (4) becomes

cJ(xn) – cJ(xn+1)
λn

– βn∇Ψ (xn) ∈ ∂Φ(xn+1). (5)

Iterative formula (5) can be rewritten as

xn+1 = argmin
y∈X

{
c
2

W (xn, y) + λnβn
〈∇Ψ (xn), y

〉
+ λnΦ(y)

}
.

Throughout this paper, let A : X ⇒ X∗ be a maximal monotone operator and let the
monotone operator TA,C = A+NC be also maximal monotone. Let Ψ : X → (–∞, +∞] be a
proper, lower-semicontinuous and convex function with C = argmin(Ψ ) 	= ∅ and min(Ψ ) =
0. We assume that Ψ is Gâteaux differentiable and ∇Ψ is L-Lipschitz continuous on the
domain of Ψ . We also assume that there exists c > 0 such that

cW (x, y) ≥ ‖x – y‖2, ∀x, y ∈ X. (6)

The objective of the present paper is to propose a forward–backward splitting method
to solve problem (1), which is so far limited to Hilbert spaces, in the general framework of
Banach spaces. The paper is organized as follows. In Sect. 2, we provide some preliminary
results. We present the forward–backward splitting method and prove its convergence
in Sect. 3. Section 4 is devoted to an application of our result to convex minimization
problem. Finally, in Sect. 5, we also prove a convergence result without Fenchel conjugate
assumption.

2 Preliminaries
Let f be a proper, lower-semicontinuous and convex function on a Banach space X. The
subdifferential of f at x ∈ X is the convex set

∂f (x) =
{

x∗ ∈ X∗ :
〈
x∗, y – x

〉 ≤ f (y) – f (x),∀y ∈ X
}

.

It is easy to verify that 0 ∈ ∂f (x̂) if and only if f (x̂) = minx∈X f (x). We denote by f ∗ the
Fenchel conjugate of f :

f ∗(x∗) = sup
x∈X

{〈
x∗, x

〉
– f (x)

}
.

Given a nonempty closed convex set C ⊂ X, its indicator function is defined as δC(x) = 0 if
x ∈ C, and +∞ otherwise. The support function of C at a point x∗ is σC(x∗) = supy∈C〈x∗, y〉.
Then the normal cone of C at x ∈ X is NC(x) = ∂δC(x) = {x∗ ∈ X∗|〈x∗, y – x〉 ≤ 0,∀y ∈ C}.

The duality mapping J : X ⇒ X∗ is defined by

J(x) =
{

x∗ ∈ X∗|〈x∗, x
〉

=
∥∥x∗∥∥‖x‖,

∥∥x∗∥∥ = ‖x‖}, ∀x ∈ X.

The Hahn–Banach theorem guarantees that J(x) 	= ∅ for every x ∈ X. It is clear that J(x) =
∂( 1

2‖ · ‖2)(x) for all x ∈ X. It is well known that if X is smooth, then J is single-valued and is
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norm-to-weak star continuous. It is also well known that if a Banach space X is reflexive,
strictly convex and smooth, then the duality mapping J∗ from X∗ into X is the inverse of
J , that is, J–1 = J∗. Properties of the duality mapping have been given in [1, 2, 8, 17].

Let X be a smooth Banach space. Alber [1, 2] considered the following Lyapunov dis-
tance function:

W (x, y) = ‖x‖2 – 2
〈
J(x), y

〉
+ ‖y‖2, ∀x, y ∈ X.

It is obvious from the definition of W that

(‖x‖ – ‖y‖)2 ≤ W (x, y) ≤ (‖x‖ + ‖y‖)2, ∀x, y ∈ X.

We also know that

W (x, y) = W (x, z) + W (z, y) + 2
〈
J(x) – J(z), z – y

〉
, ∀x, y, z ∈ X. (7)

A set-valued mapping A : X ⇒ X∗ is said to be a monotone operator if 〈x∗ –y∗, x–y〉 ≥ 0, for
all x∗ ∈ A(x) and for all y∗ ∈ A(y). It is maximal monotone if its graph is not properly con-
tained in the graph of any other monotone operator. The subdifferential of a proper, lower-
semicontinuous and convex function is maximal monotone. The inverse A–1 : X∗ ⇒ X of
A is defined by x ∈ A–1(x∗) ⇔ x∗ ∈ A(x). The operator J + λA is surjective for any maxi-
mal monotone operator A : X ⇒ X∗ and for any λ > 0 by Minty’s Theorem. The operator
(J + λA)–1 is nonexpansive and everywhere defined. If X is a reflexive, strictly convex and
smooth Banach space and A is a maximal monotone operator, then for each λ > 0 and
x ∈ X, there is a unique element x̄ satisfying J(x) ∈ J(x̄) + λA(x̄) (see [16]). An operator
A : X ⇒ X∗ is strongly monotone with parameter α > 0 if

〈
x∗ – y∗, x – y

〉 ≥ α‖x – y‖2, ∀x∗ ∈ A(x), y∗ ∈ A(y).

Observe that the set of zeroes of a maximal monotone operator which is strongly mono-
tone must contain exactly one element.

