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Abstract
In this paper, we first introduce a new algorithm which involves projecting each
iteration to solve a split feasibility problem with paramonotone equilibria and using
unconstrained convex optimization. The strong convergence of the proposed
algorithm is presented. Second, we also revisit this split feasibility problem and
replace the unconstrained convex optimization by a constrained convex
optimization. We introduce some algorithms for two different types of objective
function of the constrained convex optimization and prove some strong
convergence results of the proposed algorithms. Third, we apply our algorithms for
finding an equilibrium point with minimal environmental cost for a model in
electricity production. Finally, we give some numerical results to illustrate the
effectiveness and advantages of the proposed algorithms.
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1 Introduction and the problem statement
Let H1 and H2 be two real Hilbert spaces with inner product 〈·, ·〉 and reduced norm ‖ · ‖,
C and Q be nonempty closed convex subsets in H1 and H2, respectively.

In [7], Censor and Elving first introduced the split feasibility problem (shortly, SFP) in
Euclidean space, which is formulated as follows:

Find x∗ ∈ C such that Ax∗ ∈ Q,

where A : H1 → H2 is a bounded linear operator. The SFP can be a model for many inverse
problems where constraints are imposed on the solutions in the domain of the linear op-
erator as well as in its range. It has a variety of specific applications in real world such as
medical care, image reconstruction and signal processing (see [5, 14–17, 21, 38, 39] for
more details).

Let f : C × C → R be a bifunction such that f (x, x) = 0 for all x ∈ C. The equilibrium
problem (shortly, EP)

Find x∗ ∈ C such that f
(
x∗, y

) ≥ 0 for all y ∈ C
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was firstly introduced by Fan [19] and further studied by Blum and Oettli [2]. The solution
set of the EP is denoted by Sol(EP). The EP is a generalization of many mathematical mod-
els, including variational inequality, fixed point, optimization, complementarity problems
(see, for instance, [2, 4, 13, 18, 20, 22, 23, 25, 31, 33–36]).

Recently, Yen et al. [37] investigated the following split feasibility problem involving
paramonotone equilibria and convex optimization (shortly, SEO):

Problem 1.1 Find x∗ ∈ C such that f (x∗, y) ≥ 0 for all y ∈ C and g(Ax∗) ≤ g(z) for all z ∈
H2,

where g is a proper lower semi-continuous convex function on H2. Also, they introduced
the following algorithm to solve Problem 1.1:

Algorithm 1.1 For any xk ∈ C, take ηk ∈ ∂
εk
2 f (xk , xk) and define

αk =
βk

γk
,

where γk = max{δk ,‖ηk‖}. Compute

yk = PC
(
xk – αkη

k).

Take

μk :=

⎧
⎨

⎩
0, if ∇h(yk) = 0,

ρk
h(yk )

‖∇h(yk )‖2 , if ∇h(yk) �= 0,

and compute

zk = PC
(
yk – μkA∗(I – proxλg)

(
Ayk)).

Let

xk+1 = akxk + (1 – ak)zk .

In Algorithm 1.1, proxλg denotes proximal mapping of the convex function g with λ > 0,
and the parameters {ak}, {δk}, {βk}, {εk} and {ρk} are taken as in Algorithm 3.1 (see below
Sect. 3).

Note that Algorithm 1.1 involves two exact projections onto the feasible set C, which
limits the applicability of the method, especially when such projections are hard to com-
pute. It is well known that only in a few specific instances the projection onto a convex set
has an explicit formula. When the feasible set C is a general closed convex set, we must
solve a nontrivial quadratic problem in order to compute the projection onto C.

In this paper, by expanding the domain of function f , we introduce a new algorithm
which just involves a projection onto C. Also, we revisit Problem 1.1 and replace the un-
constrained convex optimization by a constrained convex optimization. Further, we intro-
duce two iterative algorithms to solve the new model and prove some strong convergence
results of the proposed algorithms.



Dong et al. Journal of Inequalities and Applications         (2019) 2019:77 Page 3 of 23

The paper is organized as follows: Sect. 2 deals with some definitions and lemmas for
the main results in this paper. In Sect. 3, we introduce a new algorithm, which involves
a projection in each iteration. In Sect. 4, we introduce two algorithms and study their
convergence. In Sect. 5, we provide a practical model for an electricity market and some
computational results for the model.

2 Preliminaries
The following definitions and lemmas are useful for the validity and convergence of the
algorithms.

Definition 2.1 Let H be a Hilbert space, T : H → H be a mapping and let K ⊆ H .
(i) T is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ H .
(ii) T is said to be firmly nonexpansive if

‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉

for all x, y ∈ H , or

0 ≤ 〈
Tx – Ty, (I – T)x – (I – T)y

〉

for all x, y ∈ H .
(iii) T is said to be Lipschitz continuous with Lipschitz constant L if

‖Tx – Ty‖ ≤ L‖x – y‖

for all x, y ∈ H .
(iv) T is said to be α-averaged if

T = (1 – α)I + αS,

where α ∈ (0, 1) and S : H → H is a nonexpansive mapping.

Lemma 2.1 ([1, Proposition 4.4]) Let H be a Hilbert space and T : H → H be a mapping.
Then the following are equivalent:

(i) T is firmly nonexpansive;
(ii) I – T is firmly nonexpansive.

Lemma 2.2 ([3, 9]) The composition of finitely many averaged mappings is averaged. In
particular, if T1 is α1-averaged and T2 is α2-averaged, where α1,α2 ∈ (0, 1), then the com-
position T1T2 is α-averaged, where α = α1 + α2 – α1α2.

It is easy to show that firmly nonexpansive mappings are 1
2 -averaged, and averaged map-

pings are nonexpansive.
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For a mapping T : H → H , Fix(T) denotes the set of fixed points of T , i.e.,

Fix(T) := {x ∈ H : Tx = x}.

