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1 Introduction
Let p ∈ R and x, y > 0 with x �= y. Then the arithmetic mean A(x, y), quadratic mean Q(x, y),
contraharmonic mean C(x, y), Neuman–Sándor mean NS(x, y) [1], Seiffert mean T(x, y)
[2–5], pth power mean Mp(x, y) [6–13], and Schwab–Borchardt mean SB(x, y) [14, 15] are
defined by

A(x, y) =
x + y

2
, Q(x, y) =

√
x2 + y2

2
, C(x, y) =

x2 + y2

x + y
, (1.1)

NS(x, y) =
x – y

2 sinh–1( x–y
x+y )

, T(x, y) =
x – y

2 arctan( x–y
x+y )

, (1.2)

Mp(x, y) =

⎧⎨
⎩

( xp+yp

2 )1/p, p �= 0,
√xy, p = 0,

and

SB(x, y) =

⎧⎨
⎩

√
y2–x2

arccos (x/y) , x < y,√
x2–y2

cosh–1 (x/y) , x > y,

respectively, where sinh–1(t) = log(t +
√

t2 + 1) and cosh–1(t) = log(t +
√

t2 – 1) are the in-
verse hyperbolic sine and cosine functions.

Let U(x, y) and V (x, y) be the symmetric bivariate means. Then Yang [16] introduced
the Sándor–Yang mean

RUV (x, y) =: V (x, y)e
U(x,y)

SB[U(x,y),V (x,y)] –1,
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and provided the explicit formulas for RAQ(x, y) and RQA(x, y) as follows:

RAQ(x, y) = Q(x, y)eA(x,y)/T(x,y)–1, (1.3)

RQA(x, y) = A(x, y)eQ(x,y)/NS(x,y)–1. (1.4)

Recently, the bounds and properties for certain bivariate means and related special func-
tions have attracted the attention of many researchers [17–28].

Zhao, Qian, and Song [29] proved that the double inequalities

Mα(a, b) < RQA(a, b) < Mβ (a, b),

Mλ(a, b) < RAQ(a, b) < Mμ(a, b)

hold for all a, b > 0 with a �= b if and only if α ≤ log 2/[1 + log 2 – log(1 +
√

2)] = 1.5517 . . . ,
β ≥ 5/3, λ ≤ 4 log 2/(4 + 2 log 2 – π ) = 1.2351 . . . , and μ ≥ 4/3.

Xu [30], and Xu, Chu, and Qian [31] proved that the two-sided inequalities

C1/6(x, y)A5/6(x, y) < RAQ(x, y) <
1
6

C(x, y) +
5
6

A(x, y), (1.5)

C1/3(x, y)A2/3(x, y) < RQA(x, y) <
1
3

C(x, y) +
2
3

A(x, y) (1.6)

are valid for all x, y > 0 with x �= y.
The main purpose of this paper is to improve the bounds for RAQ(x, y) and RQA(x, y) given

by (1.5) and (1.6).

2 Lemmas
In order to prove our main results, we need four lemmas which we present in this section.

Lemma 2.1 (see [32, Theorem 1.25]) Let a, b ∈ R with a < b, f , g : [a, b] → R be continu-
ous on [a, b] and differentiable on (a, b), and g ′(x) �= 0 on (a, b). If f ′(x)/g ′(x) is increasing
(decreasing) on (a, b), then so are the functions

f (x) – f (a)
g(x) – g(a)

,
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2 (see [33, Lemma 1.1]) Suppose that the power series f (x) =
∑∞

n=0 anxn and
g(x) =

∑∞
n=0 bnxn have the radius of convergence r > 0, and bn > 0 for all n = 0, 1, 2, . . . . If

there exists n0 ≥ 1 such that the non-constant sequence {an/bn}∞n=0 is increasing (decreas-
ing) for 0 ≤ n ≤ n0 and decreasing (increasing) for n ≥ n0, then there exists x0 ∈ (0, r) such
that the function f (x)/g(x) is strictly increasing (decreasing) on (0, x0) and decreasing (in-
creasing) on (x0, r).

