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Abstract
This paper is concerned with a stochastic predator–prey model with Allee effect and
Lévy noise. First, by the comparison theorem of stochastic differential equations, we
prove that the model has a unique global positive solution starting from the positive
initial value. Then we investigate the asymptotic pathwise behavior of the model by
the generalized exponential martingale inequality and the Borel–Cantelli lemma.
Next, we establish the conditions under which predator and prey populations are
extinct. Furthermore, we show that the global positive solution is stochastically
ultimate bounded under some conditions by using the Bernoulli equation and
Chebyshev’s inequality. At last, we introduce some numerical simulations to support
the main results obtained. The results in this paper generalize and improve the
previous related results.
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1 Introduction
The dynamic relationship between predators and their preys has been universal in both
ecology and mathematical ecology [1, 2]. The classic predator–prey population model
is the Lotka–Volterra model established by Alfred James Lotka and Vito Volterra in the
1920s. There are many extensive studies in the literature concerned with the dynamics of
the predator–prey models and we here do not mention them in detail. However, for the
last decade, the importance of the Allee effect has been recognized. Because of the diffi-
culties in finding mates when the prey population density becomes low, the Allee effect
may occur in prey species [3]. For example, this might correspond to the density below
which it is so difficult to find a mate that reproduction does not compensate for mortal-
ity. In [4], the authors studied the following deterministic predator–prey population with
Allee effect on prey:

⎧
⎨

⎩

dx(t)
dt = x(t)[ bx(t)

A1+x(t) – d1 – αx(t) – sy(t)
1+sh1x(t) ],

dy(t)
dt = y(t)[ c1sx(t)

1+sh1x(t) – d2],
(1.1)

with initial values x(0) = x0, y(0) = y0. Here x(t) and y(t) represent, respectively, the size
of prey and predator population at time t; b is the per capita maximum fertility rate of
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prey population; di (i = 1, 2) are the per capita death rates of prey and predators, respec-
tively; α denotes the strength of the intra-competition of the prey population; s denotes
the effective search rate; h1 denotes the handling time of predators; and c1 denotes the
conversion efficiency of ingested prey into new predators. The product, sx(t)

1+sh1x(t) , repre-
sents the predator’s functional response. All the parameters of the model are supposed to
be positive constants.

It is well known that populations in nature are inevitably subjected to various types of
environmental noise. During the past decades, a great deal of attention has been paid to
the study of stochastic biological models (see [5–9]). In [10], the authors perturb the death
rates d1 of prey and d2 of the predator population in (1.1) with Gaussian white noise and
obtain the following stochastic predator–prey population model:

⎧
⎨

⎩

dx(t) = x(t)[ bx(t)
A1+x(t) – d1 – αx(t) – sy(t)

1+sh1x(t) ] dt – σ1x(t) dw1(t),

dy(t) = y(t)[ c1sx(t)
1+sh1x(t) – d2] dt – σ2y(t) dw2(t).

(1.2)

However, biological systems may suffer sudden environmental shocks: such as earth-
quakes, toxic pollutants, hurricanes and so on. Note that these sudden environmental
shocks will cause jumps in the population dynamics. As mentioned in [11], here a jump
means a sudden shift on the size of biological population, and the mathematical explana-
tion is that sample paths are not continuous almost surely. It is recognized that stochastic
differential equations with Lévy noise are quite suitable to describe such a discontinu-
ous system. Recently, stochastic differential equations with Lévy processes have been re-
searched widely both in theory and their applications [12–16]. References [13] and [14]
are devoted to the stochastic Lotka–Volterra population dynamics with jumps, and the
former with a stochastic competitive Lotka–Volterra model, and the latter with a general
Lotka–Volterra model. In [15], the authors studied the asymptotic behavior of a stochastic
population model with Allee effect and Lévy jumps.