Let A : X ⇒ X∗ be a maximal monotone operator. Suppose the operator TA,C = A + NC is
maximal monotone and S = (TA,C)–1(0) 	= ∅. By maximal monotonicity of TA,C , we know
that

z ∈ S ⇐⇒ 〈
0 – ω∗, z – u

〉 ≥ 0, ∀(
u,ω∗) ∈ TA,C ,

that is,

z ∈ S ⇐⇒ 〈
0 – ω∗, z – u

〉 ≥ 0, ∀u ∈ dom(TA,C) = C ∩ dom A,∀ω∗ ∈ TA,C(u).

If A = ∂Φ is the subdifferential of a proper, lower-semicontinuous and convex function
Φ : X → (–∞, +∞] and if u ∈ S , then there exists u∗ ∈ NC(u) such that –u∗ ∈ ∂Φ(u).
Hence, by u∗ ∈ NC(u) ⇒ σC(u∗) = 〈u∗, u〉, one has

Φ(x) ≥ Φ(u) +
〈
–u∗, x – u

〉
= Φ(u) + σC

(
u∗) –

〈
u∗, x

〉 ≥ Φ(u), ∀x ∈ C.
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Thus, when A = ∂Φ , the maximal monotonicity of TA,C implies

S = Argmin
{
Φ(x) : x ∈ C

}
.

The following result will be used subsequently.

Lemma 2.1 ([4]) Let {an}, {bn} and {εn} be real sequences. Assume that {an} is bounded
from below, {bn} is nonnegative,

∑∞
n=1 |εn| < +∞ and an+1 – an + bn ≤ εn. Then {an} con-

verges and
∑∞

n=1 bn < +∞.

3 The FBS method for variational inequalities
In this section, we firstly extend Baillon–Haddad theorem (see [5]) to Banach space.

Lemma 3.1 Let Ψ : X → (–∞, +∞] be a proper, lower-semicontinuous and convex func-
tion and let Ψ be Gâteaux differentiable on the domain of Ψ . The following are equivalent:

(i) ∇Ψ is Lipschitz continuous with constant L.
(ii) Ψ (y) – Ψ (x) – 〈∇Ψ (x), y – x〉 ≤ L

2 ‖y – x‖2,∀x, y ∈ domΨ .
(iii) Ψ (x) + 〈∇Ψ (x), y – x〉 + L

2 ‖∇Ψ (x) – ∇Ψ (y)‖2 ≤ Ψ (y),∀x, y ∈ domΨ .
(iv) ∇Ψ is 1

L cocoercive, that is,

〈∇Ψ (x) – ∇Ψ (y), x – y
〉 ≥ 1

L
∥∥∇Ψ (x) – ∇Ψ (y)

∥∥2, ∀x, y ∈ domΨ .

Proof (i) ⇒ (ii). By the mean value theorem, we have

Ψ (y) – Ψ (x) –
〈∇Ψ (x), y – x

〉
=

∫ 1

0

〈∇Ψ (x) – ∇Ψ
(
x + t(y – x)

)
, x – y

〉
dt

≤
∫ 1

0

∥∥∇Ψ
(
x + t(y – x)

)
– ∇Ψ (x)

∥∥‖x – y‖dt

≤
∫ 1

0
L‖x – y‖2t dt

≤ L
2
‖x – y‖2.

(ii) ⇒ (iii). Let us fix x0 ∈ domΨ . Consider the function

F(y) = Ψ (y) –
〈∇Ψ (x0), y

〉
.

Note that F is a proper, lower-semicontinuous, convex and Gâteaux differentiable function
and ∇F is Lipschitz continuous on the dom F = domΨ with constant L. Therefore, by
(i) ⇒ (ii), we have

F(u) – F(v) –
〈∇F(v), u – v

〉 ≤ L
2
‖u – v‖2, ∀u, v ∈ dom F . (8)

By the definition of F , we have x0 ∈ Argminx∈X F(x). Then, by (8), we have

F(x0) ≤ F
(

y –
1
L

J–1∇F(y)
)

≤ F(y) –
L
2

∥∥∥∥

(
y –

1
L

J–1∇F(y)
)

– y
∥∥∥∥

2

= F(y) –
1

2L
∥∥∇F(y)

∥∥2.

Hence, by ∇F(y) = ∇Ψ (y) – ∇Ψ (x0), we get (iii).
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(iii) ⇒ (iv). For any x, y ∈ domΨ , by (iii), we have

Ψ (x) +
〈∇Ψ (x), y – x

〉
+

L
2
∥∥∇Ψ (x) – ∇Ψ (y)

∥∥2 ≤ Ψ (y)

and

Ψ (y) +
〈∇Ψ (y), x – y

〉
+

L
2
∥∥∇Ψ (x) – ∇Ψ (y)

∥∥2 ≤ Ψ (x).

Adding the two inequalities, we get

〈∇Ψ (x) – ∇Ψ (y), x – y
〉 ≥ 1

L
∥∥∇Ψ (x) – ∇Ψ (y)

∥∥2.

