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1 Introduction
Throughout this paper, N and N0 denote the set of positive integers and the set of non-
negative integers, respectively. Similarly, R, R+ and R

+
0 represent the set of real numbers,

positive real numbers and non-negative real numbers, respectively. Let (X, d) be a metric
space and let T : X → X be a self-mapping. If there is a number k ∈ [0, 1) such that, for all
x, y ∈ X, d(Tx, Ty) ≤ kd(x, y) holds, then T is called a contractive mapping. In 1922, Banach
[1] proved a famous result known as the Banach contraction principle, which states that
every contractive mapping has a unique fixed point. It is one of the fundamental results
in fixed point theory. Due to its importance and simplicity, over the years, many authors
made efforts to generalize or extend that result (see [2–12] and the references therein).

Basically, the generalizations go in two directions: The first one is to work out a different
expression for the right side of the inequality in the Banach contraction principle. A typical
result of this kind is the work of Khan ([13], 1976). Using a symmetric expression, Khan
introduced the notion of a Khan-type contraction and proved a corresponding fixed point
theorem. In 1978, Fisher [14] modified and improved Khan’s work. Four decades later,
Piri, Rahrovi and Kumamet [15] extended the work of both Khan [13] and Fisher [14].
They accomplished the work by introducing a new general contractive condition with
a symmetric expression and established a corresponding fixed point theorem. Another
direction of generalizations of Banach’s work is to express both sides of the inequality in
the Banach result by forms involving functions. For example, Wardowski introduced the
notion of the F-contraction in ([16], 2012) and Jleli and Samet addressed the so-called θ -
contraction in ([17, 18], 2014). As a result, they all extended and improved Banach’s work.
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Combined with the ideas from the F-contraction and the Khan-type contraction, in
2017, Piri, Rahrovi, Marasi and Kumam [19] investigated and developed the so-called F-
Khan-contraction and proved the desired fixed point theorem. The results of Piri et al. ex-
tended and improved Wardowski’s work in [16]. In 2015, by using the Hausdorff–Pompieu
metric, Altun, Durmaz and Dag extended the F-contraction to multivalued contractive
mappings. They introduced the notion of a multivalued F-contraction and obtained some
new fixed point theorems for multivalued mappings in [4]. The purpose of this paper is to
further extend the above results. We define and examine some new generalized multival-
ued Khan-type contraction which extends all of F-contraction and θ -contraction studied
previously. The results presented in this paper improve and extend the corresponding re-
sults in Piri et al. [19], Jleli et al. [18] and Altun et al. [4].

2 Preliminaries
Let F be the family of all functions F : R+ →R satisfying the following conditions:

(F1) F is non-decreasing;
(F2) for each sequence {tn} ⊂R

+, limn→∞ F(tn) = –∞ ⇔ limn→∞ tn = 0;
(F3) there exists r ∈ (0, 1) such that limt→0+ trF(t) = 0.

Definition 2.1 ([19]) Let (X, d) be a metric space. A mapping T : X → X is called a F-
Khan-contraction, if there exist F ∈F and τ > 0 such that, for all x, y ∈ X,

(i) if max{d(x, Ty), d(y, Tx)} �= 0, then Tx �= Ty and

τ + F
(
d(Tx, Ty)

) ≤ F
(
M(x, y)

)
,

where

M(x, y) =
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

max{d(x, Ty), d(y, Tx)} ;

(ii) if max{d(x, Ty), d(y, Tx)} = 0, then

Tx = Ty.

In [19], Piri et al. proved the existence and uniqueness theorem of fixed point for F-
Khan-contraction.

Inspired by Definition 2.1 and taking the θ -contraction into account, we can define a new
Khan-type contraction. Let Θ be the family of all functions θ : R+ → (1,∞) satisfying the
following conditions:

(Θ1) θ is non-decreasing;
(Θ2) for each sequence {tn} ⊂R

+, limn→∞ θ (tn) = 1 ⇔ limn→∞ tn = 0;
(Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+ θ (t)–1

tr = l.

Definition 2.2 Let (X, d) be a metric spaces. A mapping T : X → X is called a θ -Khan-
contraction, if there exist θ ∈ Θ and k ∈ (0, 1) such that, for all x, y ∈ X,

(i) if max{d(x, Ty), d(y, Tx)} �= 0, then Tx �= Ty and

θ
(
d(Tx, Ty)

) ≤ (
θ
(
M(x, y)

))k ,
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where

M(x, y) =
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

max{d(x, Ty), d(y, Tx)} ;

(ii) if max{d(x, Ty), d(y, Tx)} = 0, then

Tx = Ty.