Lemma 2.3 The function

f (t) =
2
3 log[sec(t)] + t

tan(t) – 1

log[ sec2(t)+5
6 ] – log[sec(t)]

3

(2.1)
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is strictly decreasing from (0,π/4) onto (3π + 4 log 2 – 12)/[2(6 log 7 – 7 log 2 – 6 log 3)],
12/25).

Proof Let

f1(t) =
2
3

log
[
sec(t)

]
+

t
tan(t)

– 1,

f2(t) = log

[
sec2(t) + 5

6

]
–

log[sec(t)]
3

,

f3(t) = 2 tan(t) + sin(t) cos(t) – 3t, f4(t) =
5 sin5(t)

cos(t)[1 + 5 cos2(t)]
.

Then it is not difficult to verify that

f1
(
0+)

= f2
(
0+)

= f3
(
0+)

= f4
(
0+)

= 0, (2.2)

f (t) =
f1(t)
f2(t)

,
f ′
1(t)

f ′
2(t)

=
f3(t)
f4(t)

, (2.3)

f ′
3(t)

f ′
4(t)

=
2[1 + 5 cos2(t)]2

5[10 cos4(t) + 19 cos2(t) + 1]
, (2.4)

[
f ′
3(t)

f ′
4(t)

]′
= –

2 sin(2t)[1 + 5 cos2(t)][75 cos2(t) – 9]
5[10 cos4(t) + 19 cos2(t) + 1]2 < 0 (2.5)

for t ∈ (0,π/4).
Therefore, the function f (t) is strictly decreasing on (0,π/4) follows easily from

Lemma 2.1, (2.2), (2.3), and (2.5).
It follows from (2.1)–(2.4) that

f
(
0+)

= lim
t→0+

f ′
3(t)

f ′
4(t)

=
12
25

and

f
(

π

4

)
= lim

t→π/4

2
3 log[sec(t)] + t

tan(t) – 1

log[ sec2(t)+5
6 ] – log[sec(t)]

3

=
3π + 4 log 2 – 12

2(6 log 7 – 7 log 2 – 6 log 3)
= 0.4258 . . . . �

Lemma 2.4 The function

g(t) =
t coth(t) – 2 log[cosh(t)]

3 – 1

log[ cosh2(t)+2
3 ] – 2 log[cosh(t)]

3

(2.6)

is strictly decreasing from (0, log(1 +
√

2)) onto ([3
√

2 log(1 +
√

2) – log 2 – 3]/(5 log 2 –
3 log 3), 3/10).

Proof Let

g1(t) = t coth(t) –
2 log[cosh(t)]

3
– 1,
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g2(t) = log

[
cosh2(t) + 2

3

]
–

2 log[cosh(t)]
3

,

g3(t) =
[
3 sinh(t) + sinh3(t) – 3t cosh(t)

][
cosh2(t) + 2

]
,

g4(t) = 4 sinh5(t).

Then we clearly see that

g1
(
0+)

= g2
(
0+)

= g3
(
0+)

= g4
(
0+)

= 0, (2.7)

g(t) =
g1(t)
g2(t)

,
g ′

1(t)
g ′

2(t)
=

g3(t)
g4(t)

. (2.8)

Elaborate computations lead to

g ′
3(t)

g ′
4(t)

=
5 sinh(4t) + 50 sinh(2t) – 84t – 36t cosh(2t)

20[sinh(4t) – 2 sinh(2t)]

=
5
∑∞

n=0
(4t)2n+1

(2n+1)! + 50
∑∞

n=0
(2t)2n+1

(2n+1)! – 84t – 36t
∑∞

n=0
(2t)2n

(2n)!

20
∑∞

n=0
(4t)2n+1

(2n+1)! – 40
∑∞

n=0
(2t)2n+1

(2n+1)!