(iv) ⇒ (i). By Cauchy–Schwartz inequality, we get ‖∇Ψ (x) – ∇Ψ (y)‖ ≤ L‖x – y‖. �

Iterative Method 3.1 Given x0 ∈ X, set

xn+1 = (cJ + λnA)–1(cJ(xn) – λnβn∇Ψ (xn)
)
, (9)

where {λn}, {βn} are two sequences of positive real numbers with
∑∞

n=1 λn = +∞,
∑∞

n=1 λ2
n <

+∞ and λnβn < 2c
L .

For our results, the following Fenchel conjugate assumption will be used subsequently:

+∞∑

n=1

λnβn

[
Ψ ∗

(
p∗

βn

)
– σC

(
p∗

βn

)]
< +∞, ∀p∗ ∈ R(NC). (10)

Remark 3.1 Since Ψ (x) ≤ δC(x) for all x ∈ X, we obtain, Ψ ∗(x∗) –σC(x∗) ≥ 0 for all x∗ ∈ X∗.
Hence, the terms in the sum are nonnegative.

Remark 3.2 If Ψ (x) = 1
2 dist(x, C)2, then we have Ψ ∗(x∗) – σC(x∗) = 1

2‖x∗‖2 for all x∗ ∈ X∗

and so

+∞∑

n=1

λnβn

[
Ψ ∗

(
p∗

βn

)
– σC

(
p∗

βn

)]
< +∞, ∀p∗ ∈ R(NC) ⇐⇒

+∞∑

n=1

λn

βn
< +∞.

It is easy to see that, if the sequence {βn} is chosen so that lim supn→+∞ λnβn < +∞ and
lim infn→+∞ λnβn > 0, then

+∞∑

n=1

λn

βn
< +∞ ⇐⇒

+∞∑

n=1

λ2
n < +∞.

Proposition 3.1 Let {xn} be a sequence generated by iterative formula (9). Take u ∈ C ∩
dom A and v∗ ∈ A(u). Then for all t ≥ 0, we have

cW (xn+1, u) – cW (xn, u) + cW (xn, xn+1) –
1

1 + t
‖xn – xn+1‖2 +

2t
1 + t

λnβnΨ (xn)

≤ λnβn

(
(1 + t)λnβn –

2
L(1 + t)

)∥∥∇Ψ (xn)
∥∥2 + 2λn

〈
v∗, u – xn+1

〉
. (11)
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Proof Since v∗ ∈ A(u) and cJ(xn) – cJ(xn+1) – λnβn∇Ψ (xn) ∈ λnA(xn+1), the monotonicity
of A implies

〈
cJ(xn) – cJ(xn+1) – λnβn∇Ψ (xn) – λnv∗, xn+1 – u

〉 ≥ 0, (12)

and so

〈
cJ(xn) – cJ(xn+1), u – xn+1

〉 ≤ 〈
λnβn∇Ψ (xn) + λnv∗, u – xn+1

〉
,

which in turn gives

cW (xn+1, u) – cW (xn, u) + cW (xn, xn+1) ≤ 2λn
〈
βn∇Ψ (xn) + v∗, u – xn+1

〉
.

Hence, we have that

cW (xn+1, u) – cW (xn, u) + cW (xn, xn+1)

≤ 2λn
〈
βn∇Ψ (xn), u – xn

〉
+ 2λn

〈
βn∇Ψ (xn), xn – xn+1

〉
+ 2λn

〈
v∗, u – xn+1

〉
. (13)

On the one hand, since ∇Ψ is Lipschitz continuous, by Lemma 3.1, we have

〈∇Ψ (xn) – ∇Ψ (u), xn – u
〉 ≥ 1

L
∥∥∇Ψ (xn) – ∇Ψ (u)

∥∥2.

Hence, by ∇Ψ (u) = 0, we obtain

〈∇Ψ (xn), u – xn
〉 ≤ –

1
L

∥∥∇Ψ (xn)
∥∥2. (14)

Since Ψ (u) = 0, by Ψ (u) ≥ Ψ (xn) + 〈∇Ψ (xn), u – xn〉, we have

〈∇Ψ (xn), u – xn
〉 ≤ –Ψ (xn). (15)

For any t ≥ 0, by taking a convex combination of inequalities (14) and (15), we have

2λnβn
〈∇Ψ (xn), u – xn

〉 ≤ –
2

L(1 + t)
λnβn

∥∥∇Ψ (xn)
∥∥2 –

2t
1 + t

λnβnΨ (xn). (16)

On the other hand, for the remaining term 2λnβn〈∇Ψ (xn), xn – xn+1〉, we have

2λnβn
〈∇Ψ (xn), xn – xn+1

〉

= 2
〈
λnβn

√
1 + t∇Ψ (xn),

1√
1 + t

(xn – xn+1)
〉

≤ 2
∥∥λnβn

√
1 + t∇Ψ (xn)

∥∥
∥∥∥∥

1√
1 + t

(xn – xn+1)
∥∥∥∥

≤ (1 + t)λ2
nβ

2
n
∥∥∇Ψ (xn)

∥∥2 +
1

(1 + t)
‖xn – xn+1‖2. (17)
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Inequalities (13), (16) and (17) together give

cW (xn+1, u) – cW (xn, u) + cW (xn, xn+1) –
1

1 + t
‖xn – xn+1‖2 +

2t
1 + t

λnβnΨ (xn)