Note that we get the θ -contraction ([18]) immediately by letting y = Tx in M(x, y).
In 2014, by using comparison functions, Latif, Gordji, Karapinar and Sintunavaratet

introduced the notion of generalized (α,ψ)-Meir–Keeler contractive mappings and ob-
tained some new results in [20]. Two years later, Wang and Li extended the results of Latif
et al. by introducing (α,ψ)-Meir–Keeler–Khan multivalued mappings in [2]. Inspired by
those ideas, we will introduce some new contractive mappings by using comparison func-
tions in this paper.

Definition 2.3 ([20]) Let Ψ be the family of all functions ψ : R+
0 →R

+
0 such that

(Ψ1) ψ is non-decreasing;
(Ψ2) limn→∞ ψn(t) = 0 for all t ≥ 0, where ψn stands for the nth iterate of ψ .

Remark 2.4 Clearly, if ψ is a comparison function, then ψ(t) < t for each t > 0 and ψ(0) = 0.

Example 2.5 Let

ψ1(t) = αt, 0 < α < 1, for all t ≥ 0;

ψ2(t) =

⎧
⎨

⎩

t
2 , if 0 ≤ t < 1,
t
3 , if 1 ≤ t,

ψ3(t) =
t

1 + t
, for all t ≥ 0.

It is easy to check that ψ1, ψ2 and ψ3 belong to Ψ .
For more properties and applications of comparison function, we refer the reader to [2,

20–23].
The next definition plays an important role in our work.

Definition 2.6 Let Φ be the family of all functions φ : R+
0 →R

+
0 such that:

(Φ1) φ is non-decreasing and continuous;
(Φ2) for each sequence {tn} ⊂ (0,∞), limn→∞ φ(tn) = 0 ⇔ limn→∞ tn = 0.

Example 2.7 Let

φ1(t) = t, for all t > 0;

φ2(t) = ln θ (t), θ ∈ Θ for all t > 0;

φ3(t) = eF(t), F ∈F for all t > 0.

It is easy to check that φ1, φ2 and φ3 belong to Φ .
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Given a metric space (X, d), by CB(X) and K(X) we denote the family of all nonempty
closed and bounded subsets of X, and the family of all nonempty compact subsets of X,
respectively. For A, B ⊆ B(X), let

H(A, B) = max
{

sup
x∈A

D(x, B), sup
y∈B

D(y, A)
}

,

where D(x, B) = infy∈B{d(x, y)}. Then H is a metric on CB(X), which is called the Hausdorff–
Pompieu metric. By using the concept of the Hausdorff–Pompieu metric, Nadler intro-
duced the notion of multivalued contraction mappings and he proved a multivalued ver-
sion of the well known Banach contraction principle ([3], 1969).

By using the Hausdorff–Pompieu metric H , the F-contraction was extended to the mul-
tivalued case in [4].

Definition 2.8 ([4]) Let (X, d) be a metric space and T : X → CB(X) be a multivalued
mapping. Then T is called a multivalued F-contraction if there exist F ∈F and τ > 0 such
that, for all x, y ∈ X,

H(Tx, Ty) > 0 �⇒ τ + F
(
H(Tx, Ty)

) ≤ F
(
d(x, y)

)
.

Theorem 2.9 ([4]) Let (X, d) be a complete metric space and T : X → K(X) be a multival-
ued F-contraction. Then T has a fixed point x∗ in X.

Following this direction of research, we introduce a new type of generalized multival-
ued Khan-type contractive mappings. Via Ψ and Φ , we present the notion of generalized
multivalued Khan-type (ψ ,φ)-contraction mappings.

Definition 2.10 Let (X, d) be a metric space and T : X → CB(X) be a multivalued map-
ping. Then T is called a generalized multivalued Khan-type (ψ ,φ)-contraction, if there
exist ψ ∈ Ψ and φ ∈ Φ such that, for all x, y ∈ X,

(i) if max{D(x, Ty), D(y, Tx)} �= 0, then Tx �= Ty and

φ
(
H(Tx, Ty)

) ≤ ψ(φ
(
M(x, y)

)
, (2.1)

where

M(x, y) =
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)} ; (2.2)

(ii) if max{D(x, Ty), D(y, Tx)} = 0, then

Tx = Ty.

Remark 2.11 Let ψ(t) := e–τ t, φ(t) := eF (t), F ∈F , R+
0 →R

+
0 in (2.1). It is easy to check that

ψ ∈ Ψ and φ ∈ Φ . Hence we have

eF(H(Tx,Ty)) ≤ e–τ eF(M(x,y)),
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then we get

τ + F
(
H(Tx, Ty)

) ≤ F
(
M(x, y)

)
. (2.3)

Then T is called a generalized multivalued F-Khan-contraction. Let y ∈ Tx in (2.2), we get

M(x, y) =
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)} = D(x, Tx) ≤ d(x, y). (2.4)

In combination with (2.3) and (2.4), we get a multivalued F-contraction (Definition 2.8,
[4]) immediately.

