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Abstract
To construct dual frames with good structure for a given frame is a fundamental
problem in the theory of frames. The tensor product duals of tensor product frames
can provide a rank-one decomposition of bounded antilinear operators between two
Hilbert spaces. This paper addresses tensor product dual frames. We derive a
necessary and sufficient condition for two tensor product Bessel sequences to be a
pair of dual frames; obtain explicit expressions of all dual frames and tensor product
dual frames of tensor product frames; and demonstrate the existence of non-tensor
product dual frames of tensor product frames.
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1 Introduction
Let H be a separable Hilbert space, and {xi}i∈I be a countable sequence in H. It is called a
frame for H if there exist constants 0 < C1 ≤ C2 < ∞ such that

C1‖x‖2 ≤
∑

i∈I

∣∣〈x, xi〉
∣∣2 ≤ C2‖x‖2 for x ∈H, (1.1)

where C1, C2 are called frame bounds. It is called a Bessel sequence in H if the right-hand
side inequality of (1.1) holds. And it is called a Riesz basis if it is a frame for H, while it
ceases to be a frame for H whenever an arbitrary element is removed. Given a frame {xi}i∈I

for H, a sequence {yi}i∈I in H is called a dual frame of {xi}i∈I if it is a frame for H such that

x =
∑

i∈I

〈x, xi〉yi for x ∈H. (1.2)

It is easy to check that if {yi}i∈I is a dual frame of {xi}i∈I , then {xi}i∈I is also a dual frame
of {yi}i∈I . So we say ({xi}i∈I , {yi}i∈I ) is a pair of dual frames in this case. It is well known
that ({xi}i∈I , {yi}i∈I ) is a pair of dual frames for H if and only if {xi}i∈I and {yi}i∈I are Bessel
sequences in H satisfying (1.2), and that a Bessel sequence (frame, Riesz sequence) is ex-
actly the image of an orthonormal basis for H under a linear bounded operator (bounded
surjection, bounded bijection) on H. For basics on frames, see, e.g., [3, 18].

Throughout this paper, we denote by L(H) the set of bounded linear operators on H.
We define the operation “♠” as follows. For h1, h2 ∈ H, we define the operator h1♠h2 on
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H by

(h1♠h2)(x) = 〈x, h2〉h1 for x ∈H. (1.3)

It is well known that an arbitrary rank-one linear operator is always of this form. Herein,
we use ♠ instead of ⊗ since ⊗ denotes rank-one antilinear operator throughout this paper.

Now we turn to the tensor product of Hilbert spaces. There are several ways of defining
the tensor product of Hilbert spaces. Folland in [6], Kadison and Ringrose in [9] repre-
sented the tensor product of Hilbert spaces H1 and H2 as a certain linear space of opera-
tors. Let H1 and H2 be complex separable Hilbert spaces. An operator T from H2 to H1

is said to be antilinear if

T(αx + βy) = αTx + βTy (1.4)

for x, y ∈ H2 and α, β ∈ C. We consider the set of all bounded antilinear operators from
H2 to H1. The norm of an antilinear operator T : H2 →H1 is defined as in the linear case:

‖T‖ = sup
‖g‖=1

‖Tg‖. (1.5)

By a standard argument as in [10], given a bounded antilinear operator T : H2 → H1, all
series

∑
j∈J ‖Tuj‖2 associated with an orthonormal basis {uj}j∈J for H2 take the same value

(not necessarily finite).

Definition 1.1 Let H1 and H2 be Hilbert spaces. Then the tensor product H1 ⊗H2 of H1

and H2 is the set of all bounded antilinear maps T : H2 → H1 such that
∑

j∈J ‖Tuj‖2 < ∞
for some, and hence every orthonormal basis {uj}j∈J of H2. Moreover, for every T ∈H1 ⊗
H2, we set

‖|T |‖2 =
∑

j∈J

‖Tuj‖2.

Recall from [6, Theorem 7.12], that H1 ⊗H2 is a Hilbert space with the norm ‖| · |‖ and
the associated inner product

〈Q, T〉 =
∑

j∈J

〈Quj, Tuj〉 for Q, T ∈H1 ⊗H2. (1.6)

Let f ∈H1, g ∈H2, we define their tensor product f ⊗ g by

(f ⊗ g)
(
g ′) =

〈
g, g ′〉f for g ′ ∈H2. (1.7)

Obviously, f ⊗ g belongs to H1 ⊗H2. By Lemma 2.2 below, a bounded antilinear operator
T from H2 to H1 is rank-one if and only if T = f ⊗ g for some 0 �= f ∈ H1 and 0 �= g ∈ H2.
Also, by [6], for any f , f ′ ∈H1 and g, g ′ ∈H2,

〈
f ⊗ g, f ′ ⊗ g ′〉 =

〈
f , f ′〉〈g, g ′〉. (1.8)



Wang and Li Journal of Inequalities and Applications         (2019) 2019:76 Page 3 of 17

Moreover, by Proposition 7.14 in [6], the tensor product of two orthonormal bases for H1

and H2 is an orthonormal basis for H1 ⊗H2. Throughout this paper, we always use {ei}i∈I

and {uj}j∈J to denote orthonormal bases for H1 and H2, respectively.
We now consider the tensor product of operators. Given T ∈ L(H1) and Q ∈ L(H2),

define the tensor product T ⊗ Q of T and Q by

(T ⊗ Q)B = TBQ∗ for B ∈H1 ⊗H2.

By a standard argument, we have that T ⊗ Q ∈L(H1 ⊗H2). The following proposition is
repeated from [6, 7, 12].