Motivated by the above discussion, in this paper, we consider the following stochastic
predator–prey model with Allee effect and Lévy jumps:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t) = x(t–)[ bx(t–)
A1+x(t–) – d1 – αx(t–) – sy(t–)

1+sh1x(t–) ] dt

– σ1x(t–) dw1(t) –
∫

Γ
γ1(u)x(t–)Ñ(dt, du),

dy(t) = y(t–)[ c1sx(t–)
1+sh1x(t–) – d2] dt – σ2y(t–) dw2(t)

–
∫

Γ
γ2(u)y(t–)Ñ(dt, du),

(1.3)

with initial values x(0) = x0, y(0) = y0. Here x(t–) is the left limit of x(t) and y(t–) is the
left limit of y(t). All meanings of the parameters are exact as or similar to those for (1.1)
except the following. w(t) = {w1(t), w2(t)} represents a standard two-dimensional Brow-
nian motion defined on a compete probability space (Ω ,F ,P) with a filtration {Ft}t≥0

satisfying the usual conditions (i.e. it is right continuous and F0 contains all P-null sets).
N(·, ·) is a Poisson counting process with characteristic measure λ on measurable subset
Γ of [0,∞) with λ(Γ ) < ∞. Then the compensated Poisson random measure Ñ(dt, du) =
N(dt, du) – λ(du) dt is a martingale, which is independent of w(t). Usually, the pair (w, N)
is called Lévy noise. Throughout this paper, we denote R

2
+ = {(x, y) ∈ R

2 : x > 0, y > 0} and
assume that γi(u) < 1 are bounded functions on Γ , i = 1, 2.
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The remainder of the present paper is organized as follows. First, in Sect. 2, we prove that
this model has a unique global positive solution starting from the positive initial value by
the comparison theorem of stochastic differential equations. In Sect. 3, we investigate the
asymptotic pathwise behavior of the model by using the generalized exponential martin-
gale inequality and the Borel–Cantelli lemma. Extinction conditions of the population will
be established in Sect. 4. In Sect. 5, we show that the global positive solution is stochas-
tically ultimate bounded under some conditions. Section 6 contains numerical results,
which are used to demonstrate the effectiveness of the theoretical results in this paper.
The paper ends with a conclusion.

2 Existence and uniqueness of positive solution
In this section, by using comparison theorem of stochastic differential equations, we show
that system (1.3) has a unique positive global solution with positive initial value. For sim-
plicity, we introduce the following notation:

βi =
σ 2

i
2

–
∫

Γ

[
ln

(
1 – γi(u)

)
+ γi(u)

]
λ(du), i = 1, 2.

Note that γi(u) < 1 on Γ . Thus, for any u ∈ Γ , we have 1 – γi(u) > 0. By the basic inequality
x – 1 – ln x ≥ 0 for x > 0, we have

–
[
γi(u) + ln

(
1 – γi(u)

)]
=

(
1 – γi(u)

)
– 1 – ln

(
1 – γi(u)

) ≥ 0 for u ∈ Γ .

Thus, βi = σ 2
i
2 –

∫

Γ
[ln(1 – γi(u)) + γi(u)]λ(du) ≥ σ 2

i
2 > 0, i = 1, 2. Moreover, we assume that

there is a constant K > 0 such that
∫

Γ

[
ln

(
1 – γi(u)

)]2
λ(du) < K , i = 1, 2. (2.1)

Theorem 2.1 For any given initial value (x0, y0) ∈ R
2
+, system (1.3) has a unique global

positive solution (x(t), y(t)) on [0,∞); that is, (x(t), y(t)) ∈ R
2
+ with probability one for t ∈

[0,∞).

Proof In order to prove Theorem 2.1, we first consider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX(t) = [ beX(t–)

A1+eX(t–) – d1 – αeX(t–) – seY (t–)

1+sh1eX(t–) – β1] dt – σ1 dw1(t)

+
∫

Γ
ln(1 – γ1(u))Ñ(dt, du),

dY (t) = [ c1seX(t–)

1+sh1eX(t–) – d2 – β2] dt – σ2 dw2(t)

+
∫

Γ
ln(1 – γ2(u))Ñ(dt, du),

(2.2)

with initial values X(0) = ln x0, Y (0) = ln y0. Obviously, the coefficients of (2.2) are locally
Lipschitz continuous, and, hence, there is a unique maximal local solution (X(t), Y (t)) of
system (2.2) on [0, τe), where τe represents the explosion time. By x(t) = eX(t), y(t) = eY (t)

and using Itô formula, it follows that (x(t), y(t)) = (eX(t), eY (t)) is the unique positive local
solution of model (1.3) with initial value (x0, y0) on [0, τe).