Remark 2.12 Let ψ(t) := kt, k ∈ (0, 1), φ(t) := ln θ (t), θ ∈ Θ , R+
0 → R

+
0 in (2.1). It is easy to

check that ψ ∈ Ψ and φ ∈ Φ . Hence we have

ln θ
(
H(Tx, Ty)

) ≤ k ln θ
(
M(x, y)

)
,

then we have

θ
(
H(Tx, Ty)

) ≤ (
θ
(
M(x, y)

))k . (2.5)

Then T is called a generalized multivalued θ -Khan-contraction. Similarly, in combination
with (2.4) and (2.5), we obtain

θ
(
H(Tx, Ty)

) ≤ θ
(
d(x, y)

)k .

We call it a multivalued θ -contraction.

In Sect. 3, we state and prove some new fixed point results for generalized multivalued
Khan-type (ψ ,φ)-contraction. In Sect. 4, we give some applications of the main results of
this paper.

3 Main results
Based on the above argument, now we are in a position to give the following results.

Theorem 3.1 Let (X, d) be a complete metric space and T : X → K(X) be a generalized
multivalued Khan-type (ψ ,φ)-contraction, then T has a fixed point x∗ ∈ X.

Proof Case I Assume that D(xn–1, Txn) �= 0 for all n ∈N.
We construct a sequence starting from x0 ∈ X. If x0 ∈ Tx0, then x0 is a fixed point of

T and the proof is completed. Suppose that x0 /∈ Tx0. Because Tx0 is a compact subset
of X, then D(x0, Tx0) > 0 and we can choose x1 ∈ Tx0 such that d(x0, x1) = D(x0, Tx0). If
x1 ∈ Tx1, then x1 is a fixed point of T , and subsequently, the proof is completed. Assume
that x1 /∈ Tx1, then it is clear that D(x1, Tx1) > 0 because Tx1 is a compact subset of X. On
the other hand, from D(x1, Tx1) ≤ H(Tx0, Tx1) and (Φ1), we obtain

φ
(
D(x1, Tx1)

) ≤ φ
(
H(Tx0, Tx1)

)
.
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It follows from (2.1) and Remark 2.4 that

φ
(
D(x1, Tx1)

) ≤ φ
(
H(Tx0, Tx1)

) ≤ ψ
(
φ
(
M(x0, x1)

))

= ψ

(
φ

(
D(x0, Tx0)D(x0, Tx1) + D(x1, Tx1)D(x1, Tx0)

max{D(x0, Tx1), D(x1, Tx0)}
))

= ψ
(
φ
(
D(x0, Tx0)

))

< φ
(
D(x0, Tx0)

)
. (3.1)

Since Tx1 is a compact subset of X, we can choose x2 ∈ Tx1 such that d(x1, x2) = D(x1, Tx1).
Then from (3.1) we get

φ
(
d(x1, x2)

)
= φ

(
D(x1, Tx1)

)
< φ

(
D(x0, Tx0)

)
= φ

(
d(x0, x1)

)
. (3.2)

It follows from (3.2) and (Φ1) that

d(x1, x2) ≤ d(x0, x1).

We continue constructing the sequence similarly. If x2 ∈ Tx2, then this proof is done. Thus,
we assume that x2 /∈ Tx2. Then D(x2, Tx2) > 0 since Tx2 is a compact subset of X, and from
D(x2, Tx2) ≤ H(Tx1, Tx2), we have

φ
(
D(x2, Tx2)

) ≤ φ
(
H(Tx1, Tx2)

) ≤ ψ
(
φ
(
M(x1, x2)

))

= ψ

(
φ

(
D(x1, Tx1)D(x1, Tx2) + D(x2, Tx2)D(x2, Tx1)

max{D(x1, Tx2), D(x2, Tx1)}
))

= ψ
(
φ
(
D(x0, Tx0)

))

< φ
(
D(x1, Tx1)

)
. (3.3)

In addition, the compactness of Tx2 implies that there exists x3 ∈ Tx2 such that d(x2, x3) =
D(x2, Tx2). Then from (3.3) we get

φ
(
d(x2, x3)

)
= φ

(
D(x2, Tx2)

)
< φ

(
D(x1, Tx1)

)
= φ

(
d(x1, x2)

)
. (3.4)

It follows from (2.4) and (Φ1) that

d(x2, x3) ≤ d(x1, x2).