Proposition 1.1 Suppose T , T ′ ∈L(H1), Q, Q′ ∈L(H2), then
(a) T ⊗ Q ∈L(H1 ⊗H2) and ‖|T ⊗ Q|‖ = ‖T‖‖Q‖.
(b) (T ⊗ Q)(f ⊗ g) = Tf ⊗ Qg for all f ∈H1, g ∈H2.
(c) (T ⊗ Q)(T ′ ⊗ Q′) = (TT ′) ⊗ (QQ′).
(d) If T and Q are invertible operators, then T ⊗ Q is an invertible operator and

(T ⊗ Q)–1 = T–1 ⊗ Q–1.
(e) (T ⊗ Q)∗ = T∗ ⊗ Q∗.
(f ) Let f , f ′ ∈H1\{0} and g, g ′ ∈H2\{0}. If f ⊗ g = f ′ ⊗ g ′, then there exist constants a

and b with ab = 1 such that f ′ = af and g ′ = bg .

In [5, 8], it is proven that the tensor product of a sequence with itself is a frame if this
sequence is a frame. In [10], it is proven that the tensor product of two frames must be a
new frame for the corresponding tensor product space. In 2008, Bourouihiya in [1] and
Upender in [17] obtained the following proposition which is generalized to the G-frame
setting in [16]. For basics on G-frames, see, e.g., [13–15] and the references therein.

Proposition 1.2 The sequence {fi ⊗ gj : i ∈ I, j ∈ J} is a Bessel sequence (frame, Riesz basis)
for H1 ⊗ H2 if and only if {fi}i∈I and {gj}j∈J are Bessel sequences (frames, Riesz bases) for
H1 and H2, respectively.

A fundamental problem in the frame theory is to find dual frames with good properties.
A pair of dual frames gives an expansion of the elements in the space which is like atomic
decomposition in harmonic analysis. Unfortunately, for a given tensor product frame, little
has been known to us except for its canonical dual in [10]. This study aims to investigate
dual frames of a general tensor product frame {fi ⊗gj}(i,j)∈I×J . Particularly, we are interested
in dual frames with tensor product structure.

From the viewpoint of operators, [4, Theorem 3], demonstrates that, on an arbitrary
ellipsoidal surface � in a separable Hilbert space H, there exists a sequence {xi}i∈I such
that some multiple of the identity operator λIH has the following rank-one decomposition:

λIH =
∑

i∈I

xi♠xi,
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where IH denotes the identity operator on H. For the case of dimH < ∞, [2] characterizes
sequences {ai}M

i=1 such that

λIH =
M∑

i=1

xi♠xi

for some constant λ and {xi}M
i=1, where ‖xi‖ = ai for 1 ≤ i ≤ M. For the case of dimH = ∞,

[11, Proposition 7], presents another sufficient condition on {ai}∞i=1 satisfying the following
identity:

IH =
∞∑

i=1

xi♠xi

with ‖xi‖ = √ai. Furthermore, the decomposition of more general operators was studied
in [11]. For an arbitrary positive operator B with finite rank, [11, Theorem 2], characterizes
a class of sequences {ai}M

i=1 for which there exists {xi}M
i=1 with ‖xi‖ = √ai such that

B =
M∑

i=1

xi♠xi.

And for an arbitrary positive non-compact operator B, [11, Theorem 6], gives a sufficient
condition on {ai}∞i=1 for which there exists {xi}∞i=1 with ‖xi‖ = √ai such that

B =
∞∑

i=1

xi♠xi.

In summary, these results focus on decomposing an bounded linear operator on H into a
sum of rank-one linear operators. Actually, a pair of tensor product dual frames also gives
some rank-one decomposition of operators. Recall that every T ∈ H1 ⊗H2 is a bounded
antilinear operator from H2 to H1 and that, if {fi ⊗ gj}(i,j)∈I×J and {̃fi ⊗ g̃j}(i,j)∈I×J form a pair
of dual frames for H1 ⊗H2, then

T =
∑

(i,j)∈I×J

ai,j̃ fi ⊗ g̃j (1.9)

for T ∈H1 ⊗H2, where ai,j = 〈T , fi ⊗ gj〉. Therefore, the ♠-based decomposition presents
a rank-one linear operator decomposition of bounded linear operators on H, while the ⊗-
based (1.9) presents a rank-one antilinear operator decomposition of bounded antilinear
operators from H2 to H1.

The rest of this paper is organized as follows. In Sect. 2, we characterize tensor product
dual frames, give an explicit expression of all dual frames of tensor product frames, and
prove the existence of non-tensor product dual frames. In Sect. 3, we present an explicit
expression of all tensor product dual frames of tensor product frames. Some examples are
also provided in Sect. 2 to illustrate the generality of the theory.
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2 Dual characterization
This section is devoted to dual characterizations. We will derive a necessary and sufficient
condition for two tensor product Bessel sequences to be a pair of dual frames; obtain an
explicit expression of all duals of tensor product frames; and prove the existence of non-
tensor product duals of tensor product frames. For this purpose, we first introduce some
notations.

Let f = {fi}i∈I and g = {gj}j∈J be sequences in H1 and H2, respectively. We write

f ⊗ g =
{

fi ⊗ gj : (i, j) ∈ I × J
}

.

Suppose that f and g are Bessel sequences in H1 and H2, respectively. We denote by Tf ,
Tg, and Tf⊗g the synthesis operators corresponding to f , g, and f ⊗ g, that is,

Tf c =
∑

i∈I

c(i)fi for c ∈ l2(I),

Tgc =
∑

j∈J

c(j)gj for c ∈ l2(J)

and

Tf⊗gc =
∑

(i,j)∈I×J

c(i, j)fi ⊗ gj for c ∈ l2(I × J).