Next, we use comparison theorem of stochastic differential equations to show that
(X(t), Y (t)) is a global solution to system (2.2), that is τe = ∞. Let us consider the following
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two stochastic differential systems:

⎧
⎨

⎩

dΦ(t) = Φ(t–)[b – αΦ(t–)] dt – σ1Φ(t–) dw1(t) –
∫

Γ
γ1(u)Φ(t–)Ñ(dt, du),

dΨ (t) = ( c1
h1

– d2)Ψ (t–) dt – σ2Ψ (t–) dw2(t) –
∫

Γ
γ2(u)Ψ (t–)Ñ(dt, du),

(2.3)

with initial value (Φ(0),Ψ (0)) = (x0, y0) ∈R
2
+ and

⎧
⎪⎪⎨

⎪⎪⎩

dφ(t) = φ(t–)[–d1 – sΨ (t–) – αφ(t–)] dt – σ1φ(t–) dw1(t)

–
∫

Γ
γ1(u)φ(t–)Ñ(dt, du),

dψ(t) = –d2ψ(t–) dt – σ2ψ(t–) dw2(t) –
∫

Γ
γ2(u)ψ(t–)Ñ(dt, du),

(2.4)

with initial value (φ(0),ψ(0)) = (x0, y0) ∈R
2
+.

Thanks to Lemmas 4.1 and 4.2 in [13], systems (2.3) and (2.4) can be explicitly solved as
follows:

⎧
⎨

⎩

Φ(t) = exp{(b–β1)t–σ1w1(t)+
∫ t

0
∫

Γ ln[1–γ1(u)]Ñ(dr,du)}
1

x0
+α

∫ t
0 exp{(b–β1)z–σ1w1(z)+

∫ z
0

∫

Γ ln[1–γ1(z)]Ñ(dr,du)}dz
,

Ψ (t) = y0 exp{( c1
h1

– d2 – β2)t – σ2w2(t) +
∫ t

0
∫

Γ
ln[1 – γ2(u)]Ñ(dr, du)},

and

⎧
⎨

⎩

φ(t) = exp{(–d1–β1)t–s
∫ t

0 Ψ (r) dr–σ1w1(t)+
∫ t

0
∫

Γ ln[1–γ1(u)]Ñ(dr,du)}
1

x0
+α

∫ t
0 exp{(–d1–β1)z–s

∫ z
0 Ψ (r) dr–σ1w1(z)+

∫ z
0

∫

Γ ln[1–γ1(u)]Ñ(dr,du)}dz
,

ψ(t) = y0 exp{(–d2 – β2)t – σ2w2(t) +
∫ t

0
∫

Γ
ln[1 – γ2(u)]Ñ(dr, du)}.

Note that the local solution (x(t), y(t)) is positive on [0, τe). Then, on the basis of compar-
ison theorem for stochastic differential equations (see Theorem 3.1 in [17]), we have

0 < φ(t) ≤ x(t) ≤ Φ(t), 0 < ψ(t) ≤ y(t) ≤ Ψ (t), a.s. for t ∈ [0, τe).

Thus,

lnφ(t) ≤ X(t) ≤ lnΦ(t), lnψ(t) ≤ Y (t) ≤ lnΨ (t), a.s. for t ∈ [0, τe).