=:
∑∞

n=0 an∑∞
n=0 bn

, (2.9)

where

an =
(5 × 22n+1 – 9n – 1)22n+5

(2n + 3)!
, bn =

10(22n+2 – 1)22n+5

(2n + 3)!
. (2.10)

From (2.10) we clearly see that

a1

b1
–

a0

b0
= –

1
10

< 0, (2.11)

an+1

bn+1
–

an

bn
=

9[3(2n – 1)22n+1 + 1]
10(22n+2 – 1)(22n+4 – 1)

> 0 (2.12)

for all n ≥ 1, and

bn > 0 (2.13)

for all n ≥ 0.
It follows from Lemma 2.2 and (2.9)–(2.13) that there exists t0 ∈ (0,∞) such that the

function g ′
3(t)/g ′

4(t) is strictly decreasing on (0, t0) and strictly increasing on (t0,∞).
Note that

[
g ′

3(t)
g ′

4(t)

]′
=

4 cosh(4t) + 16 cosh(2t) – 18t sinh(2t) – 21
5[sinh(4t) – 2 sinh(2t)]

–
[5 sinh(4t) + 50 sinh(2t) – 84t – 36t cosh(2t)][cosh(4t) – cosh(2t)]

5[sinh(4t) – 2 sinh(2t)]2 ,

[
g ′

3(t)
g ′

4(t)

]′

t=log(1+
√

2)
=

(13,464
√

2 + 19,041) log(1 +
√

2) – 12,117
√

2 – 17,136
5770 + 4080

√
2

= –0.0613 . . . < 0. (2.14)
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From (2.14) and piecewise monotonicity of the function g ′
3(t)/g ′

4(t), we clearly see that
t0 > log(1 +

√
2) and the function g ′

3(t)/g ′
4(t) is strictly decreasing on (0, log(1 +

√
2)). Then

Lemma 2.1 together with (2.7) and (2.8) leads to the conclusion that g(t) is strictly decreas-
ing on (0, log(1 +

√
2)).

It follows from (2.6)–(2.10) that

g
(
0+)

=
a0

b0
=

3
10

, g
(
log(1 +

√
2)

)
=

3
√

2 log(1 +
√

2) – log 2 – 3
5 log 2 – 3 log 3

= 0.2719 . . . . �

3 Main results
Theorem 3.1 The double inequality

[
1
6

C(x, y) +
5
6

A(x, y)
]α1[

C1/6(x, y)A5/6(x, y)
]1–α1

< RAQ(x, y)

<
[

1
6

C(x, y) +
5
6

A(x, y)
]β1[

C1/6(x, y)A5/6(x, y)
]1–β1

holds for all x, y > 0 with x �= y if and only if α1 ≤ (3π + 4 log 2 – 12)/[2(6 log 7 – 7 log 2 –
6 log 3)] = 0.4258 . . . and β1 ≥ 12/25.

Proof Since A(x, y), RAQ(x, y), and C(x, y) are symmetric and homogenous of degree one,
without loss of generality, we assume that x > y > 0. Let ν = (x – y)/(x + y) ∈ (0, 1) and
t = arctan(ν) ∈ (0,π/4). Then (1.1)–(1.3) lead to

log[RAQ(x, y)] – log[C1/6(x, y)A5/6(x, y)]
log[C(x, y)/6 + 5A(x, y)/6] – log[C1/6(x, y)A5/6(x, y)]

=
log(

√
1 + ν2) + arctan(ν)/ν – 1 – log( 6√1 + ν2)

log[(1 + ν2)/6 + 5/6] – log( 6√1 + ν2)

=
2
3 log[sec(t)] + t

tan(t) – 1

log[ sec2(t)+5
6 ] – log[sec(t)]

3

. (3.1)

Therefore, Theorem 3.1 follows easily from Lemma 2.3 and (3.1). �

Theorem 3.2 The two-sided inequalities

[
1
3

C(x, y) +
2
3

A(x, y)
]α2[

C1/3(x, y)A2/3(x, y)
]1–α2

< RQA(x, y)

