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Abstract
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1 Introduction and preliminaries
Convexity is very important in the field of mathematical inequalities. It is a basic concept
in mathematics, its extensions and generalizations have been defined in various ways by
using the different techniques. For example one of them is (h – m)-convexity, which is a
generalization of convexity that contains h-convexity, m-convexity, s-convexity defined on
the right half of the real line including zero (see [12, 23] and the references therein).

Definition 1 Let J ⊆R be an interval containing (0, 1) and let h : J →R be a non-negative
function. We say that f : [0, b] → R is a (h – m)-convex function, if f is non-negative and,
for all x, y ∈ [0, b], m ∈ [0, 1] and α ∈ (0, 1), one has

f
(
αx + m(1 – α)y

) ≤ h(α)f (x) + mh(1 – α)f (y).

For suitable choices of h and m, the class of (h–m)-convex functions is reduced to differ-
ent known classes of convex and related functions defined on [0, b] given in the following
remark.

Remark 1
(i) If m = 1, then we get an h-convex function.

(ii) If h(α) = α, then we get an m-convex function.
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(iii) If h(α) = α and m = 1, then we get a convex function.
(iv) If h(α) = 1 and m = 1, then we get a p-function.
(v) If h(α) = αs and m = 1, then we get an s-convex function in the second sense.

(vi) If h(α) = 1
α

and m = 1, then we get a Godunova–Levin function.
(vii) If h(α) = 1

αs and m = 1, then we get an s-Godunova–Levin function of the second
kind.

Convex functions are equivalently defined by the well-known Hadamard inequality
stated as follows.

Theorem 1.1 Let f : [a, b] → R be a convex function such that a < b, then the following
inequality holds:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1)

The Fejér–Hadamard inequality is a weighted version of the Hadamard inequality es-
tablished by Fejér in [8].

Theorem 1.2 Let f : [a, b] →R be a convex function and g : [a, b] → R be a non-negative,
integrable and symmetric to a+b

2 . Then the following inequality holds:

f
(

a + b
2

)∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤ f (a) + f (b)

2

∫ b

a
g(x) dx. (2)

Many researchers are continuously working on inequalities (1) and (2), and they have
produced very interesting results for convex and related functions; for details see [3–7,
12, 16, 18]. In this paper, we wish to prove the Hadamard and the Fejér–Hadamard type in-
tegral inequalities for (h – m)-convex functions via an extended generalized Mittag-Leffler
function.

In [1], M. Andrić et al. defined the extended generalized Mittag-Leffler function
Eγ ,δ,k,c

μ,α,l (·; p) as follows:

Definition 2 Let μ,α, l,γ , c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0, δ > 0
and 0 < k ≤ δ + �(μ). Then the extended generalized Mittag-Leffler function Eγ ,δ,k,c

μ,α,l (t; p)
is defined by

Eγ ,δ,k,c
μ,α,l (t; p) =

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α)
tn

(l)nδ

, (3)

where βp is the generalized beta function defined by

βp(x, y) =
∫ 1

0
tx–1(1 – t)y–1e– p

t(1–t) dt

and (c)nk is the Pochhammer symbol defined by (c)nk = Γ (c+nk)
Γ (c) .

Remark 2 Equation (3) is a generalization of the following functions:
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(i) setting p = 0, it reduces to the function Eγ ,δ,k,c
μ,α,l (t) due to Salim et al. defined in [17],

(ii) setting l = δ = 1, it reduces to the function Eγ ,k,c
μ,α (t; p) defined by Rahman et al. in

[15],
(iii) setting p = 0 and l = δ = 1, it reduces to the function Eγ ,k

μ,α(t) due to Shukla et al.
defined in [20]; see also [21],

(iv) setting p = 0 and l = δ = k = 1, it reduces to the Prabhakar function Eγ
μ,α(t) defined

in [14].

For more information related to the Mittag-Leffler function we suggest [2, 9]. The cor-
responding left- and right-sided generalized fractional integral operators ε

γ ,δ,k,c
μ,α,l,ω,a+ and

ε
γ ,δ,k,c
μ,α,l,ω,b– are defined as follows.