It is well known that every nonexpansive operator T : H → H satisfies the following in-
equality:

〈
(x – Tx) – (y – Ty), Ty – Tx

〉 ≤ 1
2
∥∥(x – Tx) – (y – Ty)

∥∥2

for all x, y ∈ H and so

〈x – Tx, y – Tx〉 ≤ 1
2
‖x – Tx‖2

for all x ∈ H and y ∈ Fix(T) (see, for example, [11, Theorem 3], [12, Theorem 1]).
Let H be a real Hilbert space and K be a nonempty convex closed subset of H . For each

point x ∈ H , there exists a unique nearest point in K , denoted by PK (x), such that

∥∥x – PK (x)
∥∥ ≤ ‖x – y‖

for all y ∈ K . The mapping PK : H → K is called the metric projection of H onto K . It is well
known that PK is a nonexpansive mapping of H onto K and even a firmly nonexpansive
mapping. So, PK is also 1

2 -averaged, which is captured in the following lemma:

Lemma 2.3 For any x, y ∈ H and z ∈ K , the following hold:
(i) ‖PK (x) – PK (y)‖2 ≤ ‖x – y‖;

(ii) ‖PK (x) – z‖2 ≤ ‖x – z‖2 – ‖PK (x) – x‖2.

Some characterizations of the metric projection PK are given by the two properties in
the following lemma:

Lemma 2.4 Let x ∈ H and z ∈ K . Then z = PK (x) if and only if PK (x) ∈ K and

〈
x – PK (x), PK (x) – y

〉 ≥ 0

for all x ∈ H and y ∈ K .

Lemma 2.5 Let C be a nonempty closed convex subset in a Hilbert space H and PC(x) be
the metric projection of x onto C. Then we have

(i) 〈x – y, PC(x) – PC(y)〉 ≥ ‖PC(x) – PC(y)‖2 for all x, y ∈ C;
(ii) ‖zk – yk‖ ≤ βk .

Lemma 2.6 Let {vk} and {δk} be the nonnegative sequences of real numbers satisfying
vk+1 ≤ vk + δk with

∑∞
k=1 δk < +∞. Then the sequence {vk} is convergent.

Lemma 2.7 Let H be a real Hilbert space, {ak} be a sequence of real numbers such that
0 < a < ak < b < 1 for all k ≥ 1 and {vk}, {wk} be the sequences in H such that

lim sup
k→+∞

∥
∥vk∥∥ ≤ c, lim sup

k→+∞

∥
∥wk∥∥ ≤ c
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and, for some c > 0,

lim sup
k→+∞

∥
∥akvk +

(
1 – ak)wk∥∥ = c.

Then limk→+∞ ‖vk – wk‖ = 0.

Definition 2.2 ([28]) The normal cone of K at v ∈ K , denote by NK , is defined as follows:

NK (v) :=
{

d ∈ H : 〈d, y – v〉 ≤ 0,∀y ∈ K
}

.

Definition 2.3 ([1, Definition 16.1]) The subdifferential set of a convex function c at a
point x is defined as follows:

∂c(x) :=
{
ξ ∈ H : c(y) ≥ c(x) + 〈ξ , y – x〉,∀y ∈ H

}
.

Define by ιK the indicator function of the set K , i.e.,

ιK (x) =

⎧
⎨

⎩
0 x ∈ K ,

+∞ otherwise.

It is well known that ∂ιK (x) = NK (x) and (I + λNK )–1 = PK for any λ > 0.
Let f : H ×H →R be a bifunction. We need the following assumptions on f (x, y) for our

algorithms and convergence:
(A1) For each x ∈ C, f (x, x) = 0 and f (x, ·) is lower semi-continuous and convex on C;
(A2) ∂ε

2 f (x, x) is nonempty for any ε > 0 and x ∈ C and is bounded on any bounded subset
of C, where ∂ε

2 f (x, x) denotes ε-subdifferential of the convex function f (x, ·) at x, that is,

∂ε
2 f (x, x) :=

{
η ∈ H1 : 〈η, y – x〉 + f (x, x) ≤ f (x, y) + ε,∀y ∈ C

}
; (1)

(A3) f is pseudo-monotone on C with respect to every solution of the EP, that is,
f (x, x∗) ≤ 0 for any x ∈ C, x∗ ∈ Sol(EP) and f satisfies the following condition, which is
called the para-monotonicity property:

x∗ ∈ Sol(EP), y ∈ C, f
(
x∗, y

)
= f

(
y, x∗) = 0 �⇒ y ∈ Sol(EP);

(A4) For all x ∈ K , f (·, x) is weakly upper semi-continuous on C.

3 A new algorithm for Problem 1.1 and its convergence analysis
In this section we give a new algorithm for Problem 1.1 and analyze its convergence.

Recall that the proximal mapping of the convex function g with λ > 0, denoted by proxλg ,
is defined as the unique solution of the strongly convex programming problem:

proxλg(u) = argmin
v∈H2

{
g(v) +

1
2λ

‖v – u‖2
}

. (P(u))

The proximal mapping has some good properties, namely, it is firmly nonexpansive and
proxλg = PQ when g = δQ (see, e.g., [26]).
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For any λ > 0, we set

h(x) :=
1
2
∥
∥(I – proxλg)Ax

∥
∥2.

By using the necessary and sufficient optimality condition for convex programming, we
can see that h(x) = 0 if and only if Ax solves P(u) with u = Ax. Note that, even though g
may not be differentiable, h is always differentiable and ∇h(x) = A∗(I – proxλg)Ax (see, for
example, [28]).