By induction, we obtain a sequence {xn}n∈N0 satisfying

xn+1 ∈ Txn, xn+1 /∈ Txn+1, d(xn, xn+1) = D(xn, Txn) > 0, (3.5)

and

d(xn, xn+1) ≤ d(xn–1, xn),
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for all n ∈ N. Therefore the sequence {d(xn, xn+1)}n∈N0 is a positive and non-increasing
sequence, and hence

lim
n→∞ d(xn, xn+1) ≥ 0.

Now, we claim that

lim
n→∞ d(xn, xn+1) = 0.

In fact, from (3.5) and (Φ1), by using (2.1), we get

0 ≤ φ
(
d(xn, xn+1)

)
= φ

(
D(xn, Txn)

)

≤ φ
(
H(Txn–1, Txn)

) ≤ ψ
(
φ
(
M(xn–1, xn)

))

= ψ

(
φ

(
D(xn–1, Txn–1)D(xn–1, Txn) + D(xn, Txn)D(xn, Txn–1)

max{D(xn–1, Txn), D(xn, Txn–1)}
))

= ψ
(
φ
(
D(xn–1, Txn–1)

)) ≤ ψ2(φ
(
D(xn–2, Txn–2)

))

≤ ψ3(φ
(
D(xn–3, Txn–3)

)) ≤ · · ·
≤ ψn(φ

(
D(x0, Tx0)

))
.

From (Ψ2) we have

lim
n→∞ψn(φ

(
D(x0, Tx0)

))
= 0.

By using the sandwich theorem, we get

lim
n→∞φ

(
d(xn, xn+1)

)
= 0.

Therefore, from (Φ2) we obtain

lim
n→∞ d(xn, xn+1) = 0

and hence

lim
n→∞ D(xn, Txn) = 0. (3.6)

Now, we claim that

lim
n,m→∞ d(xn, xm) = 0.

Arguing by contradiction, we assume that there exists a ε > 0 for which we can seek two
sequences {p(n)}∞n=1 and {q(n)}∞n=1 of natural numbers such that, for all n ∈ N, p(n) is the
smallest index for which

p(n) > q(n) > n, d(xp(n), xq(n)) ≥ ε, d(xp(n)–1, xq(n)) < ε. (3.7)
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Thus, for all n ∈N, by using the triangle inequality, we have

ε ≤ d(xp(n), xq(n)) ≤ D(xp(n), Txq(n)) + D(Txq(n), xq(n)). (3.8)

It follows from (3.6) and (3.8) and by using the sandwich theorem again, we have

lim inf
n→∞ D(xp(n), Txq(n)) ≥ ε.

Thus, there exists n1 ∈N, such that

D(xp(n), Txq(n)) >
ε

2
,

for all n > n1.
This implies that

max
{

D(xp(n), Txq(n)), D(Txp(n), xq(n))
}

>
ε

2
, (3.9)

for all n > n1.
From (3.7) and by using the triangle inequality again, we have

ε ≤ d(xp(n), xq(n))

≤ D(xp(n), Txp(n)) + H(Txp(n), Txq(n)) + D(Txq(n), xq(n)). (3.10)

In combination with (3.6) and (3.10), we get

lim inf
n→∞ H(Txp(n), Txq(n)) ≥ ε.

Thus, there exists n2 ∈N, such that

H(Txp(n), Txq(n)) >
ε

2
, (3.11)

for all n > n2.
It follows from (3.11), (Φ1) and (2.1) that

φ

(
ε

2

)
≤ φ

(
H(Txp(n), Txq(n))

) ≤ ψ
(
φ
(
M(xp(n), xq(n))

))

≤ ψ

(
φ

(
D(xp(n), Txp(n))D(xp(n), Txq(n)) + D(xq(n), Txq(n))D(xq(n), Txp(n))

max{D(xp(n), Txq(n)), D(Txp(n), xq(n))}
))

< φ

(
D(xp(n), Txp(n))D(xp(n), Txq(n)) + D(xq(n), Txq(n))D(xq(n), Txp(n))

max{D(xp(n), Txq(n)), D(Txp(n), xq(n))}
)

, (3.12)

for all n > max{n1, n2}.
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On the other hand, from (3.9) we know that

0 ≤ D(xp(n), Txp(n))D(xp(n), Txq(n)) + D(xq(n), Txq(n))D(xq(n), Txp(n))
max{D(xp(n), Txq(n)), D(Txp(n), xq(n))}

=
D(xp(n), Txp(n))D(xp(n), Txq(n))

max{D(xp(n), Txq(n)), D(Txp(n), xq(n))

+
D(xq(n), Txq(n))D(xq(n), Txp(n))

max{D(xp(n), Txq(n)), D(Txp(n), xq(n))

≤ D(xp(n), Txp(n)) + D(xq(n), Txq(n)).

