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Abstract
In this paper, we establish the strong consistency and complete consistency of the
Priestley–Chao estimator in nonparametric regression model with widely orthant
dependent errors under some general conditions. We also obtain the rates of strong
consistency and complete consistency. We show that the rates can approximate to
O(n–1/3) under appropriate conditions. The results obtained in the paper improve or
extend the corresponding ones to widely orthant dependent assumptions.
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1 Introduction
Consider the following nonparametric regression model:

Yi = f (xi) + εi, 1 ≤ i ≤ n, (1)

where f is an unknown function defined in the interval [0, 1], {Y1, . . . , Yn} are n observa-
tions at the fixed points {x1, . . . , xn}, and {εi, 1 ≤ i ≤ n} are random errors. The designed
points x1, . . . , xn are assumed, without loss of generality, to be 0 = x0 ≤ x1 ≤ · · · ≤ xn–1 ≤
xn = 1. Priestley and Chao [1] introduced the following nonparametric kernel estimator of
f (x), which is usually called the Priestley–Chao (P–C) estimator:

fn(x) =
n∑

i=1

Yi
xi – xi–1

hn
K

(
x – xi

hn

)
, (2)

where K(u) is a measurable function, and hn are the bandwidths satisfying 0 < hn → 0 as
n → ∞.

This estimator can capture the shape of the true curve better than many polynomial
regression estimators. Therefore many limit properties of the P–C estimator were found.
For example, Priestley and Chao [1] established the weak consistency of the estimator
with i.i.d. errors; Benedetti [2] further studied the strong convergence and asymptotic
normality also with i.i.d. errors; Yang and Wang [3] obtained the strong consistency and
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uniformly strong consistency with negatively associated (NA) errors under some weaker
assumptions, which improve and extend the corresponding results of Benedetti [2]; Yang
[4] provided the Berry–Esseen bound of the estimator (2) for NA random variables; Wu et
al. [5] investigated the rates of strong consistency and complete consistency for extended
negatively dependent random errors; and so on.

It is known that the independence assumption is not always reasonable in statistical ap-
plications. That is why various dependent structures were introduced in the past decades.
Beyond the mixing structures, the dependent structures attract more and more attention
in recent years. Many limit theorems for dependent structures, such as NA, negatively
superadditive-dependent (NSD), negatively orthant dependent (NOD), extended nega-
tively dependent (END) structures, and so on, are successfully established. In the litera-
ture it has been pointed that NA implies NSD, NSD implies NOD, and NOD implies END
and that the reverse is generally not true. For more detail, we refer the readers to Joag-Dev
and Proschan [6], Hu [7], Lehmann [8], and Liu [9].

In this work, we further study the consistency properties of estimator (2) under a much
more general dependent structure, that is, a widely orthant dependent structure. The con-
cept of widely orthant dependent random variables was introduced by Wang et al. [10] as
follows.

Definition 1.1 A finite collection of random variables (X1, X2, . . . , Xn) is said to be widely
upper orthant dependent (WUOD) if there exists a finite real number gU (n) such that, for
all finite real numbers xi, 1 ≤ i ≤ n,

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ gU (n)
n∏

i=1

P(Xi > xi).

A finite collection of random variables (X1, X2, . . . , Xn) is said to be widely lower orthant
dependent (WLOD) if there exists a finite real number gL(n) such that, for all finite real
numbers xi, 1 ≤ i ≤ n,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ gL(n)
n∏

i=1

P(Xi ≤ xi).

If (X1, X2, . . . , Xn) is both WUOD and WLOD, then we say that (X1, X2, . . . , Xn) is widely
orthant dependent random variables (WOD), and gU (n) and gL(n) are called dominating
coefficients.

An array {Xni, 1 ≤ i ≤ n, n ≥ 1} of random variables is said to be rowwise WOD random
variables if for every n ≥ 1, {Xni, 1 ≤ i ≤ n} are WOD random variables.

It is easily seen that gU (n) ≥ 1 and gL(n) ≥ 1. If gU (n) = gL(n) = M for all n ≥ 1, where
M ≥ 1 is a positive constant, then the WOD structure reduces to the END structure. As
pointed out before, END contains NA, NSD, and NOD as particular cases. Wang et al.
[10] also presented some examples to show that WOD does not imply END. Therefore,
WOD is a rather weak and general structure, and it is of great interest to study the limiting
properties of a WOD structure.