Algorithm 3.1 Take positive parameters δ, ξ and the real sequences {ak}, {δk}, {βk}, {εk},
{ρk} satisfying the following conditions: for each k ∈N,

0 < a ≤ ak ≤ b < 1, 0 < ξ ≤ ρk ≤ 4 – ξ ,

δk > δ > 0, βk > 0, εk ≥ 0,

lim
k→+∞

ak =
1
2

,

∞∑

k=1

βk

δk
= +∞,

∞∑

k=1

β2
k = +∞,

∞∑

k=1

βkεk

δk
< +∞.

Step 1. Choose x1 ∈ C and let k := 1.
Step k. Have xk ∈ C and take

μk :=

⎧
⎨

⎩
0 if ∇h(xk) = 0,

ρk
h(xk )

‖∇h(xk )‖2 if ∇h(xk) �= 0,

then compute

yk = xk – μkA∗(I – proxλg)Axk .

Take ηk ∈ ∂
εk
2 f (yk , yk) and define

αk =
βk

γk
,

where γk = max{δk ,‖ηk‖}. Compute

zk = PC
(
yk – αkηk

)
. (2)

Let

xk+1 = akxk + (1 – ak)zk .

Remark 3.1 It is obvious that Algorithm 3.1 involves only one projection onto C per each
iteration. Note that the domain of function f is H × H .
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Lemma 3.1 ([24]) Let S be the set of solutions of Problem 1.1 and y ∈ S. If ∇h(xk) �= 0, then

∥∥yk – y
∥∥2 ≤ ∥∥xk – y

∥∥2 – ρk(1 – ρk)
h2(xk)

‖∇h(xk)‖2 .

Lemma 3.2 ([29]) For each k ≥ 1, the following inequalities hold:
(i) αk‖ηk‖ ≤ βk ;

(ii) ‖zk – yk‖ ≤ βk .

Lemma 3.3 Let y ∈ S. Then, for each k ≥ 1 such that ∇h(xk) �= 0, we have

∥∥xk+1 – y
∥∥2 ≤ ∥∥xk – y

∥∥2 – (1 – ak)ρk(4 – ρk)
h2(xk)

‖∇h(xk)‖2

+ 2(1 – ak)αkf
(
yk , y

)
+ Ak ,

and, for each k ≥ 1 such that ∇h(xk) = 0, we have

∥
∥xk+1 – y

∥
∥2 ≤ ∥

∥xk – y
∥
∥2 + 2(1 – ak)αkf

(
yk , y

)
+ Ak ,

where Ak = 2(1 – ak)(αkεk + β2
k ).

Proof By the definition of xk+1, we have

∥∥xk+1 – y
∥∥2 =

∥∥akxk + (1 – ak)zk – y
∥∥2

≤ ak
∥∥xk – y

∥∥2 + (1 – ak)
∥∥zk – y

∥∥2. (3)

Moreover, we have

∥
∥zk – y

∥
∥2 =

∥
∥y – yk + yk – zk∥∥2

=
∥∥yk – y

∥∥2 –
∥∥yk – zk∥∥2 + 2

〈
yk – zk , y – zk 〉

≤ ∥∥yk – y
∥∥2 + 2

〈
yk – zk , y – zk 〉.

Since it follows from Lemma 2.4 and (2) that

〈
zk – yk + αkηk , x – zk 〉 ≥ 0

for all x ∈ C, by taking x = y, we obtain

〈
zk – yk + αkηk , y – zk 〉 ≥ 0 ⇐⇒ 〈

αkηk , y – zk 〉 ≥ 〈
yk – zk , y – zk 〉

and hence

∥
∥zk – y

∥
∥2 ≤ ∥

∥yk – y
∥
∥2 + 2

〈
αkηk , y – zk 〉

=
∥
∥yk – y

∥
∥2 + 2

〈
αkηk , y – yk 〉 + 2

〈
αkηk , yk – zk 〉. (4)
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It follows from ηk ∈ ∂
εk
2 f (yk , yk) that

f
(
yk , y

)
– f

(
yk , yk)

≥ 〈
ηk , y – yk 〉 – εk ⇐⇒ f

(
yk , y

)
+ εk ≥ 〈

ηk , y – yk 〉. (5)

On the other hand, from Lemma 3.2(ii), it follows that

〈
αkηk , yk – zk 〉 ≤ αk‖ηk‖

∥∥yk – zk∥∥ ≤ β2
k .

From (4), (5) and αk > 0, it follows that

∥
∥zk – y

∥
∥2 ≤ ∥

∥yk – y
∥
∥2 + 2αkf

(
yk , y

)
+ 2αkεk + 2β2

k . (6)

Now, we consider two cases:
Case 1. If ∇h(xk) �= 0, then, thanks to Lemma 3.1, we have

∥∥yk – y
∥∥2 =

∥∥xk – y
∥∥2 – ρk(4 – ρk)

h2(xk)
‖∇h(xk)‖2 .

Combining this inequality with (3) and (6), we obtain

∥
∥xk+1 – y

∥
∥2 ≤ ∥

∥xk – y
∥
∥2 + 2(1 – ak)αkf

(
yk , y

)

– (1 – ak)ρk(4 – ρk)
h2(xk)

‖∇h(xk)‖2 + Ak ,

where Ak = 2(1 – ak)(αkεk + β2
k ).

Case 2. If ∇h(yk) = 0, then, by the definition of yk , we can write yk = xk . Now, by the same
argument as in Case 1, we have

∥
∥zk – y

∥
∥2 ≤ ∥

∥yk – y
∥
∥2 + 2αkf

(
yk , y

)
+ 2αkεk + 2β2

k .

Then we have

∥∥xk+1 – y
∥∥2 ≤ ∥∥xk – y

∥∥2 + 2(1 – ak)αkf
(
yk , y

)
+ Ak ,

where Ak = 2(1 – ak)(αkεk + β2
k ). This completes the proof. �

Theorem 3.1 Suppose that Problem 1.1 admits a solution. Then, under Assumptions
(A1)–(A4), the sequence {xk} generated by Algorithm 3.1 strongly converges to a solution
of Problem 1.1.