Since lnφ(t), lnΦ(t), lnψ(t) and lnΨ (t) exist on [0,∞), it follows that τe = ∞. This means
that, for any initial value (X(0), Y (0)) = (ln x0, ln y0) ∈ R

2, system (2.2) has a unique global
solution (X(t), Y (t)) on [0,∞) a.s. Therefore, for any initial value (x0, y0) ∈R

2
+, system (1.3)

has a unique global positive solution (x(t), y(t)) = (eX(t), eY (t)) on [0,∞) a.s. The proof is
therefore complete. �

3 Asymptotic pathwise estimation
The pathwise properties of the solutions are the subject of the present section. For later
applications, we first give a useful lemma, which is a generalization of an exponential mar-
tingale inequality with jumps.
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Lemma 3.1 ([18, 19]) Let f : [0,∞) →R and h : [0,∞)×Γ →R be both predictable {Ft}-
adapted processes such that, for any T > 0,

∫ T

0

∣
∣f (t)

∣
∣2 dt < ∞ a.s. and

∫ T

0

∫

Γ

∣
∣h(t, u)

∣
∣λ(du) dt < ∞ a.s.

Then, for any positive constants α, β ,

P

{

sup
0≤t≤T

[∫ t

0
f (s) dw(s) –

α

2

∫ t

0

∣
∣f (s)

∣
∣2 ds +

∫ t

0

∫

Γ

h(s, u)Ñ(ds, du)

–
1
α

∫ t

0

∫

Γ

[
eαh(s,u) – 1 – αh(s, u)

]
λ(du) ds

]

> β

}

≤ e–αβ .

Theorem 3.2 Let Assumption (2.1) hold. For any initial value (x0, y0) ∈ R
2
+, the solution

(x(t), y(t)) of system (1.3) has the property

lim sup
t→∞

ln x(t)
ln t

≤ 1 a.s. and lim sup
t→∞

ln y(t)
t

≤ c1

h1
– d2 – β2 a.s.

Proof For the prey population, applying the Itô formula to [et ln x(t)] leads to

et ln x(t) = ln x0 +
∫ t

0
er

[

ln x(r) +
bx(r)

A1 + x(r)
– d1 – αx(r) –

sy(r)
1 + sh1x(r)

]

dr

–
1
2

∫ t

0
σ 2

1 er dr +
∫ t

0

∫

Γ

er[ln
(
1 – γ1(u)

)
+ γ1(u)

]
λ(du) dr

–
∫ t

0
σ1er dw1(r) +

∫ t

0

∫

Γ

er ln
(
1 – γ1(u)

)
Ñ(dr, du).

Then, using the fundamental inequality ln x ≤ x – 1 for x > 0, we have

et ln x(t) ≤ ln x0 +
∫ t

0
er[ln x(r) + b – αx(r)

]
dr –

1
2

∫ t

0
σ 2

1 er dr

–
∫ t

0
σ1er dw1(r) +

∫ t

0

∫

Γ

er ln
(
1 – γ1(u)

)
Ñ(dr, du). (3.1)

Let n = 1, 2, . . . , γ > 0, θ > 1 and 0 < ε < 1. Choose T = nγ , α = εe–nγ and β = (θenγ ln n)/ε.
By Lemma 3.1, we deduce that

P

{

sup
0≤t≤nγ

[∫ t

0
–σ1er dw1(r) +

∫ t

0

∫

Γ

er ln
(
1 – γ1(u)

)
Ñ(dr, du)

–
enγ

ε

∫ t

0

∫

Γ

[(
1 – γ1(u)

)εer–nγ

– 1 – εer–nγ ln
(
1 – γ1(u)

)]
λ(du) dr

–
εe–nγ

2

∫ t

0
σ 2

1 e2r dr
]

>
θenγ ln n

ε

}

≤ 1
nθ

.