And we denote by Sf , Sg, Sf⊗g the frame operators corresponding to f , g, and f ⊗ g, ac-
cordingly, i.e.,

Sf = Tf T∗
f , Sg = TgT∗

g , Sf⊗g = Tf⊗gT∗
f⊗g.

In particular, for the finite dimensional case, we also introduce the following notations.
Let {ei}m

i=1 and {uj}n
j=1 be orthonormal bases for H1 and H2, respectively. Then each ele-

ment of H1 and H2 can be uniquely represented in terms of {ei}m
i=1 and {uj}n

j=1, respectively.
For f ∈H1 and g ∈H2, we define c(f ) ∈C

m and c(g) ∈ C
n by

f =
(

e1, e2, · · · , em

)
c(f ) (2.1)

and

g =
(

u1, u2, · · · , un

)
c(g) (2.2)

with

c(f ) =

⎛

⎜⎜⎜⎜⎝

c1(f )
c2(f )

...
cm(f )

⎞

⎟⎟⎟⎟⎠
and c(g) =

⎛

⎜⎜⎜⎜⎝

c1(g)
c2(g)

...
cn(g)

⎞

⎟⎟⎟⎟⎠
. (2.3)
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Given sequences f = {fi}M
i=1 in H1 and g = {gj}N

j=1 in H2, we denote by Mf and Mg the fol-
lowing m × M and n × N matrices:

Mf =
(

c(f1), c(f2), · · · , c(fM)
)

(2.4)

and

Mg =
(

c(g1), c(g2), · · · , c(gN )
)

. (2.5)

The following lemma demonstrates that the synthesis (analysis) operator associated
with the tensor product of two Bessel sequences is exactly the tensor product of their
respective synthesis (analysis) operators.

Lemma 2.1 Let f = {fi}i∈I and g = {gj}j∈J be Bessel sequences in H1 and H2, respectively.
Then

Tf⊗g = Tf ⊗ Tg and T∗
f⊗g = T∗

f ⊗ T∗
g .

Proof Since f and g are Bessel sequences in H1 and H2, respectively, Tf and Tg are all
linear bounded operators. For arbitrary c ∈ l2(I) and d ∈ l2(J), by Proposition 1.1(b), we
see that

Tf⊗g =
∑

(i,j)∈I×J

c(i)d(j)fi ⊗ gj

=
∑

(i,j)∈I×J

(
c(i)fi

) ⊗ (
d(j)gj

)

= (Tf c) ⊗ (Tgd)

= (Tf ⊗ Tg)(c ⊗ d).

Also observe that {c ⊗ d : c ∈ l2(I), d ∈ l2(J)} is dense in l2(I × J). It follows that

Tf⊗g = Tf ⊗ Tg,

whence

T∗
f⊗g = T∗

f ⊗ T∗
g . �

Similarly to the case of “♠”, the following lemma shows that the tensor products take
over all rank-one antilinear operators from H2 to H1.

Lemma 2.2 For T ∈H1 ⊗H2, dim(range(T)) ≤ 1 if and only if

T = f ⊗ g

for some f ∈H1 and g ∈H2.
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Proof The sufficiency is obvious. Next we prove the necessity. Suppose dim(range(T)) ≤
1. If dim(range(T)) = 0, then T = 0 ⊗ g for an arbitrary g ∈ H2. Next we suppose
dim(range(T)) = 1. Take 0 �= f ∈ range(T). Then, to every h ∈ H2, there corresponds a
unique number Ch such that

Th = Chf .

Define Λ : H2 →C by

Λh = Ch for h ∈H2.

Then

(α1Λh1 + α2Λh2)f = T(α1h1 + α2h2) = Λ(α1h1 + α2h2)f ,

equivalently,

Λ(α1h1 + α2h2) = α1Λh1 + α2Λh2 (2.6)

for α1,α2 ∈C and h1, h2 ∈H2. Also observing that

|Λh|‖f ‖ = ‖Th‖ ≤ ‖T‖‖h‖,

we see that

|Λh| ≤ ‖T‖
‖f ‖ ‖h‖.

This together with (2.6) leads to Λ is a linear bounded functional on H2. So there exists
unique g ∈H2 such that

Λh = 〈h, g〉 for h ∈H2.

It follows that

Th = Λhf = 〈g, h〉f = f ⊗ g(h)

for h ∈H2, and thus T = f ⊗ g . �

The following lemma gives an explicit expression of the tensor product of two finite-
dimensional spaces. It will be used in Example 2.1 below.

Lemma 2.3 Let {ei}m
i=1 and {uj}n

j=1 be orthonormal bases for H1 and H2, respectively. Then

H1 ⊗H2 =

{
A : A

(
u1, u2, · · · , un

)
z =

(
e1, e2, · · · , em

)
Az

for z ∈C
n, A is an m × n matrix

}
. (2.7)
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Proof By a simple computation, we have

(ei ⊗ uj)(h) = cj(h)ei

=
(

e1, e2, · · · , em

)
Ei,jc(h) (2.8)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, h ∈H2, where Ei,j denotes the m × n matrix with (i, j)-entry being
1 and others being zero, c(h) denotes the conjugate of c(h). Since {ei ⊗ uj : 1 ≤ i ≤ m, 1 ≤
j ≤ n} is an orthonormal basis for H1 ⊗H2, observe that

H1 ⊗H2 = span{ei ⊗ uj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

This leads to (2.7) by (2.8). The proof is completed. �

Next we turn to the main results of this section. The first theorem gives a necessary and
sufficient condition for two tensor product Bessel sequences to form a pair of dual frames.