Since the concept of WOD random variables was introduced, many probability limit
behaviors and applications were established. For example, Wang et al. [10] obtained uni-
form asymptotic estimates of finite-time ruin probability with WOD claim sizes; Wang
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and Cheng [11] investigated the basic renewal theorems and complete convergence for
random walks with WOD increments; Liu et al. [12] and Chen et al. [13] improved and
extended the preceding results; Wang et al. [14] gave a result on uniform asymptotics of
the finite-time ruin probability for all times with WLOD interoccurrence times; Shen [15]
obtained a Bernstein-type inequality for WOD random variables; Qiu and Chen [16] ob-
tained the complete convergence and complete moment convergence for weighted sums of
WOD random variables under some general conditions; Wang et al. [17] studied the com-
plete convergence for arrays of WOD random variables and gave its application to com-
plete consistency of the weighted estimator in a nonparametric regression model based
on WOD errors; Yang et al. [18] presented the Bahadur representation of sample quantiles
for WOD random variables; Wang and Hu [19] established the weak consistency, strong
consistency, complete consistency, and their convergence rates for the nearest-neighbor
estimator of the density function based on WOD samples; Wu et al. [20] investigated the
complete moment convergence for arrays of WOD random variables; and so on. We point
out that in most papers cited, the moment conditions are related to the dominating coef-
ficients, that is, the faster the dominating coefficients approach infinity, the stronger the
moment conditions should be.

In this paper, we further investigate the consistency results of estimator (2) in the non-
parametric regression model based on WOD errors. We establish the strong consistency,
complete consistency, the rate of strong consistency, and the rate of complete consistency
under some general conditions. These results improve or extend the corresponding ones
of Yang and Wang [3] and Wu et al. [5]. It is worth pointing out that in our main results
the conditions on the dominating coefficients are very general and the moment conditions
are unrelated to the dominating coefficients.

Throughout this paper, the symbols C, c1, c2, . . . represent positive constants whose val-
ues may vary in different places. We denote log x = ln max{e, x}, and I(A) stands for the
indicator function of a set A. In the paper, without loss of generality, we assume that
g(n) = max{gU (n), gL(n)} and f (x) = 0 if x /∈ [0, 1].

The rest of the paper is organized as follows. We state some preliminaries in Sect. 2. In
Sect. 3, we present the main results and give their proofs in Sect. 4.

2 Main results
In this section, we first give some notations. Let δ̃i = xi – xi–1 for 1 ≤ i ≤ n and δn =
max1≤i≤n δ̃i. The following assumptions are needed in the main results.

(A1) f (x) satisfies the Lipschitz condition of order α (> 0);
(A2) (i) K(u) satisfies the Lipschitz condition of order β (> 0); (ii) K(u) is bounded in R

1;
(iii)

∫ +∞
–∞ K(u) du = 1; (iv)

∫ +∞
–∞ |K(u)|du < ∞; (iv′)

∫ +∞
–∞ |u|α|K(u)|du < ∞;

(A3) hn → 0, δn → 0, and h–1
n {(δn/hn)β + δα

n } → 0 as n → ∞;
(A4) There exist r > 1 and s > 1 such that δn/hn = O(n–1/r(log n)–s).

Remark 2.1 (A1)–(A4) are the basic assumptions for the Priestley–Chao estimator. Yang
and Wang [3] used conditions (A1), (A2)(i)–(iv), and (A3) and stated that they are weaker
than those in Priestley and Chao [1] and Benedetti [2]; Wu et al. [5] adopted condition
(A2)(iv′), which is stronger than (A2)(iv), to establish the rates of strong consistency and
complete consistency; (A4) has also been used by Wu et al. [5] and is a little weaker than
the condition δn/hn = O(n–1/r(log n)–1–ρ) for some ρ > 1 in Yang and Wang [3].
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Based on these assumptions, we now present our main results. The following two the-
orems state the strong consistency and complete consistency for estimator (2).