Definition 3 ([1]) Let ω,μ,α, l,γ , c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0,
δ > 0 and 0 < k ≤ δ + �(μ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then the generalized fractional
integral operators ε

γ ,δ,k,c
μ,α,l,ω,a+ f and ε

γ ,δ,k,c
μ,α,l,ω,b– f are defined by

(
ε

γ ,δ,k,c
μ,α,l,ω,a+ f

)
(x; p) =

∫ x

a
(x – t)α–1Eγ ,δ,k,c

μ,α,l
(
ω(x – t)μ; p

)
f (t) dt (4)

and

(
ε

γ ,δ,k,c
μ,α,l,ω,b– f

)
(x; p) =

∫ b

x
(t – x)α–1Eγ ,δ,k,c

μ,α,l
(
ω(t – x)μ; p

)
f (t) dt. (5)

Remark 3 Equations (4) and (5) are the generalization of the following fractional integral
operators:

(i) setting p = 0, it reduces to the fractional integral operators defined by Salim et al. in
[17],

(ii) setting l = δ = 1, it reduces to the fractional integral operators defined by Rahman et
al. in [15],

(iii) setting p = 0 and l = δ = 1, it reduces to the fractional integral operators defined by
Srivastava et al. in [21],

(iv) setting p = 0 and l = δ = k = 1, it reduces to the fractional integral operators defined
by Prabhakar in [14],

(v) setting p = ω = 0, it reduces to the right-sided and left-sided Riemann–Liouville
fractional integrals.

Let f ∈ L1[a, b]. Then the left- and right-sided Riemann–Liouville fractional integrals
Iα

a+ f and Iα
b– f of order α ∈R (α > 0) are defined by

Iα
a+ f (x) :=

1
Γ (α)

∫ x

a

f (t) dt
(x – t)1–α

, x > a,

and

Iα
b– f (x) :=

1
Γ (α)

∫ b

x

f (t) dt
(t – x)1–α

, x < b,

respectively. Here Γ (α) is the Euler Gamma function and I0
a+ f (x) = I0

b– f (x) = f (x).
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Fractional integral inequalities are useful in establishing the uniqueness of solutions of
fractional differential equations. A lot of work dedicated to fractional calculus reflects its
importance in almost all fields of mathematics, physics, information technology and other
sciences [3, 4, 6, 7, 10, 11, 13, 22]. In the upcoming section, first we prove the Hadamard
inequality for (h – m)-convex functions via extended generalized fractional integral op-
erators defined in (4) and (5). Then the Fejér–Hadamard inequality for these operators is
obtained. Furthermore, the results for fractional integral operators associated with (4), (5)
(see Remark 3), and several kinds of convexity (see Remark 1) are highlighted.

2 Main results
First we present the extended generalized fractional integral Hadamard inequality for (h –
m)-convex functions.

Theorem 2.1 Let f : [a, b] ⊂ (0,∞) → R be a function such that f ∈ L1[a, b] with a < b
and m ∈ (0, 1]. If f is (h – m)-convex and h ∈ L1[0, 1], then the following inequalities for
extended generalized fractional integral operators, (4) and (5), hold:

f
(

bm + a
2

)
(
ε

γ ,δ,k,c
μ,α,l,ωo ,a+ 1

)
(mb; p)

≤ h
(

1
2

)[
mα+1(εγ ,δ,k,c

μ,α,l,ωomμ ,b– f
)( a

m
; p

)
+

(
ε

γ ,δ,k,c
μ,α,l,ωo ,a+ f

)
(mb; p)

]

≤ h
(

1
2

)
(bm – a)α

{
m

[
mf

(
a

m2

)
+ f (b)

](
ε

γ ,δ,k,c
μ,α,l,ω,0+ h

)
(1; p)

+
[
mf (b) + f (a)

](
ε

γ ,δ,k,c
μ,α,l,ω,1– h

)
(0; p)

}
, (6)

where ωo = ω
(bm–a)μ .

Proof Since f is (h – m)-convex, we have

f
(

xm + y
2

)
≤ h

(
1
2

)(
mf (x) + f (y)

)
. (7)

Putting in the above x = (1 – t) a
m + tb and y = m(1 – t)b + ta, we get

f
(

bm + a
2

)
≤ h

(
1
2

)(
mf

(
(1 – t)

a
m

+ tb
)

+ f
(
m(1 – t)b + ta

))
. (8)