Let n → ∞ in the above inequality and by taking (3.6) into account, we obtain

lim
n→∞

D(xp(n), Txp(n))D(xp(n), Txq(n)) + D(xq(n), Txq(n))D(xq(n), Txp(n))
max{D(xp(n), Txq(n)), D(Txp(n), xq(n))} = 0.

So, there exists n3 ∈N such that

D(xp(n), Txp(n))D(xp(n), Txq(n)) + D(xq(n), Txq(n))D(xq(n), Txp(n))
max{D(xp(n), Txq(n)), D(Txp(n), xq(n))} <

ε

2
,

for all n > n3

This implies that

φ

(
D(xp(n), Txp(n))D(xp(n), Txq(n)) + D(xq(n), Txq(n))D(xq(n), Txp(n))

max{D(xp(n), Txq(n)), D(Txp(n), xq(n))}
)

≤ φ

(
ε

2

)
, (3.13)

for all n > n3.
In combination with (3.12) and (3.13) we get

φ

(
ε

2

)
< φ

(
D(xp(n), Txp(n))D(xp(n), Txq(n)) + D(xq(n), Txq(n))D(xq(n), Txp(n))

max{D(xp(n), Txq(n)), D(Txp(n), xq(n))}
)

≤ φ

(
ε

2

)
,

for all n > max{n1, n2, n3}, which is a contradiction. Hence

lim
n,m→∞ d(xn, xm) = 0.

Therefore, we conclude that {xn}∞n=1 is a Cauchy sequence in X. Since (X, d) is a complete
metric space, so there exists x∗ ∈ X such that

lim
n→∞ d

(
xn, x∗) = 0

and

lim
n→∞ D

(
xn+1, Tx∗) = d

(
x∗, Tx∗). (3.14)

Now, we claim that x∗ ∈ Tx∗.
Arguing by contradiction, we assume that D(x∗, Tx∗) > 0, then there are two cases:
(a) for each k ∈N, there exists nk ∈N, n0 = 1, nk > nk–1 and xnk ∈ Tx∗;
(b) there exists m ∈N, such that D(xn, Tx∗) > 0 for each n ≥ m.



Xiao et al. Journal of Inequalities and Applications         (2019) 2019:70 Page 10 of 18

From (a), we get

x∗ = lim
k→∞

xnk ∈ Tx∗,

which is a contraction.
From (b), we get

max
{

D
(
xn, Tx∗), D

(
x∗, Txn

)}
> 0. (3.15)

Since T is a generalized multivalued Khan-type (ψ ,φ)-contraction, from (3.15) we obtain

φ
(
D

(
xn+1, Tx∗)) ≤ φ

(
H

(
Txn, Tx∗)) ≤ ψ

(
φ
(
M

(
xn, x∗)))

= ψ

(
φ

(
D(xn, Txn)D(xn, Tx∗) + D(x∗, Tx∗)D(x∗, Txn)

max{D(xn, Tx∗), D(Txn, x∗)}
))

< φ

(
D(xn, Txn)D(xn, Tx∗) + D(x∗, Tx∗)D(x∗, Txn)

max{D(xn, Tx∗), D(Txn, x∗)}
)

. (3.16)

On the other hand, in combination with (3.6), (3.14) and (3.15), we get

lim
n→∞

D(xn, Txn)D(xn, Tx∗) + D(x∗, Tx∗)D(x∗, Txn)
max{D(xn, Tx∗), D(Txn, x∗)} = 0.

Thus, taking D(x∗, Tx∗) > 0 into account, there exists n4 ∈N, such that

D(xn, Txn)D(xn, Tx∗) + D(x∗, Tx∗)D(x∗, Txn)
max{D(xn, Tx∗), D(Txn, x∗)} <

1
2

D
(
x∗, Tx∗),

for all n > n4. And this implies that

φ

(
D(xn, Txn)D(xn, Tx∗) + D(x∗, Tx∗)D(x∗, Txn)

max{D(xn, Tx∗), D(Txn, x∗)}
)

≤ φ

(
1
2

D
(
x∗, Tx∗)

)
.

It follows from (3.16) that

φ
(
D

(
xn+1, Tx∗)) < φ

(
1
2

D
(
x∗, Tx∗)

)
,

for all n > n4.
Since φ ∈ Φ , we obtain

D
(
xn+1, Tx∗) ≤ 1

2
D

(
x∗, Tx∗),

for all n > n4.
Letting n → ∞ in the above inequality and taking (3.14) into account, we get

D
(
x∗, Tx∗) ≤ 1

2
D

(
x∗, Tx∗),

which is a contraction. So we have

D
(
x∗, Tx∗) = 0,
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this implies that

x∗ ∈ Tx∗.