Theorem 2.1 Assume that f = {fi}i∈I and f̃ = {̃fi}i∈I are Bessel sequences in H1, and g =
{gj}j∈J and g̃ = {̃gj}j∈J are Bessel sequences in H2. Then f ⊗ g and f̃ ⊗ g̃ form a pair of dual
frames in H1 ⊗H2 if and only if there exist constants a and b with ab = 1 such that

Tf T ∗̃
f = aIH1 and TgT∗

g̃ = bIH2 . (2.9)

Proof Since f and f̃ are Bessel sequences in H1 and g and g̃ are Bessel sequences in H2,
by the definition of dual frame, f ⊗ g and f̃ ⊗ g̃ are a pair of dual frames in H1 ⊗H2 if and
only if

Tf⊗gT ∗̃
f⊗g̃ = IH1⊗H2 .

This is in turn equivalent to

Tf⊗gT ∗̃
f⊗g̃(ei ⊗ uj) = ei ⊗ uj for (i, j) ∈ I × J (2.10)

due to the fact that {ei ⊗ uj : (i, j) ∈ I × J} is an orthonormal basis for H1 ⊗H2. Therefore,
to finish the proof, we only need to demonstrate that (2.10) is equivalent to (2.9). Next we
do this. By Lemma 2.1 and Proposition 1.1(c), we have that

Tf⊗gT ∗̃
f⊗g̃ = (Tf ⊗ Tg)

(
T ∗̃

f ⊗ T∗
g̃
)

=
(
Tf T ∗̃

f

) ⊗ (
TgT∗

g̃
)
.

It follows that

Tf⊗gT ∗̃
f⊗g̃(ei ⊗ uj) =

(
Tf T ∗̃

f ei
) ⊗ (

TgT∗
g̃ uj

)
for (i, j) ∈ I × J

by Proposition 1.1(b). So (2.10) can be rewritten as

(
Tf T ∗̃

f ei
) ⊗ (

TgT∗
g̃ uj

)
= ei ⊗ uj for (i, j) ∈ I × J , (2.11)
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equivalently, for each (i, j) ∈ I × J ,

Tf T ∗̃
f ei = aiei and TgT∗

g̃ uj = bjuj with aibj = 1 (2.12)

by Proposition 1.1(f ), where ai, bj are two constants. Fix i0 ∈ I , then bj = 1
ai0

for every j ∈ J .
It follows that all bj take the same value b. Again from aib = 1 for every i ∈ I , we see that
all ai take the same value a. This implies that (2.12) is equivalent to

Tf T ∗̃
f = aIH1 and TgT∗

g̃ = bIH2 with ab = 1

due to the fact that {ei}i∈I and {uj}j∈J are orthonormal bases for H1 and H2, respectively.
The proof is completed. �

Observe that, given Bessel sequences f = {fi}i∈I , f̃ = {̃fi}i∈I in H1 and g = {gj}j∈J , g̃ = {̃gj}j∈J

in H2, f and f̃ (g and g̃) form a pair of dual frames in H1 (H2) if and only if Tf T ∗̃
f = IH1

(TgT ∗̃
g = IH2 ). As a special case of Theorem 2.1, we have the following corollary. It shows

that the dual property is preserved under the tensor product operation.

Corollary 2.1 Let f = {fi}i∈I and g = {gj}j∈J be frames for H1 and H2, respectively. Assume
that f̃ = {̃fi}i∈I and g̃ = {̃gj}j∈J are dual frames of f and g, respectively. Then f̃ ⊗ g̃ is a dual
frame of f ⊗ g.

Corollary 2.1 and Proposition 1.2 show that a tensor product frame always admits a
tensor product dual. It is natural to ask whether all duals of a tensor product frame are of
tensor product. The following theorem characterizes all duals of a general tensor product
frame. Then using it we derive Theorem 2.3 which shows the existence of non-tensor
product duals of tensor product frames.

Theorem 2.2 Let f ⊗ g be a frame for H1 ⊗ H2 with f = {fi}i∈I and g = {gj}j∈J . Then the
dual frames of f ⊗ g are precisely the families

{
S–1

f fi ⊗ S–1
g gj + wi,j –

∑

(i′ ,j′)∈I×J

〈
S–1

f fi, fi′
〉〈

S–1
g gj, gj′

〉
wi′ ,j′

}

(i,j)∈I×J
, (2.13)

where {wi,j}(i,j)∈I×J is a Bessel sequence in H1 ⊗H2.

Proof By Proposition 1.2, f and g are frames for H1 and H2, respectively. So Sf and Sg

are well-defined, bounded, and invertible. By Theorem 6.3.7 in [3], the dual frames are
precisely the families of the form

{
S–1

f⊗g(fi ⊗ gj) + wi,j –
∑

(i′ ,j′)∈I×J

〈
S–1

f⊗g(fi ⊗ gj), fi′ ⊗ gj′
〉
wi′ ,j′

}

(i,j)∈I×J
, (2.14)

where {wi,j}(i,j)∈I×J is a Bessel sequence in H1 ⊗H2. Also, by Proposition 3.2 of [10], S–1
f⊗g =

S–1
f ⊗ S–1

g . This implies that

S–1
f⊗g(fi ⊗ gj) = S–1

f fi ⊗ S–1
g gj,
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〈
S–1

f⊗g(fi ⊗ gj), fi′ ⊗ gj′
〉

=
〈
S–1

f fi, fi′
〉〈

S–1
g gj, gj′

〉

for (i, j), (i′, j′) ∈ I × J by Proposition 1.1(b) and (1.8). Therefore, (2.14) can be written as
(2.13). The proof is completed. �

Lemma 2.2 shows that every element of H1 ⊗H2 is of tensor product whenever one of
dim(H1) and dim(H2) equals 1. So a tensor product frame in H1 ⊗H2 admits a non-tensor
product dual only if both dim(H1) and dim(H2) are greater than 1. Next, with the help of
Theorem 2.2, we will prove that this condition is also sufficient for a redundant tensor
product frame to admit a non-tensor product dual.