≤ λnβn

(
(1 + t)λnβn –

2
L(1 + t)

)∥∥∇Ψ (xn)
∥∥2 + 2λn

〈
v∗, u – xn+1

〉
. �

Proposition 3.2 Let {xn} be a sequence generated by iterative formula (9). Then, there exist
a > 0 and b > 0, such that for any u ∈ C ∩ dom A and any v∗ ∈ A(u), we have

cW (xn+1, u) – cW (xn, u) + a
(‖xn – xn+1‖2 + λnβnΨ (xn) + λnβn

∥∥∇Ψ (xn)
∥∥2)

≤ bλ2
n
∥∥v∗∥∥2 + 2λn

〈
v∗, u – xn

〉
. (18)

Proof Using the fact that 〈p∗, p〉 ≤ s
2‖p∗‖2 + 1

2s‖p‖2 for any p∗ ∈ X∗, p ∈ X and any s > 0
yields

2λn
〈
v∗, u – xn+1

〉

= 2λn
〈
v∗, xn – xn+1

〉
+ 2λn

〈
v∗, u – xn

〉

≤ t
2(1 + t)

‖xn – xn+1‖2 +
2(1 + t)

t
λ2

n
∥∥v∗∥∥2 + 2λn

〈
v∗, u – xn

〉
.

Then, we get from (11) that

cW (xn+1, u) – cW (xn, u) + cW (xn, xn+1)

–
1

1 + t
‖xn – xn+1‖2 +

2t
1 + t

λnβnΨ (xn) +
t

1 + t
λnβn

∥∥∇Ψ (xn)
∥∥2

≤ λnβn

(
(1 + t)λnβn –

2
L(1 + t)

+
t

1 + t

)∥∥∇Ψ (xn)
∥∥2

+
t

2(1 + t)
‖xn – xn+1‖2 +

2(1 + t)
t

λ2
n
∥∥v∗∥∥2 + 2λn

〈
v∗, u – xn

〉
.

Hence, by cW (xn, xn+1) ≥ ‖xn – xn+1‖2, we have

cW (xn+1, u) – cW (xn, u) +
t

2 + 2t
‖xn – xn+1‖2 +

2t
1 + t

λnβnΨ (xn)

+
t

1 + t
λnβn

∥∥∇Ψ (xn)
∥∥2

≤ λnβn

(
(1 + t)λnβn –

2
L(1 + t)

+
t

1 + t

)∥∥∇Ψ (xn)
∥∥2 +

2(1 + t)
t

λ2
n
∥∥v∗∥∥2

+ 2λn
〈
v∗, u – xn

〉
.

Since λnβn < 2c
L , we have

lim
t→0

λnβn

(
(1 + t)λnβn –

2
L(1 + t)

+
t

1 + t

)
= λnβn

(
λnβn –

2
L

)
< 0.
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Therefore, it suffices to take t0 > 0 small enough, then set

a =
t0

2(1 + t0)
, b =

2(1 + t0)
t0

to obtain (18). �

Proposition 3.3 Let {xn} be a sequence generated by iterative formula (9) and let u ∈ C ∩
dom A. Take ω∗ ∈ TA,C(u), v∗ ∈ A(u) and p∗ ∈ NC(u), such that v∗ = ω∗ – p∗. The following
inequality holds:

cW (xn+1, u) – cW (xn, u) + a
(

‖xn – xn+1‖2 +
λnβn

2
Ψ (xn) + λnβn

∥∥∇Ψ (xn)
∥∥2

)

≤ bλ2
n
∥∥v∗∥∥2 + 2λn

〈
ω∗, u – xn

〉
+

aλnβn

2

(
Ψ ∗

(
4p∗

aβn

)
– σC

(
4p∗

aβn

))
. (19)

Proof First observe that

2λn
〈
v∗, u – xn

〉
–

aλnβn

2
Ψ (xn)

= 2λn
〈
ω∗, u – xn

〉
+ 2λn

〈
p∗, xn

〉
–

aλnβn

2
Ψ (xn) – 2λn

〈
p∗, u

〉

= 2λn
〈
ω∗, u – xn

〉
+

aλnβn

2

(〈
4

aβn
p∗, xn

〉
– Ψ (xn) –

〈
4

aβn
p∗, u

〉)

≤ 2λn
〈
ω∗, u – xn

〉
+

aλnβn

2

(
Ψ ∗

(
4p∗

aβn

)
–

〈
4p∗

aβn
, u

〉)
.