Hence x∗ is a fixed point of T .
Case II Assume that there exist i ∈N such that D(xi–1, Txi) = 0.
Since D(xi–1, Txi) = 0, we get

max
{

D(xi–1, Txi), D(Txi–1, xi)
}

= 0.

By condition (ii) of Definition 2.10, it follows that

Txi–1 = Txi,

and hence

xi ∈ Txi,

and this implies that xi is a fixed point of T . This complete the proof. �

Remark 3.2 Note that the continuity of T is not supposed in Theorem 3.1.

From Definition 2.10 and Theorem 3.1, we get the result of single-valued mappings as
follows.

Definition 3.3 Let (X, d) be a metric space. A mapping T : X → X is called a generalized
Khan-type (ψ ,φ)-contraction if there exist ψ ∈ Ψ and φ ∈ Φ such that, for all x, y ∈ X,

(i) if max{d(x, Ty), d(y, Tx)} �= 0, then Tx �= Ty and

φ
(
d(Tx, Ty)

) ≤ ψ(φ
(
M(x, y)

)
,

where

M(x, y) =
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

max{d(x, Ty), d(y, Tx)} ;

(ii) if max{d(x, Ty), d(y, Tx)} = 0 then

Tx = Ty.

Remark 3.4 Using the same methods of Remark 2.11 and Remark 2.12, we get the F-Khan-
contraction (Definition 2.1, [19]) and θ -Khan-contraction (Definition 2.2), respectively.

Theorem 3.5 Let (X, d) be a complete metric space and T : X → X be a generalized Khan-
type (ψ ,φ)-contraction, then T has a unique fixed point x∗ ∈ X, and for every x ∈ X the
sequence {Tnx}n∈∞ converges to x∗.
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Proof We only need to prove the uniqueness. For this purpose, we assume that y∗ is an-
other fixed point of T in X such that d(x∗, y∗) > 0. Therefore

max
{

d
(
x∗, Ty∗), d

(
Tx∗, y∗)} > 0.

So, from condition (i) of Definition 3.3, we get

0 < φ
(
Tx∗, Ty∗)

≤ ψ

(
φ

(
D(x∗, Tx∗)D(x∗, Ty∗) + D(y∗, Ty∗)D(y∗, Tx∗)

max{D(x∗, Ty∗), D(Tx∗, y∗)}
))

< φ

(
D(x∗, Tx∗)D(x∗, Ty∗) + D(y∗, Ty∗)D(y∗, Tx∗)

max{D(x∗, Ty∗), D(Tx∗, y∗)}
)

.

But

D(x∗, Tx∗)D(x∗, Ty∗) + D(y∗, Ty∗)D(y∗, Tx∗)
max{D(x∗, Ty∗), D(Tx∗, y∗)} = 0,

this leads to a contraction and hence x∗ = y∗. This completes the proof. �

4 Applications
Corollary 4.1 Let (X, d) be a complete metric space and T : X → K(X) be a mapping. If
there exists λ ∈ (0, 1) such that, for all x, y ∈ X,

H(Tx, Ty) ≤ λM(x, y),

where

M(x, y) =
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)} ,

then there exists a fixed point x∗ of T in X.

Proof Let ψ(t) := λt and φ(t) = t, R+
0 →R

+
0 in Theorem 3.1. It is easy to check that ψ ∈ Ψ

and φ ∈ Φ . The conclusion can be obtained immediately. �

Corollary 4.2 Let (X, d) be a complete metric space and T : X → K(X) be a generalized
multivalued θ -Khan-contraction, that is, if there exist θ ∈ Θ and k ∈ (0, 1) such that, for
all x, y ∈ X,

(i) if max{D(x, Ty), D(y, Tx)} �= 0, then Tx �= Ty and

θ
(
H(Tx, Ty)

) ≤ (
θ
(
M(x, y)

))k ,

where

M(x, y) =
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)} ;
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(ii) if max{D(x, Ty), D(y, Tx)} = 0, then

Tx = Ty;

then there exists a fixed point x∗ of T in X .

Proof By using Remark 2.12 the conclusion can be obtained immediately. �

Corollary 4.3 Let (X, d) be a complete metric space and T : X → K(X) be a generalized
multivalued F-Khan-contraction, that is, if there exist F ∈ F and τ > 0 such that, for all
x, y ∈ X,

(i) if max{D(x, Ty), D(y, Tx)} �= 0, then Tx �= Ty and

τ + F
(
H(Tx, Ty)

) ≤ F
(
M(x, y)

)
,

where

M(x, y) =
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)} ;

(ii) if max{D(x, Ty), D(y, Tx)} = 0, then

Tx = Ty;

then there exists a fixed point x∗ of T in X .