Theorem 2.3 Let dim(H1), dim(H2) > 1, and f ⊗g be a redundant frame for H1 ⊗H2 with
f = {fi}i∈I and g = {gj}j∈J . Then f ⊗ g admits at least one non-tensor product dual.

Proof By Theorem 2.2 and Lemma 2.2, to finish the proof, we only need to find a Bessel
sequence {wi,j}(i,j)∈I×J in H1 ⊗H2 such that

dim
(
range(Ti,j)

) ≥ 2 for some (i, j) ∈ I × J , (2.15)

where

Ti,j = S–1
f fi ⊗ S–1

g gj + wi,j –
∑

(i′ ,j′)∈I×J

〈
S–1

f fi, fi′
〉〈

S–1
g gj, gj′

〉
wi′ ,j′ .

Since f ⊗ g is not a Riesz basis for H1 ⊗H2, there exist (i1, j1), (i2, j2) ∈ I × J such that

〈
S–1

f⊗g(fi1 ⊗ gj1 ), fi2 ⊗ gj2
〉 �= δi1,i2δj1,j2 (2.16)

by [3, Theorem 7.1]. By [10, Proposition 3.2], Proposition 1.1(b), and (1.8), we have

〈
S–1

f⊗g(fi1 ⊗ gj1 ), fi2 ⊗ gj2
〉

=
〈
S–1

f fi1 , fi2
〉〈

S–1
g gj1 , gj2

〉
.

Hence, (2.16) is equivalent to

〈
S–1

f fi1 , fi2
〉〈

S–1
g gj1 , gj2

〉 �= δi1,i2δj1,j2 . (2.17)

By a simple argument, we have that (2.17) holds if and only if one of the following three
conditions happens:

Condition 1 〈S–1
f fi1 , fi1〉〈S–1

g gj1 , gj1〉 �= 1, S–1
f fi1 ⊗ S–1

g gj1 �= 0.
Condition 2 〈S–1

f fi1 , fi1〉〈S–1
g gj1 , gj1〉 �= 1, S–1

f fi1 ⊗ S–1
g gj1 = 0.

Condition 3 (i1, j1) �= (i2, j2), 〈S–1
f fi1 , fi1〉〈S–1

g gj1 , gj1〉 = 1, 〈S–1
f fi1 , fi2〉〈S–1

g gj1 , gj2〉 �= 0.
Next we prove that, whenever one of the above conditions is satisfied, we may construct

a Bessel sequence {wi,j}(i,j)∈I×J such that range(Ti1,j1 ) contains two orthogonal nonzero vec-
tors. This leads to (2.15) with (i1, j1).

For Condition 1, choose unit vectors u ∈H1 and v ∈H2 such that

〈
u, S–1

f fi1
〉

=
〈
v, S–1

g gj1
〉

= 0. (2.18)
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This can be done since dimH1, dimH2 > 1. Define {wi,j}(i,j)∈I×J by

wi,j =

⎧
⎨

⎩

u⊗v
1–〈S–1

f fi1 ,fi1 〉〈S–1
g gj1 ,gj1 〉 if (i, j) = (i1, j1);

0 otherwise.

Then by a direct computation, we have

Ti1,j1 = S–1
f fi1 ⊗ S–1

g gj1 + u ⊗ v.

It follows from (2.18) that

Ti1,j1
(
S–1

g gj1
)

=
∥∥S–1

g gj1
∥∥2S–1

f fi1 , Ti1,j1 (v) = u,

which are two orthogonal nonzero vectors.
For Condition 2, choose unit vectors u1, u2 ∈H1 and v1, v2 ∈H2 such that

〈u1, u2〉 = 〈v1, v2〉 = 0. (2.19)

Define {wi,j}(i,j)∈I×J by

wi,j =

⎧
⎨

⎩
u1 ⊗ v1 + u2 ⊗ v2 if (i, j) = (i1, j1);

0 otherwise.

Then

Ti1,j1 = wi1,j1 .

It follows from (2.19) that

Ti1,j1 (v1) = u1, Ti1,j1 (v2) = u2,

which are two orthogonal unit vectors.
For Condition 3, choose unit vectors u ∈H1 and v ∈H2 such that

〈
u, S–1

f fi1
〉

=
〈
v, S–1

g gj1
〉

= 0. (2.20)

Define {wi,j}(i,j)∈I×J by

wi,j =

⎧
⎨

⎩
– u⊗v

〈S–1
f fi1 ,fi2 〉〈S–1

g gj1 ,gj2 〉 if (i, j) = (i2, j2);

0 otherwise.

Then

Ti1,j1 = S–1
f fi1 ⊗ S–1

g gj1 + u ⊗ v.
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It follows from (2.20) that

Ti1,j1
(
S–1

g gj1
)

=
∥∥S–1

g gj1
∥∥2S–1

f fi1 , Ti1,j1 (v) = u,

which are two orthogonal nonzero vectors. The proof is completed. �

Next we give an example of Theorem 2.3 in the finite dimensional case.