Since 4p∗
aβn

∈ NC(u), the support function satisfies

σC

(
4p∗

aβn

)
=

〈
4p∗

aβn
, u

〉
,

whence

2λn
〈
v∗, u – xn

〉

≤ aλnβn

2
Ψ (xn) + 2λn

〈
ω∗, u – xn

〉
+

aλnβn

2

(
Ψ ∗

(
4p∗

aβn

)
– σC

(
4p∗

aβn

))
. (20)

Hence by (18) and (20), we obtain (19). �

Theorem 3.1 Let {xn} be a sequence generated by iterative formula (9). Then, we have the
following:

(i) For each u ∈ S , limn→+∞ W (xn, u) exists.
(ii) The series

∑+∞
n=1 ‖xn – xn+1‖2,

∑+∞
n=1 λnβnΨ (xn) and

∑+∞
n=1 λnβn‖∇Ψ (xn)‖2 are

convergent.
In particular, limn→+∞ ‖xn – xn+1‖ = 0. If, moreover, lim infn→+∞ λnβn > 0, then
limn→+∞ Ψ (xn) = limn→+∞ ‖∇Ψ (xn)‖ = 0 and every weak cluster point of {xn} lies in C.
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Proof Since u ∈ S one can take ω∗ = 0 in (19). By hypothesis the right-hand side is
summable, and all the conclusions follow using Lemma 2.1. �

Theorem 3.2 Let {xn} be a sequence generated by iterative formula (9), and let {zk} be the
sequence of weighted averages

zk =
1
γk

k∑

n=1

λnxn, where γk =
k∑

n=1

λn.

Then every weak cluster of {zk} lies in S .

Proof Let u ∈ C ∩dom A. Take ω∗ ∈ TA,C(u), v∗ ∈ A(u) and p∗ ∈ NC(u), so that v∗ = ω∗ – p∗.
By Proposition 3.3, we have

cW (xn+1, u) – cW (xn, u)

≤ bλ2
n
∥∥v∗∥∥2 + 2λn

〈
ω∗, u – xn

〉
+

aλnβn

2

(
Ψ ∗

(
4p∗

aβn

)
– σC

(
4p∗

aβn

))
.

Hence, we obtain

–c
W (x1, u)

2γk

≤
∑k

n=1 bλ2
n‖v∗‖2 +

∑k
n=1

aλnβn
2 (Ψ ∗( 4p∗

aβn
) – σC( 4p∗

aβn
))

2γk
+

2
∑k

n=1〈ω∗,λnu – λnxn〉
2γk

=
∑k

n=1 bλ2
n‖v∗‖2 +

∑k
n=1

aλnβn
2 (Ψ ∗( 4p∗

aβn
) – σC( 4p∗

aβn
))

2γk
+

〈
ω∗, u –

∑k
n=1 λnxn

γk

〉
. (21)

Then by (10), (21) and using that γk → +∞ as k → +∞, we obtain

lim inf
k→+∞

〈
ω∗, u – zk

〉 ≥ 0.

Finally, if z is any weak sequential cluster point of the sequence {zk}, then 〈ω∗, u – z〉 ≥ 0.
Since ω∗ ∈ TA,C(u) and TA,C is maximal monotone, we obtain that z ∈ S . �

Theorem 3.3 Let {xn} be a sequence generated by iterative formula (9) and let A be a max-
imal monotone and strongly monotone operator. Then the sequence {xn} converges strongly
as n → +∞ to a point in S .

Proof Take u ∈ S ⊂ C ∩ dom A, v∗ ∈ A(u), ω∗ ∈ TA,C(u) and p∗ ∈ NC(u), so that v∗ =
ω∗ – p∗. Since v∗ ∈ A(u) and cJ(xn) – cJ(xn+1) – λnβn∇Ψ (xn) ∈ λnA(xn+1), the strong mono-
tonicity of A implies

〈
cJ(xn) – cJ(xn+1) – λnβn∇Ψ (xn) – λnv∗, xn+1 – u

〉 ≥ λnα‖xn+1 – u‖2.

We follow the arguments in the proof of Proposition 3.3 to obtain successively

2λnα‖xn+1 – u‖2 + cW (xn+1, u) – cW (xn, u)
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+ a
(

‖xn – xn+1‖2 +
λnβn

2
Ψ (xn) + λnβn

∥∥∇Ψ (xn)
∥∥2

)

≤ bλ2
n
∥∥v∗∥∥2 + 2λn

〈
ω∗, u – xn

〉
+

aλnβn

2

(
Ψ ∗

(
4p∗

aβn

)
– σC

(
4p∗

aβn

))
. (22)

Since u ∈ S, one can take ω∗ = 0 in (22). By a(‖xn – xn+1‖2 + λnβn
2 Ψ (xn) +λnβn‖∇Ψ (xn)‖2) ≥

0, we have

2λnα‖xn+1 – u‖2 + cW (xn+1, u) – cW (xn, u)

≤ bλ2
n
∥∥v∗∥∥2 +

aλnβn

2

(
Ψ ∗

(
4p∗

aβn

)
– σC

(
4p∗

aβn

))
.

Summation gives

2α

+∞∑

n=1

λn‖xn+1 – u‖2

≤ cW (x1, u) + b
+∞∑

n=1

λ2
n
∥∥v∗∥∥2 +

+∞∑

n=1

aλnβn

2

(
Ψ ∗

(
4p∗

aβn

)
– σC

(
4p∗

aβn

))
.

Since
∑+∞

n=1 λn = +∞, there exists subsequence {xn,k} ⊂ {xn}, such that limk→+∞ ‖xn,k –u‖ =
0. Then, limk→+∞ W (xn,k , u) = 0. Since limn→+∞ W (xn, u) exists by Theorem 3.1(i), we must
have limn→+∞ W (xn, u) = 0. Hence, by cW (xn, u) ≥ ‖xn – u‖2, we have limn→+∞ ‖xn – u‖ =
0. �

4 The FBS method for the minimization
In this section, we consider the forward–backward splitting method in the special case
where A = ∂Φ is the subdifferential of a proper, lower-semicontinuous and convex func-
tion Φ : X → (–∞, +∞]. The solution set S is equal to

(∂Φ + NC)–1(0) = Argmin
C

Φ .