Theorem 2.1 Suppose (A1), (A2)(i)–(iv), (A3), and (A4) hold. Let {εn, n ≥ 1} be a sequence
of WOD random errors with Eεn = 0 and supn≥1 E|εn|r < ∞. If g(n) = O(e(log n)a ) for some
0 ≤ a < s, then for any x ∈ (0, 1),

fn(x) – f (x) → 0 a.s. (3)

Theorem 2.2 Suppose (A1), (A2)(i)–(iv), (A3), and (A4) hold. Let {εn, n ≥ 1} be a sequence
of WOD random errors with Eεn = 0 and supn≥1 E|εn|r+1 < ∞. If g(n) = O(e(log n)a ) for some
0 ≤ a < s, then for any x ∈ (0, 1),

fn(x) – f (x) → 0 completely. (4)

Remark 2.2 Yang and Wang [3] obtained the results of strong consistency for the estima-
tor fn(x) with NA errors under the assumption δn/hn = O(n–1/r(log n)–1–ρ) for some ρ > 1.
Note that WOD contains NA as a particular case and assumption (A4) is slightly weaker
than δn/hn = O(n–1/r(log n)–1–ρ). Therefore Theorem 2.1 improves and extends the result
of Yang and Wang [3] to a much more general case. Moreover, under some stronger mo-
ment condition, we also obtain the complete consistency for estimator (2) in Theorem 2.2.
It is worth pointing out that the restriction on the dominating coefficients is very general.
For example, if 1 < a < s, then nτ = o(e(log n)a ) for any τ ≥ 0. Moreover, the moment condi-
tions are unrelated to the dominating coefficients.

From Theorems 2.1 and 2.2 we easily obtain the following two corollaries.

Corollary 2.1 Suppose (A1) and (A2)(i)–(iv) hold. Let {εn, n ≥ 1} be a sequence of WOD
random errors with Eεn = 0 and supn≥1 E|εn|r < ∞. Let δn = O(n–1) and hn = n–l for some
0 < l < min{α,β/(1+β), 1–1/r}. If g(n) = O(e(log n)a ) for some 0 ≤ a < s, then for any x ∈ (0, 1),
(3) holds.

Corollary 2.2 Suppose (A1) and (A2)(i)–(iv) hold. Let {εn, n ≥ 1} be a sequence of WOD
random errors with Eεn = 0 and supn≥1 E|εn|r+1 < ∞. Let δn = O(n–1) and hn = n–l for some
0 < l < min{α,β/(1+β), 1–1/r}. If g(n) = O(e(log n)a ) for some 0 ≤ a < s, then for any x ∈ (0, 1),
(4) holds.

Now we present the rates of strong consistency and complete consistency.

Theorem 2.3 Suppose (A1), (A2)(i), (ii), (iii), (iv′), (A3), and (A4) hold. Let {εn, n ≥ 1} be a
sequence of WOD random errors with Eεn = 0 and supn≥1 E|εn|2r < ∞. If g(n) = O(e(log n)a )
for some 0 ≤ a < s, then for any x ∈ (0, 1),

∣∣fn(x) – f (x)
∣∣ = O

(
h–1

n
{

(δn/hn)β + δα
n
}

+ hα
n
)

+ o
(
n–1/2r) a.s.

Theorem 2.4 Suppose (A1), (A2)(i), (ii), (iii), (iv′), (A3), and (A4) hold. Let {εn, n ≥ 1} be a
sequence of WOD random errors with Eεn = 0 and supn≥1 E|εn|2r+2 < ∞. If g(n) = O(e(log n)a )
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for some 0 ≤ a < s, then for any x ∈ (0, 1),

∣∣fn(x) – f (x)
∣∣ = O

(
h–1

n
{

(δn/hn)β + δα
n
}

+ hα
n
)

+ o
(
n–1/2r) completely.

Remark 2.3 If a = 0 (under which the WOD errors reduce to END errors) in Theorem 2.3,
then the result is equivalent to that established by Wu et al. [5]. Therefore Theorem 2.3
extends the corresponding result of Wu et al. [5] from END errors to WOD errors. For
Theorem 2.4, if a = 0, then the rate is the same as that of Wu et al. [5]. Moreover, to avoid
the influence of the dominating coefficients on the moment condition, the method used
in proving Theorem 2.4 is somewhat different from that of Wu et al. [5]. Therefore The-
orem 2.4 extends the corresponding result of Wu et al. [5] from END random errors to
WOD random errors.