Proof Claim 1. The sequence {‖xk – y‖2} is convergent for all y ∈ S. Indeed, let y ∈ S. Since
y ∈ Sol(EP) and f is pseudomonotone on C with respect to every solution of (EP), we have

f
(
yk , y

) ≤ 0.
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If ∇h(xk) �= 0, then, since

ρk(4 – ρk)
h2(xk)

‖∇h(xk)‖2 ≥ 0,

it follows from Lemma 3.3 that

∥∥xk+1 – y
∥∥2 ≤ ∥∥xk – y

∥∥2 + Ak ,

where Ak = 2(1 – ak)(αkεk + β2
k ). Since αk = βk

γk
with γk = max{δk ,‖ηk‖},

+∞∑

k=1

αkεk =
+∞∑

k=1

βk

γk
εk ≤

+∞∑

k=1

βk

δk
εk < +∞.

Note that
∑+∞

k=1 β2
k < +∞ and 0 < a < ak < b < 1 and so we have

+∞∑

k=1

Ak < 2(1 – a)
+∞∑

k=1

(
αkεk + β2

k
)

< +∞.

Now, using Lemma 2.6, we see that {‖xk – y‖2} is convergent for all y ∈ S. Hence the se-
quence {xk} is bounded. Then, by Lemma 3.2, we can see that {yk} is bounded too.

Claim 2. lim supk→∞ f (yk , y) = 0 for all y ∈ S. By Lemma 3.3, for each k ≥ 1, we have

–2(1 – ak)αkf
(
yk , y

) ≤ ∥∥xk – y
∥∥2 –

∥∥xk+1 – y
∥∥2 + Ak .

Summing up both sides in the above inequality, we obtain

∞∑

k=1

–2(1 – ak)αkf
(
yk , y

)
< +∞.

On the other hand, using Assumption (A2) and the fact that {xk} is bounded, we see that
{‖ηk‖} is bounded. Then there exists L > δ such that ‖ηk‖ ≤ L for each k ≥ 1. Therefore,
we have

γk

δk
= max

{
1,

‖ηk‖
δ + k

}
≤ L

δ

and hence

αk =
βk

γk
≥ δ

L
βk

δk
.

Since y is a solution, by pseudomonotonicity of f , we have –f (yk , y) ≥ 0, which together
with 0 < a < ak < b < 1 implies

∞∑

k=1

(1 – b)
βk

δk

[
–f

(
yk , y

)]
< +∞.
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But, from
∑∞

k=1
βk
δk

= +∞, it follows that

lim sup
k→+∞

f
(
yk , y

)
= 0

for all y ∈ S.
Claim 3. For any y ∈ S, suppose that {ykj} is the subsequence of {yk} such that

lim sup
k→+∞

f
(
yk , y

)
= lim

j→+∞ f
(
ykj , y

)
(7)

and y∗ is a weakly cluster point of {ykj}. Then y∗ belongs to Sol(EP).
Without loss of generality, we can assume that {ykj} weakly converges to y∗ as j → ∞.

Since f (·, y) is upper semi-continuous, by Claim 2, we have

f
(
y∗, y

) ≥ lim sup
j→+∞

f
(
ykj , y

)
= 0.

Since y ∈ S and f is pseudomonotone, we have f (y∗, y) ≤ 0 and so f (y∗, y) = 0. Again, by
pseudomonotonicity of f , f (y, y∗) ≤ 0 and hence f (y∗, y) = f (y, y∗) = 0. Then, by paramono-
tonicity (Assumption (A3)), we can conclude that y∗ is also a solution of (EP).

Claim 4. Every weakly cluster point x̄ of the sequence {xk} satisfies x̄ ∈ K and Ax̄ ∈
argmin g . Let x̄ be a weakly cluster point of {xk} and {xkj} be a subsequence of {xk} weakly
converging to x̄. Then x̄ ∈ K . From Lemma 3.3, if ∇h(xk) �= 0, then we have

(1 – ak)ρk(4 – ρk)
h2(xk)

‖∇h(xk)‖2 ≤ ∥
∥xk – z

∥
∥2 –

∥
∥xk+1 – z

∥
∥2 + Ak .

If ∇h(xk) = 0, then we have

0 ≤ ∥∥xk – z
∥∥2 –

∥∥xk+1 – z
∥∥2 + Ak .

Let N1 := {k : ∇h(xk) �= 0}. Summing up, we can write

∑

k∈N1

(1 – ak)ρk(4 – ρk)
h2(xk)

‖∇h(xk)‖2 ≤ ∥
∥x0 – z

∥
∥2 +

∞∑

k=1

Ak < +∞.

Combining this fact with the assumption ξ ≤ ρk ≤ 4 – ξ (for some ξ > 0) and 0 < a < ak <
b < 1, we can conclude that

∑

k∈N1

h2(xk)
‖∇h(xk)‖2 < +∞.

Moreover, since ∇h is Lipschitz continuous with constant ‖A‖2, we see that ‖∇h(xk)‖2

is bounded. So, h(xk) → 0 as k ∈ N1 and k → ∞. Note that h(xk) = 0 for k /∈ N1. Conse-
quently, we have

lim
k→+∞

h
(
xk) = 0. (8)
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By the lower semi-continuity of h,

0 ≤ h(x̄) ≤ lim inf
j→+∞ h

(
xkj

)
= lim

k→+∞
h
(
xk) = 0,

which implies that Ax̄ is a fixed point of the proximal mapping of g . Thus Ax̄ is a minimizer
of g . From (8) and the fact that ‖∇h(xk)‖2 is bounded, it follows that

lim
k→+∞

μk = 0,

which yields

lim
k→+∞

∥∥yk – xk∥∥ = lim
k→+∞

μk
∥∥A∗(I – proxλg)

(
Axk)∥∥ = 0.