Iterative Method 4.1 Given x0 ∈ X, set

xn+1 = (cJ + λn∂Φ)–1(cJxn – λnβn∇Ψ (xn)
)
, (23)

where {λn}, {βn} are two sequences of positive real numbers with
∑∞

n=1 λn = +∞,
∑∞

n=1 λ2
n <

+∞, βn+1 – βn ≤ K , K > 0, 0 < c̄ ≤ λnβn < 2c
L .

We also shall make the following Fenchel conjugate assumption:

+∞∑

n=1

λnβn

[
Ψ ∗

(
p∗

βn

)
– σC

(
p∗

βn

)]
< +∞, ∀p∗ ∈ R(NC).

The analysis relies on the study of the sequence {Hn(xn)}, where Hn is the penalized func-
tion given by Hn = Φ + βnΨ for n ≥ 1.
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Proposition 4.1 Let {xn} be a sequence generated by iterative formula (23). Then the se-
quence {Hn(xn)} converges as n → +∞.

Proof Recall that cJ(xn)–cJ(xn+1)
λn

– βn∇Ψ (xn) ∈ ∂Φ(xn+1). The subdifferential inequality for
Φ gives

Φ(xn) ≥ Φ(xn+1) +
〈

cJ(xn) – cJ(xn+1)
λn

– βn∇Ψ (xn), xn – xn+1

〉
,

and so

Φ(xn+1) – Φ(xn) +
1

2λn

(
cW (xn+1, xn) + cW (xn, xn+1)

) ≤ βn
〈∇Ψ (xn), xn – xn+1

〉
. (24)

Then, by Lemma 3.1(ii), we have

Ψ (xn+1) ≤ Ψ (xn) +
〈∇Ψ (xn), xn+1 – xn

〉
+

L
2
‖xn+1 – xn‖2, (25)

whence

βn+1Ψ (xn+1) – βnΨ (xn)

≤ βn
〈∇Ψ (xn), xn+1 – xn

〉
+

Lβn

2
‖xn+1 – xn‖2 + (βn+1 – βn)Ψ (xn+1). (26)

Adding (24) and (26), we obtain

Hn+1(xn+1) – Hn(xn) +
1

2λn

(
cW (xn+1, xn) + cW (xn, xn+1)

)
–

Lβn

2
‖xn+1 – xn‖2

≤ (βn+1 – βn)Ψ (xn+1). (27)

Since λnβn < 2c
L and cW (x, y) ≥ ‖x – y‖2, ∀x, y ∈ X, we have

1
2λn

(
cW (xn+1, xn) + cW (xn, xn+1)

)
–

Lβn

2
‖xn+1 – xn‖2 ≥ 0. (28)

Since βn+1 – βn ≤ K , by (27) and (28),

Hn+1(xn+1) – Hn(xn) ≤ KΨ (xn+1).

By Theorem 3.1(i), we deduce that {xn} is bounded and {Φ(xn)} is therefore bounded from
below. Hence, the sequence {Hn(xn)} is also bounded from below. The right-hand side is
summable by Theorem 3.1(ii), whence Lemma 2.1 implies that limn→+∞ Hn(xn) exists. �

Proposition 4.2 Let {xn} be a sequence generated by iterative formula (23). For each u ∈ C,
we have

∑+∞
n=1 λn(Hn+1(xn+1) – Φ(u)) < +∞.

Proof First observe that

Hn+1(xn+1) – Φ(u)
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= Φ(xn+1) + βnΨ (xn) – Φ(u) + (βn+1 – βn)Ψ (xn+1) + βn
(
Ψ (xn+1) – Ψ (xn)

)

≤ Φ(xn+1) + βnΨ (xn) – Φ(u) + KΨ (xn+1) + βn
(
Ψ (xn+1) – Ψ (xn)

)
. (29)

Using (25), we obtain

βn
(
Ψ (xn+1) – Ψ (xn)

) ≤ βn
〈∇Ψ (xn), xn+1 – xn

〉
+

Lβn

2
‖xn+1 – xn‖2

≤ βn
∥∥∇Ψ (xn)

∥∥‖xn+1 – xn‖ +
Lβn

2
‖xn+1 – xn‖2

≤ βn

2
∥∥∇Ψ (xn)

∥∥2 +
(L + 1)βn

2
‖xn+1 – xn‖2. (30)

Inequalities (29) and (30) give

λn
(
Hn+1(xn+1) – Φ(u)

)

≤ λn
(
Φ(xn+1) + βnΨ (xn) – Φ(u)

)

+ λnKΨ (xn+1) +
λnβn

2
∥∥∇Ψ (xn)

∥∥2 +
(L + 1)λnβn

2
‖xn+1 – xn‖2.