By Theorems 2.3 and 2.4 we can also obtain the following two corollaries on the rates of
strong consistency and complete consistency.

Corollary 2.3 Suppose (A1) and (A2)(i), (ii), (iii), (iv′) hold with α = β = 1. Let δn = O(n–1),
r > 3/2, and hn = n–l for some 1

2r < l < 1
2 – 1

4r . Let {εn, n ≥ 1} be a sequence of WOD random
errors with Eεn = 0 and supn≥1 E|εn|2r < ∞. If g(n) = O(e(log n)a ) for some 0 ≤ a < s, then for
any x ∈ (0, 1),

∣∣fn(x) – f (x)
∣∣ = o

(
n–1/2r) a.s.

Corollary 2.4 Suppose (A1) and (A2)(i), (ii), (iii), (iv′) hold with α = β = 1. Let δn = O(n–1),
r > 3/2, and hn = n–l for some 1

2r < l < 1
2 – 1

4r . Let {εn, n ≥ 1} be a sequence of WOD random
errors with Eεn = 0 and supn≥1 E|εn|2r+2 < ∞. If g(n) = O(e(log n)a ) for some 0 ≤ a < s, then
for any x ∈ (0, 1),

∣∣fn(x) – f (x)
∣∣ = o

(
n–1/2r) completely.

Remark 2.4 In Corollaries 2.3 and 2.4, if r ≈ 3/2, then the rates of strong consistency and
complete consistency, respectively, can approximate to O(n–1/3).

3 Preliminary lemmas
In this section, we state some lemmas which will be used in the proofs of our main results.
The first one is a basic property of WOD random variables; see Wang et al. [10].

Lemma 3.1 Let random variables {Xn, n ≥ 1} be WLOD (WUOD) with dominating coeffi-
cients gL(n), n ≥ 1 (gU (n), n ≥ 1). If {fn(·), n ≥ 1} are all nondecreasing, then {fn(Xn), n ≥ 1}
are still WLOD (WUOD) with dominating coefficients gL(n), n ≥ 1 (gU (n), n ≥ 1).

If {fn(·), n ≥ 1} are all nonincreasing, then {fn(Xn), n ≥ 1} are WUOD (WLOD) with dom-
inating coefficients gL(n), n ≥ 1 (gU (n), n ≥ 1).

The following Bernstein-type inequality is important in proving our main results; see
Shen [15].
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Lemma 3.2 Let {εn, n ≥ 1} be a sequence of WOD random variables with Eεn = 0 and
|εn| ≤ b a.s. for each n ≥ 1, where b is a positive constant. Denote B2

n =
∑n

i=1 Eε2
i for each

n ≥ 1. Then for every ε > 0,

P

(∣∣∣∣∣

n∑

i=1

εi

∣∣∣∣∣ ≥ ε

)
≤ 2g(n) exp

{
–

ε2

2B2
n + 2

3 bε

}
.

The next lemma has been proved by Wu et al. [5].

Lemma 3.3 Suppose (A1), (A2)(i), (ii), (iii), (iv′), and (A3) hold. Then for any x ∈ (0, 1),

∣∣Efn(x) – f (x)
∣∣ = O

(
h–1

n
{

(δn/hn)β + δα
n
}

+ hα
n
)
.

Lemma 3.4 Suppose (A1), (A2)(i)–(iv), and (A3) hold. Then for any x ∈ (0, 1),

lim
n→∞ Efn(x) = f (x).

Proof Noting that f (x) = 0 for x /∈ [0, 1], we have

∣∣Efn(x) – f (x)
∣∣ =

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
f (xi) – f (x)

∣∣∣∣∣

≤
∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
f (xi) – h–1

n

∫ 1

0
K

(
x – u

hn

)
f (u) du

∣∣∣∣∣

+
∣∣∣∣h

–1
n

∫ +∞

–∞
K

(
x – u

hn

)
f (u) du –

∫ +∞

–∞
K(u)f (x) du

∣∣∣∣

� I1 + I2.