Multiplying (8) by tα–1Eγ ,δ,k,c
μ,α,l (ωtμ; p) on both sides, then integrating over [0, 1], we have

f
(

bm + a
2

)∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
dt

≤ h
(

1
2

)[∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
mf

(
(1 – t)

a
m

+ tb
)

dt

+
∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
f
(
m(1 – t)b + ta

)
dt

]
.
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Putting in the above x = (1 – t) a
m + tb and y = m(1 – t)b + ta, then, by using (4) and (5), we

get

f
(

bm + a
2

)(
ε

γ ,δ,k,c
μ,α,l,ωo ,a+ 1

)
(mb; p)

≤ h
(

1
2

)[
mα+1(εγ ,δ,k,c

μ,α,l,ωomμ ,b– f
)( a

m
; p

)
+

(
ε

γ ,δ,k,c
μ,α,l,ωo ,a+ f

)
(mb; p)

]
. (9)

Again by using (h – m)-convexity of f , we have

mf
(

(1 – t)
a
m

+ tb
)

+ f
(
m(1 – t)b + ta

)

≤ m2h(1 – t)f
(

a
m2

)
+ mh(t)f (b) + mh(1 – t)f (b) + h(t)f (a)

= m
[

mf
(

a
m2

)
+ f (b)

]
h(1 – t) +

[
mf (b) + f (a)

]
h(t). (10)

Multiplying (10) by h( 1
2 )tα–1Eγ ,δ,k,c

μ,α,l (ωtμ; p) on both sides, then integrating over [0, 1], we
have

h
(

1
2

)[∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
mf

(
(1 – t)

a
m

+ tb
)

dt

+
∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
f
(
m(1 – t)b + ta

)
dt

]

≤ h
(

1
2

){
m

[
mf

(
a

m2

)
+ f (b)

]∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h(1 – t) dt

+
[
mf (b) + f (a)

] ∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h(t) dt

}
.

By using (4) and (5), we get

h
(

1
2

)[
mα+1(εγ ,δ,k,c

μ,α,l,ωomμ ,b– f
)( a

m
; p

)
+

(
ε

γ ,δ,k,c
μ,α,l,ωo ,a+ f

)
(mb; p)

]

≤ h
(

1
2

)
(bm – a)α

{
m

[
mf

(
a

m2

)
+ f (b)

]
(
ε

γ ,δ,k,c
μ,α,l,ω,0+ h

)
(1; p)

+
[
mf (b) + f (a)

](
ε

γ ,δ,k,c
μ,α,l,ω,1– h

)
(0; p)

}
.

From the above inequality and (9), we get the required inequality (6). �

Several known results are special cases of the above generalized fractional Hadamard
inequality comprised in the following remark.

Remark 4
(i) If we put p = 0 in (6), then [16, Theorem 2.1] is obtained.

(ii) If we put h(t) = t, m = 1 and p = 0 in (6), then [5, Theorem 2.1] is obtained.
(iii) If we put h(t) = t and p = 0 in (6), then [6, Theorem 3] is obtained.
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(iv) If we put h(t) = t and p = ω = 0 in (6), then [7, Theorem 2.1] is obtained.
(v) If we put h(t) = t, m = 1 and p = ω = 0 in (6), then [18, Theorem 2] is obtained.

(vi) If we put h(t) = t, m = 1, α = 1 and p = ω = 0 in (6), then the Hadamard inequality is
obtained.

In the following we prove an analog version of the Hadamard inequality for generalized
fractional integrals.

Theorem 2.2 Let f : [a, b] ⊂ (0,∞) →R be a function such that f ∈ L1[a, b] with a < b and
m ∈ (0, 1]. If f is (h – m)-convex, then the following inequalities for extended generalized
fractional integral operators, (4) and (5), hold:

f
(

a + bm
2

)(
ε

γ ,δ,k,c
μ,α,l,ωo2μ ,( a+bm

2 )+ 1
)
(mb; p)

≤ h
(

1
2

)[(
ε

γ ,δ,k,c
μ,α,l,ωo2μ ,( a+bm

2 )+ f
)
(mb; p) + mα+1(εγ ,δ,k,c

μ,α,l,ωo(2m)μ ,( a+bm
2m )– f

)( a
m

; p
)]

≤ h
(

1
2

)
(bm – a)α

2α

{
m

[
mf

(
a

m2

)
+ f (b)

]∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h
(

2 – t
2

)
dt

+
[
mf (b) + f (a)

] ∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h
(

t
2

)
dt

}
, (11)

where ωo = ω
(bm–a)μ .