Since the sequence {λn} is bounded and 0 < c̄ ≤ λnβn < 2
L , Theorem 3.1 implies

+∞∑

n

(
λnKΨ (xn+1) +

λnβn

2
∥∥∇Ψ (xn)

∥∥2 +
(L + 1)λnβn

2
‖xn+1 – xn‖2

)
< +∞.

On the other hand, the subdifferential inequality for Φ at points u and xn+1 gives

Φ(u) ≥ Φ(xn+1) +
〈

cJxn – cJxn+1

λn
– βn∇Ψ (xn), u – xn+1

〉
. (31)

Since Ψ (u) = 0, the subdifferential inequality for Ψ at points u and xn gives

0 ≥ Ψ (xn) +
〈∇Ψ (xn), u – xn

〉
= Ψ (xn) +

〈∇Ψ (xn), u – xn+1
〉
+

〈∇Ψ (xn), xn+1 – xn
〉
. (32)

Combining (31) and (32), we obtain

2λn
(
Φ(xn+1) + βnΨ (xn) – Φ(u)

) ≤ 2〈cJxn – cJxn+1, xn+1 – u〉 + 2λnβn
〈∇Ψ (xn), xn – xn+1

〉
.

However,

2〈cJxn – cJxn+1, xn+1 – u〉 = cW (xn, u) – cW (xn+1, u) – cW (xn, xn+1)

and

2λnβn
〈∇Ψ (xn), xn – xn+1

〉 ≤ 4
L2

∥∥∇Ψ (xn)
∥∥2 + ‖xn – xn+1‖2.

Hence,

2λn
(
Φ(xn+1) + βnΨ (xn) – Φ(u)

)
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≤ cW (xn, u) – cW (xn+1, u) – cW (xn, xn+1) +
4
L2

∥∥∇Ψ (xn)
∥∥2 + ‖xn – xn+1‖2

≤ cW (xn, u) – cW (xn+1, u) +
4
L2

∥∥∇Ψ (xn)
∥∥2.

We conclude that

m∑

n=1

2λn
(
Φ(xn+1) + βnΨ (xn) – Φ(u)

) ≤ cW (x1, u) – cW (xm+1, u) +
4
L2

m∑

n=1

∥∥∇Ψ (xn)
∥∥2

for m ≥ 1. In view of Theorem 3.1, this show

+∞∑

n=1

λn
(
Φ(xn+1) + βnΨ (xn) – Φ(u)

)
< +∞,

and completes the proof. �

The duality mapping J is said to be weakly continuous on a smooth Banach space if
xn ⇀ x implies J(xn) ⇀ J(x). This happens, for example, if X is a Hilbert space, or finite-
dimensional and smooth, or lp, 1 < p < +∞. This property of Banach spaces was intro-
duced by Browder [7]. More information can be found in [10].

Theorem 4.1 Let {xn} be a sequence generated by iterative formula (23). Then every weak
cluster point of {xn} lies in S . If the duality mapping J is weakly continuous, then {xn} con-
vergence weakly as n → +∞ to a point in S .

Proof Since
∑+∞

n=1 λn = +∞, Propositions 4.1 and 4.2 imply limn→+∞ Hn(xn) ≤ Φ(u) when-
ever u ∈ C. Suppose that a subsequence {xn,k} of {xn} converges weakly to some x̂ as
k → +∞. Then x̂ ∈ C by Theorem 3.1. The weak lower-semicontinuity of Φ and Φ =
Hn – βnΨ ≤ Hn then gives

Φ(x̂) ≤ lim inf
k→+∞

Φ(xn,k) ≤ lim inf
k→+∞

Hn,k(xn,k) = lim
n→+∞ Hn(xn) ≤ Φ(u).

Therefore, x̂ minimizes Φ on C, and so x̂ ∈ S .
Clearly, the sequence {xn} is bounded (see Theorem 3.1(i)). The space being reflexive, it

suffices to prove that {xn} has only one weak cluster point as n → +∞. Suppose otherwise
that xn,l ⇀ x̄ and xn,k ⇀ x̂. Since

2
〈
J(xn), x̄ – x̂

〉
= W (xn, x̂) – W (xn, x̄) – ‖x̂‖2 + ‖x̄‖2,

we deduce the existence of limn→+∞ 2〈J(xn), x̄ – x̂〉. Hence,

lim
l→+∞

〈
J(xn,l), x̄ – x̂

〉
– lim

k→+∞
〈
J(xn,k), x̄ – x̂

〉
= 0.

Since the duality mapping J is weakly continuous, we have

〈
J(x̄) – J(x̂), x̄ – x̂

〉
= 0.

Since X is strictly convex, we have that x̄ = x̂. �
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If Φ : X → (–∞, +∞] is also a strongly convex function, that is, there exists λ > 0, for any
0 < t < 1, any x, y ∈ domΦ such that tΦ(x) + (1 – t)Φ(y) ≥ Φ(tx + (1 – t)y) +λt(1 – t)‖x – y‖2,
then ∂Ψ is strong monotone. Hence, the following theorem follows immediately from
Theorem 3.3.

Theorem 4.2 Let {xn} be a sequence generated by iterative formula (23) and let Φ be a
proper, lower semicontinuous and strongly convex function. Then the sequence {xn} con-
verges strongly as n → +∞ to a point in S .

