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Abstract
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1 Introduction
The theory of variational inequalities serves as a powerful mathematical tool, which
unifies important concepts in applied mathematics like systems of nonlinear equations,
optimality conditions for optimization problems, complementarity problems, obstacle
problems, and network equilibrium problems. Therefore, this theory has numerous ap-
plications in the fields of engineering, mathematical programming, network economics,
transportation research, game theory, and regional sciences [1, 2, 13, 14, 16]. Several tech-
niques for solving a variational inequality in infinite-dimensional spaces (such as projec-
tion method, extragradient method, Tikhonov regularization method and proximal point
method) have been suggested; see, e.g., [7, 9]. The well-known gradient projection method
can be successfully applied for solving strongly monotone variational inequalities and in-
verse strongly monotone variational inequalities [5, 7, 12, 17, 19]. The Tikhonov regular-
ization and proximal point methods can serve as an efficient solution method for solv-
ing monotone variational inequalities. Korpelevich introduced the extragradient method
[15], and this method was applied for solving monotone variational inequalities in infinite-
dimensional spaces. It is a known fact [7] that the extragradient method can be successfully
applied for solving monotone variational inequalities. Recently, the extragradient method
has been considered for solving variational inequalities in infinite-dimensional Hilbert
spaces [3, 4, 10, 18]. It is proved that if the variational inequality has solutions and the as-
signed mapping is monotone and Lipschitz continuous, then the iterative sequence gen-
erated by the extragradient method converges weakly to a solution.
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The aim of this paper is to study the approximation problem of solutions for the
semistrictly quasi-monotone variational inequalities in infinite-dimensional Hilbert
spaces. We prove that the iterative sequence generated by the extragradient method for
solving semistrictly quasi-monotone variational inequalities converges weakly to a solu-
tion.

2 Preliminaries
Throughout this article we assume that H is a real Hilbert space with inner product 〈·, ·〉
and induced norm ‖ · ‖ and C is a nonempty, closed and convex subset of H.

For each u ∈H, there exists a unique point in C , denoted by PC(u), such that

∥
∥u – PC(u)

∥
∥ ≤ ‖u – v‖, ∀v ∈ C.

The operator PC is called the projection operator from H onto C . It is well known [13] that
the projection operator can be characterized by

〈

u – PC(u), v – PC(u)
〉 ≤ 0, ∀v ∈ C. (2.1)

If PC is a projection operator of H onto C , then

〈

u – v, PC(u) – PC(v)
〉 ≥ ∥

∥PC(u) – PC(v)
∥
∥

2, ∀u, v ∈H.

Let Q : C −→H be a mapping. The variational inequality VI(C, Q) defined by C and Q is
to find a point u∗ ∈ C such that

〈

Q
(

u∗), u – u∗〉 ≥ 0, ∀u ∈ C. (2.2)

The solution set of (2.2) is denoted by Sol(C, Q).
It is known (see, for instance, [6]) that the previous problem is closely related to finding

a point u∗ ∈ C such that

〈

Q(u), u – u∗〉 ≥ 0, ∀u ∈ C. (2.3)

Following [6], we shall call problem (2.3) the dual variational inequality problem (DVI(C,
Q)) of (2.2).

Definition 2.1 A mapping Q : H −→H is said to be
(a) weakly hemicontinuous if Q is upper semicontinuous from line segments in H to

the weak topology of H;
(b) sequentially weakly continuous if for each sequence {un} in H with {un} ⇀ u ({un}

converges weakly to u), {Q(un)} converges weakly to Q(u).

Remark 2.2 It is easy to prove that if Q : H −→H is sequentially weakly continuous, then
Q must be weakly hemicontinuous.

It is well known that the following conclusion holds
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Lemma 2.3 ([6]) A solution of DVI(C, Q) is always a solution of VI(C, Q), provided that
the operator Q is, say, weakly hemicontinuous.

This is why we shall restrict our attention to DVI(C, Q).

Remark 2.4 It is well-known that u∗ ∈ C is a solution of (2.2) if and only if u∗ = PC(u∗ –
λQ(u∗)) for all λ > 0.

Let H be a real Hilbert space. Given x, y ∈H, we define the closed line segment

[x, y] =
{

tx + (1 – t)y : 0 ≤ t ≤ 1
}

.

The segments (x, y], [x, y), and (x, y) are defined analogously.