<
[

1
3

C(x, y) +
2
3

A(x, y)
]β2[

C1/3(x, y)A2/3(x, y)
]1–β2

are valid for all x, y > 0 with x �= y if and only if α2 ≤ [3
√

2 log(1 +
√

2) – log 2 – 3]/(5 log 2 –
3 log 3) = 0.2719 . . . and β2 ≥ 3/10.
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Proof Since A(x, y), RQA(x, y), and C(x, y) are symmetric and homogenous of degree one,
without loss generality, we assume that x > y > 0. Let v = (x – y)/(x + y) ∈ (0, 1) and t =
sinh–1(v) ∈ (0, log(1 +

√
2). Then from (1.1), (1.3), and (1.4) we clearly see that

log[RQA(x, y)] – log[C1/3(x, y)A2/3(x, y)]
log[C(x, y)/3 + 2A(x, y)/3] – log[C1/3(x, y)A2/3(x, y)]

=
[
√

1 + v2 sinh–1(v)]/v – 1 – log( 3√1 + v2)
log[(1 + v2)/3 + 2/3] – log( 3√1 + v2)

=
t coth(t) – 2 log[cosh(t)]

3 – 1

log[ cosh2(t)+2
3 ] – 2 log[cosh(t)]

3

. (3.2)

Therefore, Theorem 3.2 follows easily from Lemma 2.4 and (3.2). �

From (1.3), (1.4), and Theorems 3.1 and 3.2 we get Corollary 3.3 immediately.

Corollary 3.3 Let

λ(α; a, b) = 6α log
[
C(a, b) + 5A(a, b)

]
+ (1 – α)

[
log C(a, b) + 5 log A(a, b)

]
– 6 log Q(a, b) + 6(1 – α log 6),

μ(α; a, b) = 3α log
[
C(a, b) + 2A(a, b)

]
+ (1 – α) log C(a, b) – (1 + 2α) log A(a, b) + 3(1 – α log 3).

Then the double inequalities

6A(a, b)
λ(β1; a, b)

< T(a, b) <
6A(a, b)

λ(α1; a, b)
,

3Q(a, b)
μ(β2; a, b)

< NS(a, b) <
3Q(a, b)

μ(α2; a, b)

hold for all a, b > 0 with a �= b if and only if α1 ≤ (3π + 4 log 2 – 12)/[2(6 log 7 – 7 log 2 –
6 log 3)] = 0.4258 . . . , β1 ≥ 12/25, α2 ≤ [3

√
2 log(1 +

√
2) – log 2 – 3]/(5 log 2 – 3 log 3) =

0.2719 . . . , and β2 ≥ 3/10.

4 Results and discussion
In the article, we present the best possible parameters α1, β1, α2, and β2 such that the
double inequalities

[
1
6

C(x, y) +
5
6

A(x, y)
]α1[

C1/6(x, y)A5/6(x, y)
]1–α1

< RAQ(x, y)

<
[

1
6

C(x, y) +
5
6

A(x, y)
]β1[

C1/6(x, y)A5/6(x, y)
]1–β1 ,

[
1
3

C(x, y) +
2
3

A(x, y)
]α2[

C1/3(x, y)A2/3(x, y)
]1–α2
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< RQA(x, y)

<
[

1
3

C(x, y) +
2
3

A(x, y)
]β2[

C1/3(x, y)A2/3(x, y)
]1–β2

hold for all x, y > 0 with x �= y. Our results are the improvements of the inequalities given
by (1.5) and (1.6).

5 Conclusion
We present sharp upper and lower bounds for the Sándor–Yang means RAQ and RQA in
terms of the arithmetic and contraharmonic means and provide new bounds for the Seif-
fert mean T and Neuman–Sándor mean NS. Our approach may have further applications
in the theory of bivariate means and special functions.
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