Example 2.1 Let H1 and H2 be two finite dimensional Hilbert spaces, and {ei}m
i=1 and

{uj}n
j=1 be orthonormal bases for H1 and H2, respectively. Assume that f ⊗g is a redundant

frame for H1 ⊗ H2 with f = {fi}M
i=1 and g = {gj}N

j=1. Then, by a simple calculation, for any
f ∈H1, g ∈H2, we have that

c(Sf f ) = Mf M∗
f c(f ), c(Sgg) = MgM∗

gc(g),

c
(
S–1

f f
)

=
(
Mf M∗

f
)–1c(f ), c

(
S–1

g g
)

=
(
MgM∗

g
)–1c(g),

and

(
S–1

f fi ⊗ S–1
g gj

)
g

=
(
S–1

f fi ⊗ S–1
g gj

)(
u1, · · · , un

)
c(g)

=
(

e1, · · · , em

)(
c
(
S–1

f fi
) ⊗ c

(
S–1

g gj
))

c(g)

=
(

e1, · · · , em

)(
c1(S–1

g gj)c(S–1
f fi), · · · , cn(S–1

g gj)c(S–1
f fi)

)
c(g)

=
(

e1, · · · , em

)
Λi,jc(g), (2.21)

for (i, j) ∈ {1, 2, . . . , M} × {1, 2, . . . , N}. By Lemma 2.3, an arbitrary sequence {wi,j}M,N
i=1,j=1 in

H1 ⊗H2 has the form

wi,jg = wi,j

(
u1 · · · un

)
c(g) =

(
e1 · · · em

)
Ωi,jc(g) (2.22)

for (i, j) ∈ {1, 2, . . . , M} × {1, 2, . . . , N} and g ∈ H2, where Ωi,j is an m × n matrix for every
(i, j) ∈ {1, 2, . . . , M} × {1, 2, . . . , N}. It follows by Theorem 2.2 that all dual frames of f ⊗ g
have the form

{
Ti,j : Ti,jg =

(
e1, · · · , em

)[
Λi,j + Ωi,j

–
M∑

i′=1

N∑

j′=1

〈
c
(
S–1

f fi
)
, c(fi′ )

〉〈
c
(
S–1

g gj
)
, c(gj′ )

〉
Ωi′ ,j′

]
c(g) for g ∈H2

}M,N

i=1,j=1

, (2.23)

where Ωi,j is an m × n matrix for each (i, j) ∈ {1, 2, . . . , M} × {1, 2, . . . , N}.
Write

Υi,j = Λi,j + Ωi,j –
M∑

i′=1

N∑

j′=1

〈
c
(
S–1

f fi
)
, c(fi′ )

〉〈
c
(
S–1

g gj
)
, c(gj′ )

〉
Ωi′ ,j′
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for (i, j) ∈ {1, 2, . . . , M}×{1, 2, . . . , N}. Obviously, (2.23) is determined by {Ωi,j}M,N
i=1,j=1. Hence,

by Lemma 2.2, constructing a non-tensor product dual frame of f ⊗g reduces to construct-
ing {Ωi,j}M,N

i=1,j=1 satisfying

rank(Υi,j) ≥ 2 for some (i, j) ∈ {1, 2, . . . , M} × {1, 2, . . . , N}. (2.24)

Since f ⊗ g is not a Riesz basis for H1 ⊗H2, by [3, Theorem 7.1], we have that

〈
c
(
S–1

f fi1
)
, c(fi2 )

〉〈
c
(
S–1

g gj1
)
, c(gj2 )

〉
=

〈
S–1

f fi1 , fi2
〉〈

S–1
g gj1 , gj2

〉

=
〈
S–1

f⊗g(fi1 ⊗ gj1 ), fi2 ⊗ gj2
〉

�= δi1,i2δj1,j2 (2.25)

for some (i1, j1), (i2, j2) ∈ {1, 2, . . . , M} × {1, 2, . . . , N}. According to the arguments in the
proof of Theorem 2.3, we divide the following three cases to construct {Ωi,j}M,N

i=1,j=1 satisfying
(2.24).

Case 1. 〈c(S–1
f fi1 ), c(fi1 )〉〈c(S–1

g gj1 ), c(gj1 )〉 �= 1, c(S–1
f fi1 ) ⊗ c(S–1

g gj1 ) �= 0.
Choose two linearly-independent nonzero vectors d1, d2 ∈ C

m. Define {Ωi,j}M,N
i=1,j=1 by

Ωi,j =

⎧
⎨

⎩

(d1–c1(S–1
g gj1 )c(S–1

f fi1 ),d2–c2(S–1
g gj1 )c(S–1

f fi1 ),0,...,0)
1–〈c(S–1

f fi1 ),c(fi1 )〉〈c(S–1
g gj1 ),c(gj1 )〉 if (i, j) = (i1, j1);

0 otherwise.

Then

Υi1,j1 =
(

d1, d2, c3(S–1
g gj1 )c(S–1

f fi1 ), · · · , cn(S–1
g gj1 )c(S–1

f fi1 )
)

by a simple computation. This implies that (2.24) holds for (i1, j1).
Case 2. 〈c(S–1

f fi1 ), c(fi1 )〉〈c(S–1
g gj1 ), c(gj1 )〉 �= 1, c(S–1

f fi1 ) ⊗ c(S–1
g gj1 ) = 0.

Choose two linearly-independent nonzero vectors d1, d2 ∈C
m. Define {Ωi,j}M,N

i=1,j=1 by

Ωi,j =

⎧
⎨

⎩

(
d1, d2, 0, · · · , 0

)
if (i, j) = (i1, j1);

0 otherwise.

Then

Υi1,j1 = Ωi1,j1 .