Wu et al. [5] have already proved that I1 ≤ Ch–1
n {(δn/hn)β + δα

n } → 0. Therefore we only
need to show that I2 → 0. Noting that f (·) is bounded and |K(·)| is integrable, we have by
the integral transformation that

I2 =
∣∣∣∣
∫ +∞

–∞

(
f (x – hnu) – f (x)

)
K(u) du

∣∣∣∣

≤
∫ +∞

–∞

∣∣f (x – hnu) – f (x)
∣∣∣∣K(u)

∣∣du

=
∫

|u|≤h–1/2
n

∣∣f (x – hnu) – f (x)
∣∣∣∣K(u)

∣∣du +
∫

|u|>h–1/2
n

∣∣f (x – hnu) – f (x)
∣∣∣∣K(u)

∣∣du

≤ Chα/2
n

∫

|u|≤h–1/2
n

∣∣K(u)
∣∣du + C

∫

|u|>h–1/2
n

∣∣K(u)
∣∣du

→ 0 as n → ∞.

The proof of the lemma is complete. �

The following lemma can be seen in Yang and Wang [3] or Wu et al. [5].
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Lemma 3.5 Suppose (A2)(i), (ii), (iii), (iv), and (A3) hold. Then for any x ∈ (0, 1),

lim
n→∞

n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣ =
∫ +∞

–∞

∣∣K(u)
∣∣du.

4 Proofs of main results
In this section, we present the proofs of the main results presented in Sect. 3.

Proof of Theorem 2.1 It is easy to see that, for any x ∈ (0, 1),

∣∣fn(x) – f (x)
∣∣ ≤ ∣∣Efn(x) – f (x)

∣∣ +
∣∣fn(x) – Efn(x)

∣∣.

Therefore by Lemma 3.4 we only need to show

fn(x) – Efn(x) =
n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
εi → 0 a.s. (5)

For 1 ≤ i ≤ n, n ≥ 1, denote

εni(1) = –n1/rI
(
εi < –n1/r) + εiI

(|εi| ≤ n1/r) + n1/rI
(
εi > n1/r),

εni(2) =
(
εi + n1/r)I

(
εi < –n1/r) +

(
εi – n1/r)I

(
εi > n1/r).

Hence by Lemma 3.1 we can easily check that {εni(1), 1 ≤ i ≤ n}n≥1 are still WOD ran-
dom variables with εni(1) + εni(2) = εi. Thus, to show (5), we need to prove that

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(1) – Eεni(1)

] → 0 a.s., (6)

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
Eεni(2) → 0, (7)

and

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
εni(2) → 0 a.s. (8)

We first utilize the Bernstein-type inequality for WOD random variables to prove (6).
For all n large enough, we have

max
1≤i≤n

∣∣∣∣
δ̃i

hn
K

(
x – xi

hn

)[
εni(1) – Eεni(1)

]∣∣∣∣ ≤ c1(log n)–s

and, by Lemma 3.5 and the boundedness of K(·),
n∑

i=1

E
∣∣∣∣
δ̃i

hn
K

(
x – xi

hn

)[
εni(1) – Eεni(1)

]∣∣∣∣
2

≤ C
δn

hn

n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E
(
εni(1)

)2
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≤ C(log n)–s
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E
∣∣εni(1)

∣∣

≤ C(log n)–s
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣ sup
i≥1

E|εi| ≤ c2(log n)–s.

Since s > 1, we have that, for any 	 > 0 and 0 ≤ a < s, (log n)a – 	(log n)s ≤ –	(log n)s/2 ≤
–2 log n for all n large enough. Hence by Lemma 3.2 we obtain that, for any ε > 0,

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(1) – Eεni(1)

]
∣∣∣∣∣ ≥ ε

)

≤ 2
∞∑

n=1

g(n) exp

{
–

ε2

2c2(log n)–s + 2
3 c1ε(log n)–s

}

≤ C
∞∑

n=1

exp

{
(log n)a –

ε2

2c2 + 2
3 c1ε

(log n)s
}

≤ C
∞∑

n=1

n–2 < ∞. (9)

By (9) and the Borel–Cantelli lemma we get (6).
Next, we turn to deal with (7). By Lemma 3.5 it follows that

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
Eεni(2)

∣∣∣∣∣ ≤
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E
∣∣εni(2)

∣∣

≤
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E|εi|I
(|εi| > n1/r)

≤ n(1–r)/r
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E|εi|rI
(|εi| > n1/r)

≤ n(1–r)/r
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣ sup
i≥1

E|εi|r

≤ Cn(1–r)/r → 0 as n → ∞.