Thus {ykj} weakly converges to x̄.
Claim 5. limk→+∞ xk = limk→+∞ yk = limk→+∞ P(xk) = x∗, where x∗ is a weakly cluster

point of the sequence satisfying (7). From Claims 3 and 4, we can deduce that x∗ belongs
to S. By Claim 1, we can assume that

lim
k→+∞

∥∥xk – x∗∥∥ = c < +∞.

By Lemma 3.2, we have

∥∥zk – x∗∥∥ ≤ ∥∥yk – x∗∥∥ +
∥∥zk – yk∥∥

≤ ∥∥xk – x∗∥∥ +
∥∥xk – yk∥∥ + βk ,

which implies that

lim sup
k→+∞

∥∥zk – x∗∥∥ ≤ lim sup
k→+∞

(∥∥xk – x∗∥∥ +
∥∥xk – yk∥∥ + βk

)
= c.

On the other hand, we have

lim
k→+∞

∥∥ak
(
xk – x∗) + (1 – ak)

(
zk – x∗)∥∥ = lim

k→+∞
∥∥xk+1 – x∗∥∥ = c.

By applying Lemma 2.7 with vk := xk – x∗, wk := zk – x∗, we obtain

lim
k→+∞

∥∥zk – xk∥∥ = 0.

Employing arguments, similar to those used in the proof of Theorem 1 in [37], we have

lim
k→+∞

xk = x∗.

This completes the proof. �
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4 Algorithms and convergence analysis
In [37], Yen et al. presented an application of Problem 1.1 to a model of electricity produc-
tion, in which z denotes the quantity of the materials and g(z) is the total environmental
fee that companies have to pay for environmental pollution while using materials z for
production. So, from x ∈ C, it follows that z = Ax ∈ {z : z = Ax, x ∈ C}.

However, in actual production, since the resources are limited, there are usually stricter
constraints on the quantity of the materials such as z ∈ Q, where Q is a nonempty closed
convex set of H2. Therefore, it is necessary to replace the unconstrained convex optimiza-
tion problem minx∈H2 g(x) with the constrained convex optimization as follows:

min
x∈Q

g(x), (9)

whose solution is denoted by Sol(Q, g). By using (9), Problem 1.1 becomes the following
problem:

Problem 4.1 Find x∗ ∈ C such that f (x∗, y) ≥ 0 for all y ∈ C such that Ax∗ ∈ Q and
g(Ax∗) ≤ g(z) for all z ∈ Q,

whose solution is denoted by

Γ := Γ (C, Q, f , g, A) :=
{

z ∈ Sol(EP) : Az ∈ Sol(Q, g)
}

.

Throughout this paper, we assume Γ �= ∅.
In this section, we discuss two cases that the function g is differentiable or non-

differentiable. The corresponding algorithms and their convergence are provided next.

4.1 The case when g is differentiable
We need to make the following assumption on the mapping g :

(B) g is L-Lipschitz differentiable with L > 0, i.e.,

∥∥∇g(x) – ∇g(y)
∥∥ ≤ L‖x – y‖

for all x, y ∈ H2.
It is easy to verify that the constrained convex optimization problem (9) is equivalent to

the following variational inequality problem:

〈∇g
(
z∗), z – z∗〉 ≥ 0 for all z ∈ Q, (10)

and the variational inequality problem (10) is equivalent to the following fixed point prob-
lem:

z∗ = PQ(I – ν∇g)z∗, (11)

where ν > 0. So, the constrained optimization problem (9) and the fixed point problem (11)
are equivalent. From the optimality condition of (9), we can also deduce the equivalence
of problems (9) and (11) (see [24]). Next we construct an iterative algorithm based on this
equivalence and Algorithm 3.1.
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Firstly, define two functions

h(x) :=
∥
∥(

I – PQ(I – ν∇g)
)
Ax

∥
∥2 (12)

and

l(x) :=
∥
∥A∗(I – PQ(I – ν∇g)

)
Ax

∥
∥2,

where ν ∈ (0, 2
L ).

Algorithm 4.1 Take the real sequences {ak}, {δk}, {βk}, {εk} and {ρk} as in Algorithm 3.1.
Step 1. Choose x1 ∈ C and let k := 1.
Step k. Have xk ∈ C and take

μk :=

⎧
⎨

⎩
0 if l(xk) = 0,

ρk
h(xk )
l(xk ) if l(xk) �= 0,

then compute

yk = xk – μkA∗(I – PQ(I – ν∇g)
)(

Axk). (13)

Take ηk ∈ ∂
εk
2 f (yk , yk) and define

αk =
βk

γk
,

where γk = max{δk ,‖ηk‖}. Compute

zk = PC
(
yk – αkηk

)
.

Let

xk+1 = akxk + (1 – ak)zk .

Now, we need the following lemmas to prove the convergence of Algorithm 4.1:

Lemma 4.1 ([8, Lemma 6.2]) Assume that a mapping g : H2 → H2 satisfies Assumption
(B) and ν ∈ (0, 2

L ). Let y ∈ Γ . If ‖l(xk)‖ �= 0, then it follows that

∥∥yk – y
∥∥2 ≤ ∥∥xk – y

∥∥2 – ρk(1 – ρk)
h2(xk)
l(xk)

.