5 Additional result
The purpose of this section is to prove a convergence result without Fenchel conjugate
assumption.

Iterative Method 5.1 Given x0 ∈ X, set

xn+1 = (cJ + λnA)–1(cJxn – λn∇Ψ (xn)
)
, (33)

where {λn} is a sequence of positive real numbers with
∑∞

n=1 λn = +∞,
∑∞

n=1 λ
4
3
n < +∞.

Keeping the notations of the preceding section, set zk = 1
γk

∑k
n=1 λnxn, where γk =

∑k
n=1 λn. The following gives the weak ergodic convergence of the sequence {xn} given

by (33).

Proposition 5.1 Let {xn} be a sequence generated by iterative formula (33). Assume that
the sequence {λ 1

3
n ∇Ψ (xn)} is bounded. Then every weak cluster of {zk} lies in S .

Proof Take u ∈ C ∩ dom A, v∗ ∈ A(u) such that v∗ = v∗ + 0 ∈ A(u) + NC(u) = TA,C(u). Since
v∗ ∈ A(u) and cJ(xn) – cJ(xn+1) – λn∇Ψ (xn) ∈ λnA(xn+1), the monotonicity of A implies

〈
cJ(xn) – cJ(xn+1) – λn∇Ψ (xn) – λnv∗, xn+1 – u

〉 ≥ 0,

and so

〈
cJ(xn) – cJ(xn+1), u – xn+1

〉 ≤ 〈
λn∇Ψ (xn) + λnv∗, u – xn+1

〉
.

Then, we get from (7) that

cW (xn+1, u) – cW (xn, u) + cW (xn, xn+1) ≤ 2λn
〈∇Ψ (xn) + v∗, u – xn+1

〉
.

By developing the right-hand side, we deduce the following inequality:

2λn
〈∇Ψ (xn) + v∗, xn – u

〉
+ 2λn

〈∇Ψ (xn) + v∗, xn+1 – xn
〉

≤ cW (xn, u) – cW (xn+1, u) – cW (xn, xn+1). (34)

Now, combing the facts that

2λn
〈∇Ψ (xn) + v∗, xn+1 – xn

〉 ≥ –‖xn+1 – xn‖2 – λ2
n
∥∥∇Ψ (xn) + v∗∥∥2



Guan and Song Journal of Inequalities and Applications         (2019) 2019:89 Page 16 of 17

and

〈∇Ψ (xn) + v∗, xn – u
〉

=
〈∇Ψ (xn), xn – u

〉
+

〈
v∗, xn – u

〉
,

we derive from (34) that

2λn
〈∇Ψ (xn), xn – u

〉
+ 2λn

〈
v∗, xn – u

〉
– λ2

n
∥∥∇Ψ (xn) + v∗∥∥2

≤ cW (xn, u) – cW (xn+1, u) – cW (xn, xn+1) + ‖xn+1 – xn‖2. (35)

Since u ∈ C ∩ dom A and C = argmin(Ψ ), we have ∇Ψ (u) = 0. Hence,

〈∇Ψ (xn), xn – u
〉

=
〈∇Ψ (xn) – ∇Ψ (u), xn – u

〉 ≥ 0. (36)

Since cW (xn, xn+1) ≥ ‖xn+1 – xn‖2, then by (35) and (36) we have

2λn
〈
v∗, xn – u

〉
– λ2

n
∥∥∇Ψ (xn) + v∗∥∥2 ≤ cW (xn, u) – cW (xn+1, u).

Summing up these inequalities over n from 1 to k, and dividing by γk gives

2
〈
v∗, zk – u

〉 ≤ cW (x1, u)
γk

+
∑k

n=1 λ2
n‖∇Ψ (xn) + v∗‖2

γk
. (37)

Since {λ 1
3
n ∇Ψ (xn)} is bounded, due to

∑∞
n=1 λ

4
3
n < +∞ and {λ2

n‖∇Ψ (xn)‖2} =

{λ 4
3
n λ

2
3
n ‖∇Ψ (xn)‖2}, we have

+∞∑

n=1

λ2
n
∥∥∇Ψ (xn) + v∗∥∥2 ≤ 2

( +∞∑

n=1

λ2
n
∥∥∇Ψ (xn)

∥∥2 +
+∞∑

n=1

λ2
n
∥∥v∗∥∥2

)
< +∞.

Finally, since γk → +∞ as k → +∞, we conclude that

lim
k→+∞

∑k
n=1 λ2

n‖∇Ψ (xn) + v∗‖2

γk
= 0.

Consequently, if z is any weak sequential cluster point of the sequence {zk}, letting k →
+∞ on both side of (37) yields

〈
v∗, z – u

〉 ≤ 0.

Then by maximal monotonicity of A + NC , we conclude that 0 ∈ (A + NC)(z), that is,
z ∈ S . �

6 Concluding remarks
In this paper, we considered a class of forward–backward splitting methods based on Lya-
punov distance for variational inequalities and convex minimization problem in a reflex-
ive, strictly convex and smooth Banach space. Weak and strong convergence results have
been obtained for the forward–backward splitting method under the key Fenchel conju-
gate assumption. Finally, we have also obtained a weak convergence result without Fenchel
conjugate assumption.
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