Finally, we adopt the Kronecker’s lemma to solve (8). Note that

∞∑

i=1

i–1/r(log i)–sE|εi|I
(|εi| > i1/r) ≤

∞∑

i=1

i–1(log i)–sE|εi|rI
(|εi| > i1/r) < ∞

and thus

∞∑

i=1

i–1/r(log i)–s|εi|I
(|εi| > i1/r) < ∞ a.s.

Hence, by the Kronecker lemma we obtain that

n–1/r(log n)–s
n∑

i=1

|εi|I
(|εi| > i1/r) → 0 a.s.
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Since K(·) is bounded, we obtain that

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
εni(2)

∣∣∣∣∣ ≤ C
δn

hn

n∑

i=1

|εi|I
(|εi| > n1/r)

≤ Cn–1/r(log n)–s
n∑

i=1

|εi|I
(|εi| > i1/r) → 0 a.s.,

which implies (8). The proof of Theorem 2.1 is complete. �

Proof of Theorem 2.2 We use the same notations as that in the proof of Theorem 2.1. It is
easy to see that we only need to prove that

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(1) – Eεni(1)

] → 0 completely (10)

and

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(2) – Eεni(2)

] → 0 completely. (11)

Obviously, (10) directly follows from (9). So we only need to prove (11). Note that q > r+1
implies (1 – q)/r < –1. By Markov’s inequality and Lemma 3.5 we have

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(2) – Eεni(2)

]
∣∣∣∣∣ > ε

)

≤ ε–1
∞∑

n=1

E

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(2) – Eεni(2)

]
∣∣∣∣∣

≤ C
∞∑

n=1

n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E|εi|I
(|εi| > n1/r)

≤ C
∞∑

n=1

n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣ sup
i≥1

E|εi|I
(|εi| > n1/r)

≤ C
∞∑

n=1

sup
i≥1

∞∑

j=n

E|εi|I
(
j < |εi|r ≤ j + 1

)

≤ C sup
i≥1

∞∑

j=1

jE|εi|I
(
j < |εi|r ≤ j + 1

)

≤ C sup
i≥1

∞∑

j=1

E|εi|r+1I
(
j < |εi|r ≤ j + 1

) ≤ C sup
i≥1

E|εi|r+1 < ∞.

Hence (11) is proved, and thus the proof of Theorem 2.2 is complete. �

Proof of Theorem 2.3 Recall that for any x ∈ (0, 1),

∣∣fn(x) – f (x)
∣∣ ≤ ∣∣Efn(x) – f (x)

∣∣ +
∣∣fn(x) – Efn(x)

∣∣.
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Since Lemma 3.3 has provided the convergence rate for |Efn(x) – f (x)|, we only need to
show that

∣∣fn(x) – Efn(x)
∣∣ =

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
εi

∣∣∣∣∣ = o
(
n–1/2r) a.s. (12)

For each 1 ≤ i ≤ n, n ≥ 1, define

εni(3) = –n1/2rI
(
εi < –n1/2r) + εiI

(|εi| ≤ n1/2r) + n1/2rI
(
εi > n1/2r),

εni(4) =
(
εi + n1/2r)I

(
εi < –n1/2r) +

(
εi – n1/2r)I

(
εi > n1/2r).

It follows by Lemma 3.1 that {εni(3), 1 ≤ i ≤ n}n≥1 are still WOD random variables with
εni(3) + εni(4) = εi. Thus, to prove (12), it suffices to prove that

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(3) – Eεni(3)

]
∣∣∣∣∣ = o

(
n–1/2r) a.s., (13)

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
Eεni(4)

∣∣∣∣∣ = o
(
n–1/2r), (14)

and
∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
εni(4)

∣∣∣∣∣ = o
(
n–1/2r) a.s. (15)

We adopt the method used in the proof of Theorem 2.1. Note that, for all n large enough,

max
1≤i≤n

∣∣∣∣
δ̃i

hn
K

(
x – xi

hn

)[
εni(3) – Eεni(3)

]∣∣∣∣ ≤ c3n–1/2r(log n)–s,

and, by Lemma 3.5 and the boundedness of K(·),
n∑

i=1

E
∣∣∣∣
δ̃i

hn
K

(
x – xi

hn

)[
εni(3) – Eεni(3)