Since
∑∞

n=0
1

nθ < ∞ for θ > 1, the Borel–Cantelli lemma (see Lemma 1.2.4 in [20]) shows
that there exists a set Ω0 ∈ F with P(Ω0) = 1 and an integer-valued random variable n0 =
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n0(ω) such that, for every ω ∈ Ω0 and n ≥ n0, we have

–
∫ t

0
σ1er dw1(r) +

∫ t

0

∫

Γ

er ln
(
1 – γ1(u)

)
Ñ(dr, du)

≤ θenγ ln n
ε

+
εe–nγ

2

∫ t

0
σ 2

1 e2r dr

+
enγ

ε

∫ t

0

∫

Γ

[(
1 – γ1(u)

)εer–nγ

– 1 – εer–nγ ln
(
1 – γ1(u)

)]
λ(du) dr

for all 0 ≤ t ≤ nγ . Substituting the above inequality into (3.1), we have

et ln x(t) ≤ ln x0 +
∫ t

0
er[ln x(r) + b – αx(r)

]
dr –

1
2

∫ t

0
σ 2

1 er dr

+
εe–nγ

2

∫ t

0
σ 2

1 e2r dr +
θenγ ln n

ε

+
enγ

ε

∫ t

0

∫

Γ

[(
1 – γ1(u)

)εer–nγ

– 1 – εer–nγ ln
(
1 – γ1(u)

)]
λ(du) dr (3.2)

for all 0 ≤ t ≤ nγ , n ≥ n0. Note that, for 0 ≤ r ≤ t ≤ nγ ,

1
2
εe–nγ σ 2

1 e2r –
1
2
σ 2

1 er =
1
2
σ 2

1 er(εer–nγ – 1
) ≤ 1

2
σ 2

1 er(ε – 1) < 0

and

(
1 – γ1(u)

)εer–nγ

– 1 – εer–nγ ln
(
1 – γ1(u)

)

≤ 1 – εer–nγ γ1(u) – 1 – εer–nγ ln
(
1 – γ1(u)

)

= –εer–nγ
[
γ1(u) + ln

(
1 – γ1(u)

)]
,

where in the second inequality, we use the inequality xr ≤ 1 + r(x – 1), x ≥ 0, 1 ≥ r ≥ 0.
Substituting these into (3.2) yields

et ln x(t) ≤
∫ t

0
er

[

ln x(r) + b – αx(r) –
∫

Γ

[
γ1(u) + ln

(
1 – γ1(u)

)]
λ(du)

]

dr

+
θenγ ln n

ε
+ ln x0. (3.3)

Let us consider function f (x) = ln x + b – αx –
∫

Γ
[γ1(u) + ln(1 – γ1(u))]λ(du) on [0,∞). It is

easy to show that the function f has a maximum value for x = 1
α

> 0 and a maximum value
of the function f is fmax = ln 1

α
+ b – 1 –

∫

Γ
[γ1(u) + ln(1 – γ1(u))]λ(du). Thus, for almost

all 0 ≤ r ≤ nγ , there exists a positive constant K1 such that f (x) ≤ K1. This, together with
(3.3), yields

et ln x(t) ≤ ln x0 + K1et +
θenγ ln n

ε

for all 0 ≤ t ≤ nγ , n ≥ n0. Therefore, for all 0 ≤ (n – 1)γ ≤ t ≤ nγ , n ≥ n0, we have

ln x(t)
ln t

≤ ln x0

et ln t
+

K1

ln t
+

θeγ ln n
ε ln[(n – 1)γ ]

.
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Letting n → ∞ (and so t → ∞), we obtain lim supt→∞
ln x(t)

ln t ≤ θeγ

ε
. Letting θ ↓ 1, γ ↓ 0 and

ε ↑ 1, we can get

lim sup
t→∞

ln x(t)
ln t

≤ 1 a.s.

For the predator population, applying the generalized Itô formula, we obtain

ln y(t) = ln y0 +
∫ t

0

[
c1sx(r)

1 + sh1x(r)
– d2 – β2

]

dr – σ2w2(t)

+
∫ t

0

∫

Γ

ln
(
1 – γ2(u)

)
Ñ(dr, du). (3.4)

Clearly, Brownian motion wi(t) is a real-valued continuous local martingale vanishing at
time 0. Then, from the strong law of large numbers (see [20]), it follows that

lim
t→∞

wi(t)
t

= 0, i = 1, 2. (3.5)

In addition, denote Mi(t) =
∫ t

0
∫

Γ
ln(1 – γi(u))Ñ(dr, du). Then Mi(t) is a local martingale

vanishing at time 0 and

〈Mi〉(t) =̇ 〈Mi, Mi〉t =
∫ t

0

∫

Γ

[
ln

(
1 – γi(u)

)]2
λ(du) dr, i = 1, 2.