Proof Let T = PQ(I – ν∇g). Since y ∈ Γ , it follows from (11) that Ay is a fixed point of
T . From the proof of [32, Theorem 4.1], it follows that T is 2+νL

4 -averaged and so it is
nonexpansive. By (13) and Lemma 2.3(i), we have

∥∥yk – y
∥∥2 ≤ ∥∥xk – y

∥∥2 + μ2
k
∥∥A∗(I – T)

(
Axk)∥∥2
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– 2μk
〈
xk – y, A∗(I – T)

(
Axk)〉. (14)

By the nonexpansivity of T and (2), we have

〈
xk – y, A∗(I – T)

(
Axk)〉

=
〈
A

(
xk – y

)
, (I – T)

(
Axk)〉

=
〈
A

(
xk – y

)
– (I – T)

(
Axk) + (I – T)

(
Axk), (I – T)

(
Axk)〉

=
〈
T

(
Axk) – Ay, Axk – T

(
Axk)〉 +

∥∥(I – T)
(
Axk)∥∥2

≥ 1
2
∥
∥(I – T)

(
Axk)∥∥2. (15)

Combining (14) and (15) and using the definitions of h(x) and l(x), we obtain

∥
∥yk – y

∥
∥2 ≤ ∥

∥xk – y
∥
∥2 + μ2

kl
(
xk) – μkh

(
xk)

=
∥
∥xk – y

∥
∥2 – ρk(1 – ρk)

h2(xk)
l(xk)

.

This completes the proof. �

Remark 4.1 From (15), it follows that l(x) = 0 implies h(x) = 0.

Using Lemma 4.1 and following the lines of the proof of Lemma 3.3, we have the follow-
ing:

Lemma 4.2 Let y ∈ Γ . Then, for each k ≥ 1 such that l(xk) �= 0, we have

∥∥xk+1 – y
∥∥2 ≤ ∥∥xk – y

∥∥2 – ρk(1 – ρk)
h2(xk)
l(xk)

+ 2(1 – ak)αkf
(
yk , y

)
+ Ak

and, for each k ≥ 1 such that l(xk) = 0, we have

∥∥xk+1 – y
∥∥2 ≤ ∥∥xk – y

∥∥2 + 2(1 – ak)αkf
(
yk , y

)
+ Ak ,

where Ak = (1 – ak)(αkεk + β2
k ).

Next we establish the convergence of Algorithm 4.1.

Theorem 4.1 Under Assumptions (A1)–(A4) and (B), the sequence {xk} generated by Al-
gorithm 4.1 strongly converges to a solution of Problem 4.1.

The proof of Theorem 4.1 is similar with that of Theorem 3.1, so here we omit it.
The only thing to note about the proof of Theorem 4.1 is that from h(x̄) = 0 it follows

that Ax̄ is a fixed point of PQ(I – ν∇g). Thus Ax̄ is a solution of (9).
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4.2 The case when g is non-differentiable
Let g : Q → R∪ {+∞} be a proper convex lower semi-continuous function. Denote by

gλ(z) := min
u∈Q

{
g(u) +

1
2λ

‖u – y‖2
}

(16)

the Moreau–Yosida approximate of the function g with the parameter λ. It is easy to see
that the solution of (16) converges to that of minx∈Q g(x) as λ → ∞.

For the mapping defined in (16), we have following result.

Lemma 4.3 The constrained optimization problem

min
x∈Q

gλ(x) (17)

is equivalent to the fixed point formulation

x∗ = PQ
(
x∗ – ν(I – proxλg)x∗), (18)

where ν ∈ (0, +∞).

Proof It is well known that problem (17) is equivalent to the following problem:

min
x∈H2

{
ιQ(x) + gλ(x)

}
. (19)

Note that the differentiability of the Yosida-approximate gλ (see, for instance, [28]) secures
the additivity of the subdifferentials, and so we can write

∂
(
ιQ(x) + gλ(x)

)
= ∂ιQ(x) +

I – proxλg

λ
(x).

The optimality condition of (19) can be then written as follows:

0 ∈ λ∂ιQ(x) + (I – proxλg)(x), (20)

where the subdifferential of ιC at x is NC(x). The inclusion (20) in turn yields (18). This
completes the proof. �

Set

h(x) =
∥
∥(

I – PQ
(
I – ν(I – proxλg)

))
Ax

∥
∥2

and

l(x) =
∥
∥A∗(I – PQ

(
I – ν(I – proxλg)

))
Ax

∥
∥2.

Similar to Algorithm 3.1, using Lemma 4.3, we introduce the following algorithm:
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Algorithm 4.2 Take the real sequences {ak}, {δk}, {βk}, {εk} and {ρk} as in Algorithm 3.1.
Take a positive parameter ν .

Step 1. Choose x1 ∈ C and let k := 1.
Step k. Have xk ∈ C and take

μk :=

⎧
⎨

⎩
0 if l(xk) = 0,

ρk
h(xk )
l(xk ) if l(xk) �= 0,

then compute

yk = xk – μk
(
A∗(I – PQ

(
I – ν(I – proxλg)

))(
Axk)). (21)

Take ηk ∈ ∂
εk
2 f (yk , yk) and define

αk =
βk

γk
,

where γk = max{δk ,‖ηk‖}. Compute

zk = PC
(
yk – αkηk

)
.

Let

xk+1 = akxk + (1 – ak)zk .

Remark 4.2 Let ν = 1 in Algorithm 4.2, then formula (21) becomes

yk = xk – μk
(
A∗(I – PQ ◦ proxλg)

(
Axk)),

which yields

yk = xk – μkA∗(I – proxλg)
(
Axk),

when Q = H2. So, Algorithm 3.1 is a special case of Algorithm 4.2.

We need the following lemmas for the proof of the convergence of Algorithm 4.2.

Lemma 4.4 Let ν ∈ (0, 1]. Then operator PQ(I – ν(I – proxλg)) is nonexpansive.

Proof By the fact that proxλg is firmly nonexpansive and Lemma 2.1, I – proxλg and ν(I –
proxλg) are also firmly nonexpansive. So, using Lemma 2.1 again, I – ν(I – proxλg) is firmly
nonexpansive. Thus, from Lemma 2.2, it follows that PQ(I – ν(I – proxλg)) is 3

4 -averaged
and hence nonexpansive. This completes the proof. �

Using Lemma 4.4 and following the proof of Theorem 4.1, we obtain the convergence
result of Algorithm 4.2.
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Theorem 4.2 Let ν ∈ (0, 1]. Then, under Assumptions (A1)–(A4), the sequence {xk} gen-
erated by Algorithm 4.2 strongly converges to a solution of Problem 4.1.