Proof Putting x = t
2 b + (2–t)

2
a
m and y = t

2 a + m (2–t)
2 b in (7), we get

f
(

a + bm
2

)
≤ h

(
1
2

)[
mf

(
t
2

b +
(2 – t)

2
a
m

)
+ f

(
t
2

a + m
(2 – t)

2
b
)]

. (12)

Multiplying (12) by tα–1Eγ ,δ,k,c
μ,α,l (ωtμ; p) on both sides, then integrating over [0, 1], we have

f
(

a + bm
2

)∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
dt

≤ h
(

1
2

)[∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
mf

(
t
2

a + m
(2 – t)

2
b
)

dt

+
∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
f
(

t
2

b +
(2 – t)

2
a
m

)
dt

]
.

Putting x = t
2 b + (2–t)

2
a
m and y = t

2 a + m (2–t)
2 b, then, by using (4) and (5), we get

f
(

a + bm
2

)(
ε

γ ,δ,k,c
μ,α,l,ωo2μ ,( a+bm

2 )+ 1
)
(mb; p)

≤ h
(

1
2

)[
(
ε

γ ,δ,k,c
μ,α,l,ωo2μ ,( a+bm

2 )+ f
)
(mb; p) + mα+1(εγ ,δ,k,c

μ,α,l,ωo(2m)μ ,( a+bm
2m )– f

)
(

a
m

; p
)]

. (13)
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Again by using (h – m)-convexity of f , we have

f
(

t
2

a + m
(2 – t)

2
b
)

+ mf
(

t
2

b +
(2 – t)

2
a
m

)

≤ h
(

t
2

)
f (a) + mh

(
2 – t

2

)
f (b) + mh

(
t
2

)
f (b) + m2h

(
2 – t

2

)
f
(

a
m2

)

= m
[

mf
(

a
m2

)
+ f (b)

]
h
(

2 – t
2

)
+

[
mf (b) + f (a)

]
h
(

t
2

)
. (14)

Multiplying (14) by h( 1
2 )tα–1Eγ ,δ,k,c

μ,α,l (ωtμ; p) on both sides, then integrating over [0, 1], we
have

h
(

1
2

)[∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
f
(

t
2

a + m
(2 – t)

2
b
)

dt

+
∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
mf

(
t
2

b +
(2 – t)

2
a
m

)
dt

]

≤ h
(

1
2

){
m

[
mf

(
a

m2

)
+ f (b)

]∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h
(

2 – t
2

)
dt

+
[
mf (b) + f (a)

] ∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h
(

t
2

)
dt

}
.

By using (4) and (5), we get

h
(

1
2

)[(
ε

γ ,δ,k,c
μ,α,l,ωo2μ ,( a+bm

2 )+ f
)
(mb; p) + mα+1(εγ ,δ,k,c

μ,α,l,ωo(2m)μ ,( a+bm
2m )– f

)( a
m

; p
)]

≤ h
(

1
2

)
(bm – a)α

2α

{
m

[
mf

(
a

m2

)
+ f (b)

]∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h
(

2 – t
2

)
dt

+
[
mf (b) + f (a)

] ∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h
(

t
2

)
dt

}
.

From the above inequality and (13), we get the required inequality (11). �

Remark 5 If we put p = 0 in (11), then [16, Theorem 2.2] is obtained.

Corollary 2.3 If we put h(t) = t, m = 1 and p = 0 in (11), then the following inequality
analog to the Hadamard inequality [5, Theorem 2.1] for convex functions via generalized
fractional integrals is obtained:

f
(

b + a
2

)
(
ε

γ ,δ,k,c
μ,α,l,ωo ,a+ 1

)
(b) ≤ 1

2
[(

ε
γ ,δ,k,c
μ,α,l,ωo ,( a+b

2 )– f
)
(a) +

(
ε

γ ,δ,k,c
μ,α,l,ωo ,( a+b

2 )+ f
)
(b)

]

≤ 1
2
[
f (a) + f (b)

](
ε

γ ,δ,k,c
μ,α,l,ωo ,b– 1

)
(a).

If we put h(t) = t, m = 1 and p = ω = 0 in (11), then we get the following result for
Riemann–Liouville fractional integral.
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Corollary 2.4 ([19]) Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈ L1[a, b]. If f is
convex on [a, b], then the following inequalities for fractional integrals hold:

f
(

b + a
2

)
≤ 2α+1Γ (α + 1)

(b – a)α
[
Iα

( a+b
2 )+ f (b) + Iα

( a+b
2 )– f (a)

] ≤ 1
2
[
f (a) + f (b)

]
.