Proof By using Remark 2.11 the conclusion can be obtained immediately. �

Remark 4.4 Let y ∈ Tx in condition (i) of Corollary 4.3, we have

M(x, y) =
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)} = D(x, Tx) ≤ d(x, y).

Then we get Theorem 2.9 ([4]) immediately.

Corollary 4.5 Let (X, d) be a complete metric space and T : X → K(X) be a multivalued
mapping. Suppose that, for all x, y ∈ X,

H(Tx, Ty) ≤ M(x, y)
1 + M(x, y)

.

Then there exists a fixed point x∗ of T in X.

Proof Let ψ(t) := t
1+t , φ(t) := t, R+

0 → R
+
0 in Theorem 3.1. It is easy to check that ψ ∈ Ψ

and φ ∈ Φ , and the conclusion can be obtained immediately. �

Example 4.6 Now, we present an application where Theorem 3.1 can be applied.
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Let X = [0, 1] with the metric d(x, y) = |x – y|, x, y ∈ X. Obviously (X, d) is a complete
metric space. Define a mapping

T : X → K(X)

by

Tx =
[

0,
x
3

]

for all x ∈ X. Then

H(Tx, Ty) =
|x – y|

3
, x, y ∈ X.

Let ψ(t) := 3
4 t and φ(t) := t, t ≥ 0, then

φ
(
H(Tx, Ty)

)
= H(Tx, Ty) =

|x – y|
3

,

and

ψ

(
φ

(
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)}
))

= ψ

(
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)}
)

=
3
4

2
3 xD(x, Ty) + 2

3 yD(y, Tx)
max{D(x, Ty), D(y, Tx)} .

Since x �= y, the inequalities x ≤ y
3 and y ≤ x

3 cannot be simultaneously true.
If x > y

3 and y ≤ x
3 , then D(y, Tx) = 0, and hence

ψ

(
φ

(
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)}
))

=
3
4

2
3 xD(x, Ty) + 2

3 yD(y, Tx)
max{D(x, Ty), D(y, Tx)} =

x
2

.

Note that if x > y
3 and y ≤ x

3 , then |x–y|
3 ≤ x

2 . Hence

φ
(
H(Tx, Ty)

) ≤ ψ

(
φ

(
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)}
))

.

Similarly, we see that if y > x
3 and x ≤ y

3 , the above inequality holds.
If x > y

3 and y > x
3 , then

ψ

(
φ

(
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)}
))

=
3
4

2
3 x(x – y

3 ) + 2
3 y(y – x

3 )
max{x – y

3 , y – x
3 }
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≥ 3
4

2
3 x(x – y

3 ) + 2
3 y(y – x

3 )
(x – y

3 ) + (y – x
3 )

=
3(x2 + y2) – 2xy

4(x + y)
.

Notice that

|x – y|
3

≤ 3(x2 + y2) – 2xy
4(x + y)

,

whenever x > y or x < y. So we get

φ
(
H(Tx, Ty)

) ≤ ψ

(
φ

(
D(x, Tx)D(x, Ty) + D(y, Ty)D(y, Tx)

max{D(x, Ty), D(y, Tx)}
))

.

Thus, conditions in Theorem 3.1 hold. Therefore, by Theorem 3.1, it follows that there
exists a fixed point of T in X. In fact, 0 is a fixed point of T .

Example 4.7 In this example, we present an application where Theorem 3.5 can be ap-
plied. This application is inspired by [7, 19].

Let X = C[0, 1] be the set of all real continuous functions on [0, 1], and d is defined by

d(f , g) = ‖f – g‖ = max
t∈[0,1]

∣∣f (t) – g(t)
∣∣, f , g ∈ X.

Let

Y =
{

f ∈ X : 0 ≤ f (t) ≤ 1
8

, t ∈ [0, 1] or f (t) = 1, t ∈ [0, 1]
}

,

and G : [0, 1] × [0, 1] × Y → X be defined by

G
(
t, s, f (r)

)
=

⎧
⎨

⎩

1
2 , 0 ≤ f (r) ≤ 1

8 ,
1
4 , f (r) = 1,

for all r, s, t ∈ [0, 1] and f ∈ Y . Obviously (Y , d) is complete metric space, and G(t, s, f (r)) is
integrable with respect to r on [0, 1].