The proof of Theorem 4.2 is similar to that of Theorem 3.1, so here we omit it.
One thing to note about proof of Theorem 4.2 is that from h(x̄) = 0 it follows that Ax̄ is

a fixed point of PQ(I – ν(I – proxλg)). Thus, by Lemma 4.3, Ax̄ is a solution of (17).

5 Numerical examples
In this section, we provide two numerical examples to compare different algorithms. All
programs are written in Matlab version 7.0 and performed on a desktop PC with Intel(R)
Core(TM) i5-4200U CPU @ 2.30 GHz, RAM 4.00 GB.

Example 5.1 First, we consider an equilibrium-optimization model which was investi-
gated by Yen et al. [37]. This model can be regarded as an extension of a Nash–Cournot
oligopolistic equilibrium model in electricity markets. The latter model has been investi-
gated in some research papers (see, for example, [10, 27]).

In this equilibrium model, it is assumed that there are n companies. Let x denote the
vector whose entry xi stands for the power generated by company i. Following Contreras
et al. [10], we suppose that the price pi(s) is a decreasing affine function of s with s =

∑n
i=1 xi,

that is,

pi(s) = α – βis.

Then the profit made by company i is given by

fi(x) = pi(s)xi – ci(xi),

where ci(xi) is the cost for generating xi by the company i.
Suppose that Ci is the strategy set of company i, that is, condition xi ∈ Ci must be satis-

fied for each i. Then the strategy set of the model is C := C1 × C2 × · · · × Cn.
Actually, each company seeks to maximize its profit by choosing the corresponding pro-

duction level under the presumption that the production of the other companies are para-
metric input. A commonly used approach to this model is based upon the famous Nash
equilibrium concept.

Now, we recall that a point x∗ ∈ C = C1 × C2 × · · · × Cn is an equilibrium point of the
model if

fi
(
x∗) ≥ fi

(
x∗[xi]

)

for all xi ∈ Ci and i = 1, 2, . . . , n, where x∗[xi] stands for the vector obtained from x∗ by
replacing x∗

i with xi. By taking

f (x, y) := Ψ (x, y) – Ψ (x, x)

with

Ψ (x, y) := –
n∑

i=1

fi
(
x[yi]

)
, (22)
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the problem of finding a Nash equilibrium point of the model can be formulated as follows:

Find x∗ ∈ C such that f
(
x∗, x

) ≥ 0 for all x ∈ C. (EP)

In [37], Yen et al. extended this equilibrium model by additionally assuming that the
companies use some materials to produce electricity.

Let al,i denote the quantity of material l (l = 1, . . . , m) for producing one unit of electricity
by company i (i = 1, . . . , n). Let A be the matrix whose entries are al,i. Then entry l of the
vector Ax is the quantity of material l for producing x. Using materials for production may
cause environmental pollution, for which companies have to pay a fee. Suppose that g(Ax)
is the total environmental fee for producing x.

The task now is to find a production x∗ such that it is a Nash equilibrium point with
a minimum environmental fee, while the quantity of the materials satisfies constraint Q.
This problem can be formulated as the split feasibility problem of the following form:

Find x∗ ∈ C such that f
(
x∗, x

) ≥ 0 for all x ∈ C

and g
(
Ax∗) ≤ g(Ax) for all Ax ∈ Q. (SEP)

Suppose that, for every i, cost ci for production and environmental fee g are increasing
convex functions. The convexity assumption here means that both the cost and fee for
producing a unit of product increase as the quantity of the product gets larger.

Under this convexity assumption, it is not hard to see (see also Quoc et al. [27]) that
problem (EP) with f given by (22) can be formulated as follows:

Find x∗ ∈ C such that f
(
x∗, x

)
:=

〈
B̃1x∗ – ā, x – x∗〉+ϕ(x) –ϕ

(
x∗) ≥ 0 for all x ∈ C, (23)

where

ā := (α,α, . . . ,α)T ,

B1 :=

⎛

⎜
⎜⎜
⎜
⎝

b1 0 0 . . . 0
0 b2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . bn

⎞

⎟
⎟⎟
⎟
⎠

, B̃1 :=

⎛

⎜
⎜⎜
⎜
⎝

0 b1 b1 . . . b1

b2 0 b2 . . . b2
...

...
...

. . .
...

bn bn bn . . . 0

⎞

⎟
⎟⎟
⎟
⎠

,

ϕ(x) := xT B1x +
n∑

i=1

ci(xi).

(24)

Note that, when ci is differentiable and convex for each i, problem (23) is equivalent to
the following variational inequality problem:

Find x∗ ∈ C such that
〈
B̃1x∗ – ā + ∇ϕ

(
x∗), x – x∗〉 ≥ 0 for all x ∈ C.

We tested the proposed algorithm with the cost function given by

ci(xi) =
1
2

pix2
i + qixi, (25)
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where pi ≥ 0. In [37], Yen et al. showed that function f (x, y) defined by (23), (24) and (25)
satisfies Assumptions (A1), (A2) and (A4).

In [37], the author denoted by g(z) the total environmental fee. It is unreasonable. Firstly,
the total environmental fee should be included in the cost, that is, it is a part of ci(xi).
Secondly, it is supposed that the companies behave as players in an oligopolistic market,
but at the same time they are subordinated to the centralized planning decision in order
to minimize the total environmental fee for the whole system. That is, the model is not
concordant with the real system behavior.

It may be reasonable to denote by g(z) the restriction for the emission of contaminants.
To protect the environment, governments generally adopt policies to restrict emissions of
contaminants.