Definition 2.5 Let C be a nonempty and closed convex subset in H, and let Q : C −→ H
be a mapping. The mapping Q is said to be:

(a) strongly monotone on C with constant τ > 0 if for each pair of points u, v ∈ C , we
have

〈

Q(u) – Q(v), u – v
〉 ≥ τ‖u – v‖2;

(b) strictly monotone on C if for all distinct u, v ∈ C , we have

〈

Q(u) – Q(v), u – v
〉

> 0;

(c) monotone on C if for each pair of points u, v ∈ C , we have

〈

Q(u) – Q(v), u – v
〉 ≥ 0;

(d) pseudo-monotone on C if for each pair of points u, v ∈ C , we have

〈

Q(v), u – v
〉 ≥ 0 ⇒ 〈

Q(u), u – v
〉 ≥ 0;

(e) quasi-monotone on C if for each pair of points u, v ∈ C , we have

〈

Q(v), u – v
〉

> 0 ⇒ 〈

Q(u), u – v
〉 ≥ 0;

(f ) (see [8]) semistrictly quasi-monotone on C if Q is quasi-monotone on C and for all
distinct of points u, v ∈ C , we have that

〈

Q(v), u – v
〉

> 0 implies
〈

Q(z), u – v
〉

> 0, for some z ∈ (

0.5(u + v), u
)

.

Remark 2.6 The following implications hold:

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) and (f ) ⇒ (e).

But the reverse assertions are not true, in general.
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Lemma 2.7
(i) Each pseudo-monotone mapping Q on C is semistrictly quasi-monotone on C .

(ii) If Q is quasi-monotone and affine on H, i.e., Q(u) = Mu + q, where q ∈H, and M is a
linear and bounded operator on H, then Q is semistrictly quasi-monotone on H.

Proof (i) Suppose on the contrary that, for given u, v ∈ C with u �= v, we have

〈

Q(v), u – v
〉

> 0 ⇒ 〈

Q(z), u – v
〉 ≤ 0, for all z ∈ (

0.5(u + v), u
)

.

Since z ∈ (0.5(u + v), u), it can be written as

z = t
(

1
2

(u + v)
)

+ (1 – t)u, t ∈ (0, 1).

This implies that v – z = (1 – 1
2 t)(v – u). Hence we have

〈

Q(z), v – z
〉 ≥ 0, for all z ∈ (

0.5(u + v), u
)

.

By the pseudo-monotonicity of Q, it follows that

〈

Q(v), v – z
〉 ≥ 0, for all z ∈ (

0.5(u + v), u
)

.

Hence we have

〈

Q(v), u – v
〉 ≤ 0,

which is a contradiction.
(ii) If u, v ∈ H, with u �= v, are such that 〈Mv + q, u – v〉 > 0, then, by the quasi-

monotonicity of Q, we have

〈Mu + q, u – v〉 ≥ 0.

Set uλ = λv + (1 – λ)u. It follows that

〈Muλ + q, u – v〉 = λ〈Mv + q, u – v〉 + (1 – λ)(Mu + q, u – v〉 > 0, ∀λ ∈ (0, 1).

Hence it holds for some λ ∈ (0, 0.5). For example, take λ = 0.3, then u0.3 ∈ (0.5(u + v), u)
and 〈M(u0.5) + q, u – v〉 > 0.

This completes the proof. �

Proposition 2.8 ([14]) Let C be a nonempty, closed and convex subset of H and Q :
C −→ H be a weakly hemicontinuous and semistrictly quasi-monotone mapping. Then
DVI(C, Q) (2.3) at least has one solution.
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3 Weak convergence theorem
In this section, we consider the problem VI(C, Q) with C being a nonempty, closed, convex
subset of H, and Q being semistrictly quasi-monotone on H and ζ -Lipschitz continuous
with ζ > 0 on C .

Algorithm 3.1 Data: u0 ∈ C and {λ�} ∈ [a, b], where 0 < a ≤ b < 1
ζ

.
Step 0: Set � = 0.
Step 1: If u� = PC(u� – λ�Q(u�)) then stop.
Step 2: Otherwise, set

ū� = PC
(

u� – λ�Q
(

u�
))

,

u�+1 = PC
(

u� – λ�Q
(

ū�
))

.

Replace � by � + 1; go to Step 1.

Remark 3.2 Assume that Q(u�) = 0, then

u� = PC
(

u� – λ�Q
(

u�
))

and Algorithm 3.1 terminates at step � with a solution u�.
Therefore, without loss of generality, we can assume that Q(u�) �= 0 for all �, so that

Algorithm 3.1 generates an infinite sequence.