It follows from (2.1) that

ρMi (t) =̇
∫ t

0

d〈Mi〉(r)
(1 + r)2 =

∫ t

0

∫

Γ
[ln(1 – γi(u))]2λ(du)

(1 + r)2 dr

≤ K
∫ t

0

1
(1 + r)2 dr = K

(

1 –
1

1 + t

)

, i = 1, 2.

Hence, limt→∞ ρMi (t) ≤ K < ∞, i = 1, 2. Then, by the strong law of large numbers for local
martingales (see [21]), we have

lim
t→∞

Mi(t)
t

= lim
t→∞

1
t

∫ t

0

∫

Γ

ln
(
1 – γi(u)

)
Ñ(dr, du) = 0, i = 1, 2. (3.6)

Thus, from (3.4), it follows that

ln y(t)
t

≤
(

c1

h1
– d2 – β2

)

–
σ2w2(t)

t
+

M2(t)
t

+
ln y0

t
,

which, together with (3.5) and (3.6), yields

lim sup
t→∞

ln y(t)
t

≤ lim
t→∞

[(
c1

h1
– d2 – β2

)

–
σ2w2(t)

t
+

M2(t)
t

+
ln y0

t

]

=
c1

h1
– d2 – β2.

The proof is therefore complete. �
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Remark 3.3 Note limt→∞ ln t
t = 0. Hence, lim supt→∞

ln x(t)
ln t ≤ 1 a.s. yields

lim sup
t→∞

ln x(t)
t

≤ 0 a.s.

4 Extinction
For a stochastic equation, we are interested in the long time behavior. In this section, we
investigate how the intensities of noises and the Allee effect affect extermination of the
predator population and the prey population. From Theorem 3.2, it is easy to see that the
following theorem holds.

Theorem 4.1 For any (x0, y0) ∈ R
2
+, let (x(t), y(t)) be the solution of system (1.3) with initial

value (x0, y0). If c1
h1

– d2 – β2 < 0, then limt→∞ y(t) = 0 a.s., that is, the predator population
becomes extinct with probability one.

Remark 4.2 When γ1(u) = γ2(u) = 0, we can conclude that, for any (x0, y0) ∈ R
2
+, the solu-

tion (x(t), y(t)) of system (1.2) has the property: if σ 2
2 > 2[ c1

h1
– d2], then limt→∞ y(t) = 0 a.s.

This is consistent with Theorem 3.3 in [10]. Hence, Theorem 4.1 generalizes Theorem 3.3
in [10].

Now, we investigate how Allee effect and the intensities of noises affect the prey popu-
lation and then the predator population.

Theorem 4.3 For any (x0, y0) ∈ R
2
+, let (x(t), y(t)) be the solution of system (1.3) with initial

value (x0, y0). If one of the following conditions holds:
(i) αA1 ≥ b – (d1 + β1);

(ii) (
√

b –
√

d1 + β1)2 < αA1 < b – (d1 + β1),
then limt→∞ x(t) = 0, limt→∞ y(t) = 0 a.s., that is, prey and predator populations become
extinct with probability one.

Proof For the prey population, applying the generalized Itô formula, we obtain

d ln x(t) =
[

bx(t–)
A1 + x(t–)

– d1 – αx(t–) –
sy(t–)

1 + sh1x(t–)
– β1

]

dt – σ1 dw1(t)

+
∫

Γ

ln
(
1 – γ1(u)

)
Ñ(dt, du).