This implies that (2.24) holds for (i1, j1).
Case 3. (i1, j1) �= (i2, j2), 〈c(S–1

f fi1 ), c(fi1 )〉〈c(S–1
g gj1 ), c(gj1 )〉 = 1, and 〈c(S–1

f fi1 ), c(fi2 )〉 ×
〈c(S–1

g gj1 ), c(gj2 )〉 �= 0.
Choose two linearly-independent nonzero vectors d1, d2 ∈ C

m. Define {Ωi,j}M,N
i=1,j=1 by

Ωi,j =

⎧
⎨

⎩

(c1(S–1
g gj1 )c(S–1

f fi1 )–d1,c2(S–1
g gj1 )c(S–1

f fi1 )–d2,0,...,0)
〈c(S–1

f fi1 ),c(fi2 )〉〈c(S–1
g gj1 ),c(gj2 )〉 if (i, j) = (i2, j2);

0 otherwise.
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Then

Υi1,j1 =
(

d1, d2, c3(S–1
g gj1 )c(S–1

f fi1 ), · · · , cn(S–1
g gj1 )c(S–1

f fi1 )
)

by a simple computation. This implies that (2.24) holds for (i1, j1). The proof is completed.

3 Tensor product dual expression
This section is devoted to expressing tensor product duals of tensor product frames. For
this purpose, we first give the following lemma.

Lemma 3.1 Let {ei}m
i=1 and {uj}n

j=1 be orthonormal bases for H1 and H2, respectively, f =
{fi}M

i=1, f̃ = {̃fi}M
i=1 be sequences in H1, and g = {gj}N

j=1, g̃ = {̃gj}N
j=1 be sequences in H2. Then,

for any f ∈H1 and g ∈H2,

Tf T ∗̃
f f =

(
e1, e2, · · · , em

)
Mf M∗̃

f c(f ) (3.1)

and

TgT∗
g̃ g =

(
u1, u2, · · · , un

)
MgM∗

g̃c(g), (3.2)

where Tf , T̃f , Tg, Tg̃, Mf , Mf̃ , Mg, and Mg̃ are defined as at the beginning of Sect. 2.

Proof We only prove (3.1). (3.2) can be proved similarly. Arbitrarily fix 1 ≤ i ≤ m. Since
T ∗̃

f ei = {ci (̃fl)}M
l=1, we have

Tf T ∗̃
f ei =

(
f1, f2 · · · , fm

)

⎛

⎜⎜⎜⎜⎜⎝

ci(f̃1)
ci(f̃2)

...
ci(f̃M)

⎞

⎟⎟⎟⎟⎟⎠

=
(

e1, e2, · · · , em

)
Mf

⎛

⎜⎜⎜⎜⎜⎝

ci(f̃1)
ci(f̃2)

...
ci(f̃M)

⎞

⎟⎟⎟⎟⎟⎠
.

It follows that

Tf T ∗̃
f f = Tf T ∗̃

f

(
e1, e2, · · · , em

)
c(f )

=
(

e1, e2, · · · , em

)
Mf M∗̃

f c(f )

for f ∈H1. The proof is completed. �

Theorem 3.1 Let {ei}i∈I and {uj}j∈J be orthonormal bases for H1 and H2, respectively.
Given sequences f = {fi}i∈I , f̃ = {̃fi}i∈I in H1 and g = {gj}j∈J , g̃ = {g̃j}j∈J in H2, f ⊗ g and f̃ ⊗ g̃
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form a pair of dual frames in H1 ⊗H2 if and only if there exist constants a, b with ab = 1,
linear bounded operators U , Ũ on H1 and V , Ṽ on H2 such that

fi = Uei, f̃i = Ũei for i ∈ I, (3.3)

gj = Vuj, g̃j = Ṽ uj for j ∈ J (3.4)

and

UŨ∗ = aIH1 , V Ṽ ∗ = bIH2 . (3.5)

Proof Observe that, if dimH1 < ∞(dimH2 < ∞), then f ⊗ g and f̃ ⊗ g̃ forming a pair of
dual frames in H1 ⊗ H2 implies that f and f̃ (g and g̃) are Riesz bases for H1 (H2) due
to card(I) = dimH1 (card(J) = dimH2). This implies that there exist linear bounded and
invertible operators U and Ũ (V and Ṽ ) such that (3.3) ((3.4)) holds. For the case that
dimH1 = dimH2 = ∞, observe that a frame must be an image of an orthonormal basis un-
der a linear bounded surjection, and that the bounded operators U , Ũ , V , and Ṽ satisfying
(3.5) are surjections. We may as well assume that f , f̃ , g, and g̃ have the following form:

fi = Uei, f̃i = Ũei for i ∈ I,

gj = Vuj, g̃j = Ṽ uj for j ∈ J ,

where U and Ũ are linear bounded surjections on H1, and V and Ṽ are linear bounded
surjections on H2. Observe that Tf , T̃f , Tg, and Tg̃ are all linear bounded operators. By
Theorem 2.1, f ⊗ g and f̃ ⊗ g̃ are a pair of dual frames in H1 ⊗H2 if and only if there exist
constants a and b with ab = 1 such that

Tf T ∗̃
f = aIH1 and TgT∗

g̃ = bIH2 . (3.6)

By (3.3) and (3.4), we have

Tf T ∗̃
f ei =

∑

k∈I

〈ei, Ũek〉Uek

= U
(∑

k∈I

〈
Ũ∗ei, ek

〉
ek

)

= UŨ∗ei

for i ∈ I . Similarly,

TgT∗
g̃ uj = V Ṽ ∗uj for j ∈ J .