]∣∣∣∣
2

≤ C
δn

hn

n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣Eε2
i

≤ c4n–1/r(log n)–s,

where the last inequality follows by supi≥1 Eε2
i ≤ supi≥1[E|εi|2r]1/r < ∞. Note that (log n)a –

	(log n)s ≤ –	(log n)s/2 ≤ –2 log n for all n large enough. Hence we obtain by Lemma 3.2
that, for any ε > 0,

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(3) – Eεni(3)

]
∣∣∣∣∣ ≥ n–1/2rε

)

≤ 2
∞∑

n=1

g(n) exp

{
–

n–1/rε2

2c4n–1/r(log n)–s + 2
3 c3εn–1/r(log n)–s

}
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≤ C
∞∑

n=1

exp

{
(log n)a –

ε2

2c4 + 2
3 c3ε

(log n)s
}

≤ C
∞∑

n=1

n–2 < ∞. (16)

By (16) and the Borel–Cantelli lemma we obtain (13).
On another hand, by Lemma 3.5 it follows that

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
Eεni(4)

∣∣∣∣∣ ≤
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E
∣∣εni(4)

∣∣

≤
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E|εi|I
(|εi| > n1/2r)

≤ n(1–2r)/2r
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E|εi|2rI
(|εi| > n1/2r)

≤ Cn(1–2r)/2r = o
(
n–1/2r).

Therefore (14) is proved. Finally, we will prove (15). Note that

∞∑

i=1

i–1/2r(log i)–sE|εi|I
(|εi| > i1/2r) ≤

∞∑

i=1

i–1(log i)–sE|εi|2rI
(|εi| > i1/2r) < ∞,

and thus

∞∑

i=1

i–1/2r(log i)–s|εi|I
(|εi| > i1/2r) < ∞ a.s.

By Kronecker’s lemma we have that

n–1/2r(log n)–s
n∑

i=1

|εi|I
(|εi| > i1/2r) → 0 a.s.

Since K(·) is bounded, we obtain

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
ε

(2)
ni

∣∣∣∣∣ ≤ C
δn

hn

n∑

i=1

|εi|I
(|εi| > n1/2r)

≤ Cn–1/2r · n–1/2r(log n)–s
n∑

i=1

|εi|I
(|εi| > n1/2r)

≤ Cn–1/2r · n–1/2r(log n)–s
n∑

i=1

|εi|I
(|εi| > i1/2r)

= o
(
n–1/2r) a.s.,

which gives (15). The proof of Theorem 2.3 is complete. �
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Proof of Theorem 2.4 The notations are the same as in the proof of Theorem 2.3. To finish
the proof, we only need to verify that, for any ε > 0,

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(3) – Eεni(3)

]
∣∣∣∣∣ ≥ n–1/2rε

)
< ∞ (17)

and

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(4) – Eεni(4)

]
∣∣∣∣∣ ≥ n–1/2rε

)
< ∞. (18)

Similarly to the proof of (16), we can obtain (17). So we only need to prove (18). Note that
supi≥1 E|εi|2+2r < ∞. By Markov’s inequality and Lemma 3.5 we have that, for any ε > 0,

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)[
εni(4) – Eεni(4)

]
∣∣∣∣∣ ≥ n–1/2rε

)

≤ C
∞∑

n=1

n1/2rE

∣∣∣∣∣

n∑

i=1

δ̃i

hn
K

(
x – xi

hn

)
ε

(2)
ni

∣∣∣∣∣

≤ C
∞∑

n=1

n1/2r
n∑

i=1

δ̃i

hn

∣∣∣∣K
(

x – xi

hn

)∣∣∣∣E|εi|I
(|εi| > n1/2r)

≤ C
∞∑

n=1

n1/2r sup
i≥1

E|εi|I
(|εi| > n1/2r)

= C sup
i≥1

∞∑

j=1

E|εi|I
(
j < |εi|2r ≤ j + 1

) j∑

n=1

n1/2r

≤ C sup
i≥1

∞∑

j=1

j1+1/2rE|εi|I
(
j < |εi|2r ≤ j + 1

)

≤ C sup
i≥1

∞∑

j=1

E|εi|2r+2I
(
j < |εi|2r ≤ j + 1

)
< ∞.

Hence (18) is proved, and thus the proof of Theorem 2.4 is complete. �
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