Assume that the production of electricity brings p contaminants and governments re-
quire that the quantity of contaminants brought by the production of one unit of electricity
is in a given region. We use a set K ⊂ R

p to denote this region.
Let bk,l denote the quantity of the contaminant k (k = 1, . . . , p) for consuming one unit of

material l (l = 1, . . . , m). Let B be the matrix whose entries are bk,l . Then entry k of vector
Bz is the quantity of contaminant k for consuming one unit of material zl (l = 1, . . . , m). So,
the quantity of contaminant k (k = 1, . . . , p) for producing one unit of electricity is entry k
of BAx, and BAx should be in the set K , i.e., BAx ∈ K . We get Bz ∈ K when letting z = Ax.

Therefore we define function g(z) as follows:

g(z) =
1
2
∥∥Bz – PK (Bz)

∥∥2, (26)

which is differentiable and ∇g(z) = BT (I – PK )(Bz) (see, e.g., [6]).
Take the sequences {βk}, {εk}, {δk} of the parameters as follows:

βk =
4

k + 1
, εk = 0, δk = 3, γk = max

{
3,‖ηk‖

}

for each k ≥ 1 and take ν = 1.99
‖B‖ . The entries of matrix A were randomly generated in the

interval [0, 5]. In the bifunction f (x, y) defined by (23), (24) and (25), the parameters α = 0.5
and bi, pi and qi for each i = 1, . . . , n were generated randomly in the interval (0, 1], [1, 3],
and [1, 3], respectively. In the function g(z), we take B ∈ R

p × R
m, and its elements are

generated randomly in (0, 1).
Since function g(z) is differentiable, we use Algorithm 4.1 to solve Problem 4.1 and com-

pare it with Algorithms 1.1 and 3.1. In Algorithms 1.1 and 3.1 we substitute proxλg with
I – ν∇g and do not consider the constraint set Q.

The computational results are shown in Figs. 1 and 2. The horizontal and vertical axes
show iteration k, as well as error1(k) := ‖xk – xk–1‖ and error2(k) := ‖Axk – PQ(Ayk)‖, re-
spectively. We solve the model with m = 15 and take n = 10 as the number of companies.

From Figs. 1 and 2, we have two conclusions as follows:
(a) The “error1” of Algorithm 4.1 is smaller than that of Algorithms 1.1 and 3.1 and the

“error1” of Algorithm 3.1 is slightly smaller than that of Algorithm 1.1.
(b) The “error2” of Algorithm 4.1 decreases with the iteration number k, while the “er-

ror2” of Algorithms 1.1 and 3.1 increases with the iteration number k. The “error2” of
Algorithm 4.1 is smaller than those of Algorithms 1.1 and 3.1.
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Figure 1 Comparison of Algorithms 1.1, 3.1 and 4.1

Figure 2 Comparison of Algorithms 1.1, 3.1 and 4.1

Next we give a numerical procedure in an infinite-dimensional space and compare Al-
gorithm 4.1 with a numerical algorithm which is based on the Halpern modification of [8,
Algorithm 6.1] as follows:

Algorithm 5.1

xk+1 = τkx1 + (1 – τk)U
(
xk + γ A∗(T – I)

(
Axk)),

where T := PQ(I – λ∇g), U := PC(I – λf ), and γ ∈ (0, 1/L), L is the spectral radius of the op-
erators A∗A, denoted by ρ(A∗A). The parameter λ depends on the constants of the inverse
strong monotonicity of ∇g and f .
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Figure 3 Comparison of Algorithms 4.1 and 5.1

According to the condition of the convergence of Halpern-type algorithm, we assume
that limk→∞ τk = 0 and

∑∞
k=1 τk = ∞.

Example 5.2 Suppose that H = L2([0, 1]) with norm ‖x‖ := (
∫ 1

0 |x(t)|2 dt) 1
2 and inner prod-

uct 〈x, y〉 :=
∫ 1

0 x(t)y(t) dt, x, y ∈ H . Let C := {x ∈ H : ‖x‖ ≤ 1} be the unit ball, Q := {x ∈ H :
〈x(t), sin(10x(t))〉 ≤ 1}. Define an operator F : C → H by

F(x)(t) =
∫ 1

0

(
x(t) – B(t, s)p

(
x(s)

))
ds + q(t)

for all x ∈ C and t ∈ [0, 1], where

B(t, s) =
2tset+s

e
√

e2 – 1
, p(x) = cos x, q(t) =

2tet

e
√

e2 – 1
.

As shown in [30], F is monotone and L-Lipschitz-continuous with L = 2. Let f (x(t),
y(t)) = 〈Fx(t), y(t) – x(t)〉, g(x)(t) = 1

2‖x(t)‖2 and (Ax)(t) = 3x(t) for all x ∈ H .

Let x1(t) = 1. Take the sequences {αk}, {βk}, {εk}, {δk} of the parameters as follows:

αk =
1
2

, βk =
4

k + 1
, εk = 0, δk = 3, γk = max

{
3,‖ηk‖

}

for each k ≥ 1 and take ν = 1.99
Lg

. We take λ = 1 according to the numerical tests since
the constants of the inverse strong monotonicity of ∇g and f are unknown. Take τk = 1

k+1
and γ = 0.9

ρ(A∗A) for Algorithm 5.1. We use error = 1
2‖PC(xk) – xk‖2 + 1

2‖PQ(Axk) – Axk‖2 to
measure the error of the kth iteration.

Numerical results are given in Fig. 3, which illustrate that Algorithm 4.1 behaves better
than Algorithm 5.1.

6 Conclusions
We first introduce a new algorithm, which involves a projection of each iteration, and
show its strong convergence. We also improve the model proposed in [37] by adding a
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constraint to the minimization problem of the total environmental fee. Two algorithms
are introduced to approximate the solution and their strong convergence is analyzed.
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