Lemma 3.3 ([11, 15]) Assume that Q is semistrictly quasi-monotone and ζ -Lipschitz con-
tinuous on C and Sol(C, Q) is nonempty. Let u∗ be a solution of VI(C, Q). Then, for every
� ∈ N , we have

(

1 – λ2
�ζ

2)∥∥u� – ū�
∥
∥

2 ≤ ∥
∥u� – u∗∥∥2 –

∥
∥u�+1 – u∗∥∥2. (3.1)

Theorem 3.4 Assume that Q is semistrictly quasi-monotone on H, sequentially weakly
continuous and ζ -Lipschitz continuous on C . Then, the sequence {u�} generated by Algo-
rithm 3.1 converges weakly to a solution of VI(C, Q).

Proof First we point out that, by the assumptions of Theorem 3.4, Remark 2.2, Lemma 2.3
and Proposition 2.8, we know that the solution set Sol(C, Q) is nonempty.

Since 0 < a ≤ λ� ≤ b < 1
ζ

, it holds that

0 < 1 – b2ζ 2 ≤ 1 – λ2
�ζ

2 ≤ 1 – a2ζ 2 < 1.

From Lemma 3.3, the sequence {u�} is bounded and

lim
�−→∞

∥
∥u� – ū�

∥
∥ = 0.

Since Q is Lipschitz continuous on C , we have

∥
∥Q

(

u�
)

– Q
(

ū�
)∥
∥ ≤ ζ

∥
∥u� – ū�

∥
∥.
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Hence

lim
�−→∞

∥
∥Q

(

u�
)

– Q
(

ū�
)∥
∥ = 0.

Since {u�} is a bounded sequence in H, there exists a subsequence {u�i} of {u�} converging
weakly to û ∈ C . Therefore

lim
i−→∞

∥
∥u�i – ū�i

∥
∥ = 0,

also {ū�i} converges weakly to û.
Next we will show that û ∈Sol(C, Q).
In fact, since

ū� = PC
(

u� – λ�Q
(

u�
))

,

by the projection characterization (2.1), it follows that

〈

u�i – λ�i Q
(

u�i
)

– ū�i , v – ū�i
〉 ≤ 0, ∀v ∈ C,

or equivalently,

1
λ�i

〈

u�i – ū�i , v – ū�i
〉 ≤ 〈

Q
(

u�i
)

, v – ū�i
〉 ∀v ∈ C.

This implies that

1
λ�i

〈

u�i – ū�i , v – ū�i
〉

+
〈

Q
(

u�i
)

, ū�i – u�i
〉 ≤ 〈

Q
(

u�i
)

, v – u�i
〉

, ∀v ∈ C. (3.2)

Fixing v ∈ C , letting i −→ +∞ in the latter inequality, as well as remembering that

lim
i−→∞

∥
∥u�i – ū�i

∥
∥ = 0,

and λ� ∈ [a, b] ⊂ ]0, 1
ζ

[ for all �, we have

lim inf
i−→∞

〈

Q
(

u�i
)

, v – u�i
〉 ≥ 0. (3.3)

Now we choose a sequence {εi} of positive numbers decreasing to 0. For each εi, we denote
by ni the smallest positive integer such that

〈

Q
(

u�j
)

, v – u�j
〉

+ εi > 0, ∀j ≥ ni, (3.4)

where the existence of ni follows from (3.3). Since {εi} is decreasing, it is easy to see that
sequence {ni} is increasing. Furthermore, for each i, Q(u�ni ) �= 0 and, setting

v�ni =
Q

(

u�ni
)

∥
∥Q

(

u�ni
)∥
∥

2,
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we have

〈

Q
(

u�ni
)

, v�ni
〉

= 1 for each i.

It follows from (3.4) that for each i,

〈

Q
(

u�ni
)

, v + εiv�ni – u�ni
〉

> 0.

Since Q is semistrictly quasi-monotone, we have

〈

Q
(

v + εiv�ni
)

, v + εiv�ni – u�ni
〉

> 0. (3.5)

On the other hand, since {u�i} converges weakly to û as i −→ ∞, and Q is sequentially
weakly continuous on C , it follows that {Q(u�i )} converges weakly to Q(û). We can suppose
that Q(û) �= 0 (otherwise, û is a solution). Since the norm ‖ · ‖ is sequentially weakly lower
semicontinuous, we have

∥
∥Q(û)

∥
∥ ≤ lim inf

i−→∞
∥
∥Q

(

u�i
)∥
∥.