In the following we present a Fejér–Hadamard inequality for (h – m)-convex functions
via generalized fractional integral operators.

Theorem 2.5 Let f : [a, b] ⊂ [0,∞) → R be a function such that f ∈ L1[a, b] with a < b
and m ∈ (0, 1]. Also, let g : [a, b] →R be a function which is non-negative and integrable. If
f is (h – m)-convex, f (x) = f (a + mb – mx) and h ∈ L1[0, 1], then the following inequalities
for extended generalized fractional integral operators, (4) and (5), hold:

f
(

bm + a
2

)
(
ε

γ ,δ,k,c
μ,α,l,ωomμ ,b– g

)
(

a
m

; p
)

≤ h
(

1
2

)
(m + 1)

(
ε

γ ,δ,k,c
μ,α,l,ωomμ ,b– fg

)( a
m

; p
)

≤ h
(

1
2

)
(bm – a)α

mα

{
m

[
mf

(
a

m2

)
+ f (b)

](
ε

γ ,δ,k,c
μ,α,l,ω,0+ h

)
(1; p)

+
[
mf (b) + f (a)

](
ε

γ ,δ,k,c
μ,α,l,ω,1– h

)
(0; p)

}
, (15)

where ωo = ω
(bm–a)μ .

Proof Multiplying (8) by tα–1Eγ ,δ,k,c
μ,α,l (ωtμ; p)g(tb + (1 – t) a

m ) on both sides, then integrating
over [0, 1], we have

f
(

bm + a
2

)∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
g
(

tb + (1 – t)
a
m

)
dt

≤ h
(

1
2

)[∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
g
(

tb + (1 – t)
a
m

)
mf

(
(1 – t)

a
m

+ tb
)

dt

+
∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
g
(

tb + (1 – t)
a
m

)
f
(
m(1 – t)b + ta

)
dt

]
.

Putting x = (1– t) a
m + tb in the above and then, by using the condition f (x) = f (a+mb–mx),

we get

f
(

bm + a
2

)(
ε

γ ,δ,k,c
μ,α,l,ωomμ ,b– g

)( a
m

; p
)

≤ h
(

1
2

)
(m + 1)

(
ε

γ ,δ,k,c
μ,α,l,ωomμ ,b– fg

)( a
m

; p
)

. (16)

Now multiplying (10) by h( 1
2 )tα–1Eγ ,δ,k,c

μ,α,l (ωtμ; p)g(tb + (1 – t) a
m ) on both sides, then inte-

grating over [0, 1], we have

h
(

1
2

)[∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
g
(

tb + (1 – t)
a
m

)
mf

(
(1 – t)

a
m

+ tb
)

dt

+
∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
g
(

tb + (1 – t)
a
m

)
f
(
m(1 – t)b + ta

)
dt

]
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≤ h
(

1
2

){[
m2f

(
a

m2

)
+ mf (b)

]∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h(1 – t) dt

+
[
mf (b) + f (a)

] ∫ 1

0
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)
h(t) dt

}
.

By using (4) and (5), we get

h
(

1
2

)
(m + 1)

(
ε

γ ,δ,k,c
μ,α,l,ωomμ ,b– fg

)
(

a
m

; p
)

≤ h
(

1
2

)
(bm – a)α

mα

{
m

[
mf

(
a

m2

)
+ f (b)

]
(
ε

γ ,δ,k,c
μ,α,l,ω,0+ h

)
(1; p)

+
[
mf (b) + f (a)

](
ε

γ ,δ,k,c
μ,α,l,ω,1– h

)
(0; p)

}
.

From the above inequality and (16), we get the required inequality (15). �

Remark 6
(i) If we put p = 0 in (15), then [16, Theorem 2.5] is obtained.

(ii) If we put h(t) = t, m = 1 and p = 0 in (15), then [5, Theorem 2.2] is obtained.

3 Concluding remarks
The aim of this paper is to extend the generalized fractional integral inequalities via
(h – m)-convexity. It is worthy of note that the presented results in particular contain a
number of fractional integral inequalities for h-convex, m-convex, s-convex, convex and
related functions (see Remark 1 and Remark 3). The Fejér–Hadamard inequality summa-
rizes all the discussed results in a very nice compact form. We hope this work will attract
researchers working in mathematical analysis, fractional calculus and other related fields.
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