Let T be defined on Y by

Tf (s) =
∫ 1

0
G

(
s, r, f (r)

)
dr,

for all s ∈ [0, 1]. We have

Tf (s) =

⎧
⎨

⎩

∫ 1
0 G(s, r, f (r)) =

∫ 1
0

1
2 dr = 1

2 , 0 ≤ f (r) ≤ 1
8 ,

∫ 1
0 G(s, r, f (r)) =

∫ 1
0

1
4 dr = 1

4 , f (r) = 1,

this proves that Tf ∈ Y for all f ∈ Y .
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So for all r, s ∈ [0, 1] and f , g ∈ Y , we have

∣∣G
(
s, r, f (r)

)
– G

(
s, r, g(r)

)∣∣ =

⎧
⎨

⎩
0, f (r) = g(r) = 1 or 0 ≤ f (r), g(r) ≤ 1

8 ,
1
4 , otherwise,

and

∣∣f (r) – Tf (r)
∣∣ =

⎧
⎨

⎩
|f (r) – 1

2 |, 0 ≤ f (r) ≤ 1
8 ,

|1 – 1
4 | = 3

4 , f (r) = 1,

and

∣∣f (r) – Tg(r)
∣∣ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|f (r) – 1
2 |, 0 ≤ f (r), g(r) ≤ 1

8 ,

|f (r) – 1
4 |, 0 ≤ f (r) ≤ 1

8 , g(r) = 1,

|1 – 1
2 | = 1

2 , f (r) = 1, 0 ≤ g(r) ≤ 1
8 ,

|1 – 1
4 | = 3

4 , f (r) = g(r) = 1.

According to symmetry the above relations are established for |g(r) – Tg(r)| and |g(r) –
Tf (r)|. Obviously 0 ≤ f (r) ≤ 1

8 implies that 3
8 ≤ |f (r) – 1

2 | ≤ 1
2 and 3

8 ≤ |f (r) – 1
4 | ≤ 1

4 .
Therefore,

1
8

≤ max
{‖f – Tg‖,‖g – Tf ‖} ≤ 1

4
.

Noticing that

|f (r) – Tf (r)||f (r) – Tg(r)| + |g(r) – Tg(r)||g(r) – Tf (r)|
max{‖f – Tg‖,‖g – Tf ‖}

≥ 4
[∣∣f (r) – Tf (r)

∣∣∣∣f (r) – Tg(r)
∣∣ +

∣∣g(r) – Tg(r)
∣∣∣∣g(r) – Tf (r)

∣∣]

≥ 4
[

3
8

· 1
8

+
3
8

· 1
8

]
=

3
8

,

we get

∣∣G
(
s, r, f (r)

)
– G

(
s, r, g(r)

)∣∣

≤ 2
3

· |f (r) – Tf (r)||f (r) – Tg(r)| + |g(r) – Tg(r)||g(r) – Tf (r)|
max{‖f – Tg‖,‖g – Tf ‖} .

Now, we prove that the integral equation

f (s) =
∫ 1

0
G

(
s, r, f (r)

)
dr

has a unique solution f ∗ ∈ Y .
For all f , g ∈ Y and s ∈ [0, 1], we have

∣
∣Tf (s) – Tg(s)

∣
∣ =

∣∣
∣∣

∫ 1

0
G

(
s, r, f (r)

)
dr –

∫ 1

0
G

(
s, r, g(r)

)
dr

∣∣
∣∣
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≤
∫ 1

0

∣∣G
(
s, r, f (r)

)
– G(s, r, g(r)

∣∣dr

≤ 2
3

·
∫ 1

0

|f (r) – Tf (r)||f (r) – Tg(r)| + |g(r) – Tg(r)||g(r) – Tf (r)|
max{‖f – Tg‖,‖g – Tf ‖} dr

≤ 2
3

·
∫ 1

0

‖f – Tf ‖‖f – Tg‖ + ‖g – Tg‖‖g – Tf ‖
max{‖f – Tg‖,‖g – Tf ‖} dr

=
2
3

· ‖f – Tf ‖‖f – Tg‖ + ‖g – Tg‖‖g – Tf ‖
max{‖f – Tg‖,‖g – Tf ‖} .

So, for all f , g ∈ Y , we have

‖Tf – Tg‖ ≤ 2
3

· ‖f – Tf ‖‖f – Tg‖ + ‖g – Tg‖‖g – Tf ‖
max{‖f – Tg‖,‖g – Tf ‖} .

Let ψ(t) := 2
3 t, φ(t) := t, R+ →R

+.
Then we get

φ
(‖Tf – Tg‖) ≤ ψ

(
φ

(‖f – Tf ‖‖f – Tg‖ + ‖g – Tg‖‖g – Tf ‖
max{‖f – Tg‖,‖g – Tf ‖}

))
.

Consequently, all the conditions of Theorem 3.5 are satisfied. Therefore T has a fixed point
which is the solution of the integral equation f (s) =

∫ 1
0 G(s, r, f (r)) dr.
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