Since {u�ni } ⊂ {u�i} and εi −→ 0 as i −→ 0, we obtain

0 ≤ lim
i−→∞

∥
∥εiv�ni

∥
∥ = lim

i−→∞
εi

∥
∥Q

(

u�ni
)∥
∥

≤ 0
∥
∥Q(û)

∥
∥

= 0.

Taking the limit as i −→ ∞ in (3.5), we get

〈

Q(v), v – û
〉 ≥ 0.

It follows from Lemma 2.3 and Remark 2.4 that û ∈ Sol(C, Q).
Finally, we show that sequence {u�} converges weakly to û. To do this, it is sufficient to

show that {u�} cannot have two distinct weak sequential limit points in Sol(C, Q). Let {u�j}
be another subsequence of {u�} converging weakly to ū. We have to prove that û = ū. As
it has been proven above, ū ∈ Sol(C, Q). From Lemma 3.3, the sequences {‖u� – û‖} and
{‖u� – ū‖} are monotonically decreasing and therefore converge. Since, for all � ∈ N ,

2
〈

u�, ū – û
〉

=
∥
∥u� – û

∥
∥

2 –
∥
∥u� – ū

∥
∥

2 + ‖ū‖2 – ‖û‖2,

we deduce that sequence {〈u�, ū – û〉} also converges. Setting

� = lim
�−→∞

〈

u�, ū – û
〉

,

and passing to the limit along {u�i} and {u�j} yields

� = 〈û, ū – û〉 = 〈ū, ū – û〉.

This implies that ‖û – ū‖2 = 0, and therefore û = ū. �
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4 A numerical example
We consider a mapping Q which is semistrictly quasi-monotone but not monotone.

Let H = l2 be the real Hilbert space whose elements are the square-summable sequences
of real numbers, i.e., H = {u = (u1, u2, . . . , ui, . . . ) :

∑∞
i=1 |ui|2 < +∞}. Let α,β ∈ R be such

that β > α > β

2 > 0. Put

Cα =
{

u ∈H : ‖u‖ ≤ α
}

, Qβ (u) =
(

β – ‖u‖)u,

where α and β are parameters. It is easy to see that Qβ is sequentially weakly continuous
on H and Sol(Cα , Qβ ) = {0}.

Next we prove that Qβ : Cα −→ H is Lipschitz continuous and semistrictly quasi-
monotone on Cα . In fact, for any u, v ∈ Cα , we have

∥
∥Qβ (u) – Qβ (v)

∥
∥ =

∥
∥
(

β – ‖u‖)u –
(

β – ‖v‖)v
∥
∥

=
∥
∥β(u – v) – ‖u‖(u – v) –

(‖u‖ – ‖v‖)v
∥
∥

≤ β‖u – v‖ + ‖u‖‖u – v‖ +
∣
∣‖u‖ – ‖v‖∣∣‖v‖

≤ β‖u – v‖ + α‖u – v‖ + ‖u – v‖α
= (β + 2α)‖u – v‖.

Hence, Qβ is Lipschitz continuous on Cα with the Lipschitz constant ζ = β + 2α. Let u, v ∈
Cα be such that

〈

Qβ (u), v – u
〉

> 0.

Then

(

β – ‖u‖)〈u, v – u〉 > 0.

Since ‖u‖ ≤ α < β , we have

〈u, v – u〉 > 0.

Hence,

〈

Qβ (v), v – u
〉

=
(

β – ‖v‖)〈v, v – u〉
≥ (

β – ‖v‖)(〈v, v – u〉 – 〈u, v – u〉)

≥ (β – α)‖u – v‖2 > 0.

Thus, we shown that Qβ is semistrictly quasi-monotone on Cα . It is worthy to stress
that Qβ is not monotone on Cα . To see this, it suffices to choose u = ( β

2 , 0, . . . , 0, . . . ),
v = (α, 0, . . . , 0, . . . ) ∈ Cα and note that

〈

Qβ (u) – Qβ (v), u – v
〉

=
(

β

2
– α

)3

< 0.
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Using the extragradient method for solving the semistrictly quasi-monotone variational
inequality VI(Cα , Qβ ), we choose λ� = λ ∈ (0, 1

ζ
) = (0, 1

β+2α
) and any u0 ∈ Cα as a starting

point. The projection onto Cα is explicitly calculated as

PCα u =

⎧

⎨

⎩

u, if ‖u‖ ≤ α,
αu
‖u‖ , otherwise.