Therefore, (3.6) is equivalent to

UŨ∗ei = aei and V Ṽ ∗uj = buj (3.7)
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for i ∈ I and j ∈ J . This implies that (3.7) is equivalent to

UŨ∗ = aIH1 and V Ṽ ∗ = bIH2

due to the fact that {ei}i∈I and {uj}j∈J are orthonormal bases for H1 and H2, respectively.
The proof is completed. �

Remark 3.1 In Theorem 3.1, if dimH1, dimH2 < ∞ in addition, then by the beginning
argument in the proof of the theorem, f and g are Riesz bases for H1 and H2 respectively
whenever f ⊗ g is a frame for H1 ⊗H2. Therefore, Theorem 3.1 cannot be applied to the
case that f ⊗ g is a redundant frame for H1 ⊗H2 with dimH1, dimH2 < ∞. For the case
that at least one of dimH1 and dimH2 is infinity, given a frame f ⊗ g for H1 ⊗ H2 (at
this time, U and V are determined by Proposition 1.2), Theorem 3.1 tells us that we may
obtain all its tensor product dual frames by designing Ũ and Ṽ satisfying (3.3)–(3.5).

Remark 3.1 shows that Theorem 3.1 cannot be applied to general tensor product frames
in a finite-dimensional setting. The following theorem presents an explicit expression of
all tensor product dual frames in the finite-dimensional setting.

Theorem 3.2 Let {ei}m
i=1 and {uj}n

j=1 be orthonormal bases for H1 and H2, respectively.
Assume that f ⊗ g is a frame for H1 ⊗H2 with f = {fi}M

i=1 in H1 and g = {gj}N
j=1 in H2. Then

the dual frames of f ⊗ g with the form of tensor product are precisely the families

{̃
f ⊗ g̃ : f̃ = {̃fi}M

i=1, g̃ = {g̃j}N
j=1 and Mf M∗̃

f = aI, MgM∗
g̃ = bI

for some constants a, b satisfying ab = 1
}

.

Proof Since dim(H1) = m and dim(H2) = n, we have Tf , T̃f , Tg, and Tg̃ are all linear
bounded operators. By Theorem 2.1, f ⊗ g and f̃ ⊗ g̃ are a pair of dual frames in H1 ⊗H2

if and only if there exist constants a and b with ab = 1 such that

Tf T ∗̃
f = aIH1 and TgT∗

g̃ = bIH2 . (3.8)

By Lemma 3.1, for any f ∈H1, g ∈H2, (3.8) is equivalent to

(e1, e2, . . . , em)Mf M∗̃
f c(f ) = af and (u1, u2, . . . , un)MgM∗

g̃c(g) = bg. (3.9)

It follows that (3.9) is equivalent to

Mf M∗̃
f = aI and MgM∗

g̃ = bI.

Then proof is completed. �

4 Conclusions
To construct dual frames with good structure is a fundamental problem in the theory
of frames. The tensor product dual frames can provide a rank-one decomposition of
bounded antilinear operators between two Hilbert spaces. This paper addresses tensor
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product dual frames. We characterize tensor product dual frames, give an explicit expres-
sion of all dual frames of tensor product frames, and prove the existence of non-tensor
product dual frames. We present an explicit expression of all tensor product dual frames
of tensor product frames.
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2. Casazza, P.G., Fickus, M., Kovačević, J., Leon, M.T., Tremain, J.C.: A physical interpretation of tight frames. In: Harmonic

Analysis and Applications, pp. 51–76. Birkhäuser, Basel (2006)
3. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2016)
4. Dykema, K., Freeman, D., Kornelson, K., Larson, D., Ordower, M., Weber, E.: Ellipsoidal tight frames and projection

decompositions of operators. Ill. J. Math. 48, 477–489 (2004)
5. Feichtinger, H.G., Gröchenig, K.: Theory and practice of irregular sampling. In: Wavelets: Mathematics and

Applications, pp. 305–363. CRC Press, Boca Raton (1994)
6. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)
7. Gaal, S.A.: Linear Analysis and Representation Theory. Springer, Berlin (1973)
8. Heil, C., Ramanathan, J., Topiwala, P.: Singular values of compact pseudodifferential operators. J. Funct. Anal. 150,

426–452 (1997)
9. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Vol I. Academic Press, New York (1983)
10. Khosravi, A., Asgari, M.S.: Frames and bases in tensor product of Hilbert spaces. Int. Math. J. 4, 527–537 (2003)
11. Kornelson, K.A., Larson, D.R.: Rank-one decomposition of operators and construction of frames. In: Wavelets, Frames

and Operator Theory. Contemp. Math., vol. 345, pp. 203–214. Am. Math. Soc., Providence (2004)
12. Ma, T.W.: Banach–Hilbert Spaces, Vector Measures and Group Representations. World Scientific, River Edge (2002)
13. Nga, N.Q.: Some results on fusion frames and g-frames. Results Math. 73, 73–75 (2018)
14. Sun, W.C.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322, 437–452 (2006)
15. Sun, W.C.: Stability of g-frames. J. Math. Anal. Appl. 326, 858–868 (2007)
16. Upender Reddy, G., Gopal Reddy, N.: A note on tensor product of G-frames. Int. J. Comput. Sci. Math. 4, 57–62 (2012)
17. Upender Reddy, G., Gopal Reddy, N., Krishna Reddy, B.: Frame operator and Hilbert–Schmidt operator in tensor

product of Hilbert spaces. J. Dyn. Syst. Geom. Theories 7, 61–70 (2009)
18. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980)


	Tensor product dual frames
	Abstract
	MSC
	Keywords

	Introduction
	Dual characterization
	Tensor product dual expression
	Conclusions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Publisher's Note
	References