Since, for all �,

0 < λ <
1

β + 2α
<

1
β – ‖u�‖ ,

we have

∥
∥u� – λQβ

(

u�
)∥
∥ =

(

1 – λ
(

β –
∥
∥u�

∥
∥
))∥

∥u�
∥
∥ ≤ ∥

∥u�
∥
∥ ≤ α.

Therefore,

ū� = PCα

(

u� – λ�Q
(

u�
))

=
(

1 – λ
(

β –
∥
∥u�

∥
∥
))

u�.

Similarly, we can deduce that

∥
∥u� – λ�Qβ

(

ū�
)∥
∥ ≤ α.

Indeed, we have

u� – λ�Qβ

(

ū�
)

= u� – λ
(

β –
∥
∥ū�

∥
∥
)(

1 – λ
(

β –
∥
∥u�

∥
∥
))

u�.

Since

1 – λ
(

β –
∥
∥ū�

∥
∥
)(

1 – λ
(

β –
∥
∥u�

∥
∥
))

= 1 – λ
(

β –
∥
∥ū�

∥
∥
)

+ λ2(β –
∥
∥ū�

∥
∥
)(

β –
∥
∥u�

∥
∥
)

≥ 1 – λ
(

β –
∥
∥ū�

∥
∥
)

> 0, (4.1)

we can write

∥
∥u� – λ�Qβ

(

ū�
)∥
∥ =

[

1 – λ
(

β –
∥
∥ū�

∥
∥
)(

1 – λ
(

β –
∥
∥u�

∥
∥
))]∥

∥u�
∥
∥ ≤ ∥

∥u�
∥
∥ ≤ α.

This and (4.1) imply that

∥
∥u�+1∥∥ =

∥
∥PCα

(

u� – λ�Qβ

(

ū�
))∥

∥

=
∥
∥u� – λ

(

β –
∥
∥ū�

∥
∥
)

ū�
∥
∥

=
[

1 – λ
(

β –
∥
∥ū�

∥
∥
)(

1 – λ
(

β –
∥
∥u�

∥
∥
))]∥

∥u�
∥
∥. (4.2)
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We have

λ
(

β –
∥
∥ū�

∥
∥
)(

1 – λ
(

β –
∥
∥u�

∥
∥
))

= λ
(

β –
∥
∥ū�

∥
∥
)(

1 – λβ + λ
∥
∥u�

∥
∥
)

≥ λ
(

β –
∥
∥ū�

∥
∥
)

(1 – λβ)

= λ
(

β – (1 – λβ)
∥
∥u�

∥
∥ – λ

∥
∥u�

∥
∥

2)(1 – λβ). (4.3)

Considering the function q(x) = β – (1 – λβ)x – λx2 with x ∈ [0,α], it is easy to see that q
is decreasing on [0,α]. Therefore, the minimal value of q is

β – (1 – λβ)α – λα2,

which is attained at x = α. Combining this with (4.3) and (4.2) yields

∥
∥u�+1∥∥ ≤ (

1 – λ
(

β – (1 – λβ)α – λα2)(1 – λβ)
)∥
∥u�

∥
∥

≤ (

1 –
(

λβ – λα + λ2βα – λ2α2)(1 – λβ)
)∥
∥u�

∥
∥

=
[

1 – (β – α)λ(1 + αλ)(1 – λβ)
]∥
∥u�

∥
∥. (4.4)

We claim that


 = (β – α)λ(1 + αλ)(1 – λβ) ∈ (0, 1).

Indeed, since α < β and 0 < λ < 1
β+2α

, we have 
 > 0. To verify that 
 < 1, it is sufficient to
show that (β – α)λ(1 + αλ) < 1. Since β

2 < α < β and 0 < λ < 1
β+2α

, we have

(β – α)λ(1 + αλ) < (β – α)
1

β + 2α

(

1 +
α

β + 2α

)

<
β

2(β + β)

(

1 +
β

β + β

)

=
3
8

.

This implies that 
 ∈ (0, 1), and we can deduce from (4.4) that

∥
∥u�

∥
∥ ≤ (1 – 
)�

∥
∥u0∥∥, for all � ∈N.

This means that the sequence {u�} converges strongly to 0, the unique solution of
VI(Cα , Qβ ).
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