Integrating both sides of the above equation from 0 to t and using the positivity of x(t) and
y(t) yield

ln x(t) ≤ ln x0 +
∫ t

0

[
bx(r)

A1 + x(r)
– d1 – αx(r) – β1

]

dr – σ1w1(t) + M1(t). (4.1)

Let us consider function

f (x) =
bx

A1 + x
– αx – d1 – β1

=
–αx2 + [b – (d1 + β1) – αA1]x – (d1 + β1)A1

A1 + x
,

on [0,∞). Denote g(x) = –αx2 + [b – (d1 + β1) – αA1]x – (d1 + β1)A1 for x ∈ [0,∞).
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(i) If αA1 ≥ b – (d1 + β1), then g(x) ≤ g(0) = –(d1 + β1)A1 < 0 for any x ∈ [0, +∞).
(ii) If αA1 < b – (d1 + β1), then we know that the maximum value of g is

gmax =
[b – (d1 + β1) + αA1]2 – 4bαA1

4α
.

This, together with (
√

b –
√

d1 + β1)2 < αA1, yields, for any x ∈ [0,∞),

g(x) ≤ gmax =
[b – (d1 + β1) + αA1]2 – 4bαA1

4α
< 0.

Therefore, if condition (i) or condition (ii) holds, then f (x) < 0 for x ∈ [0, +∞). In ad-
dition, limx→∞ f (x) = –∞. Hence, there is a constant D < 0 such that f (x) < D for all
x ∈ [0,∞). Therefore, from (4.1), it follows that

ln x(t)
t

≤ D –
σ1w1(t)

t
+

M1(t)
t

+
ln x0

t
.

Thus, from (3.5) and (3.6), it follows that

lim sup
t→∞

ln x(t)
t

≤ lim
t→∞

[

D –
σ1w1(t)

t
+

M1(t)
t

+
ln x0

t

]

= D.

Then D < 0 implies limt→∞ x(t) = 0 a.s.
Let Ω1 = {ω ∈ Ω : limt→∞ x(t,ω) = 0}, then limt→∞ x(t) = 0 a.s. impliesP(Ω1) = 1. Hence,

for any ω ∈ Ω1 and any constant ε > 0, there exists a constant T(ω, ε) > 0 such that
c1sx(t)

1+sh1x(t) ≤ ε for any t ≥ T . Therefore, from (3.4), it follows that

ln y(t)
t

=
1
t

∫ t

0

[
c1sx(r)

1 + sh1x(r)
– d2 – β2

]

dr –
σ2w2(t)

t
+

M2(t)
t

+
ln y0

t

≤ 1
t

∫ T

0

(
c1

h1
– d2 – β2

)

dr +
1
t

∫ t

T
(ε – d2 – β2) dr –

σ2w2(t)
t

+
M2(t)

t
+

ln y0

t

=
(

c1

h1
– d2 – β2

)
T
t

+ (ε – d2 – β2)
t – T

t
–

σ2w2(t)
t

+
M2(t)

t
+

ln y0

t

for every t ≥ T and ω ∈ Ω1. Thus, from (3.5) and (3.6), it follows that

lim sup
t→∞

ln y(t)
t

≤ ε – d2 – β2 a.s.,

and the required assertion limt→∞ y(t) = 0 a.s. follows since ε > 0 is arbitrary. The proof is
complete. �

Form Theorem 4.3, we can get the following corollary with the proof being omitted.

Corollary 4.4 For any initial value (x0, y0) ∈ R
2
+, let (x(t), y(t)) be the solution of system

(1.2) with initial value (x0, y0). If one of the following conditions holds:
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(C1) αA1 ≥ b – (d1 + σ 2
1
2 );

(C2) (
√

b –
√

d1 + σ 2
1
2 )2 < αA1 < b – (d1 + σ 2

1
2 ),

then limt→∞ x(t) = 0, limt→∞ y(t) = 0 a.s.

Remark 4.5 From Theorem 3.2 in [10], for any (x0, y0) ∈R
2
+, if one of the following condi-

tions holds:
(B1) d1 > b and 2αA1 < d1 – b;
(B2) d1 ≤ b and αA1 ≥ b – d1;
(B3) d1 ≤ b, αA1 < b – d1 and (b – d1 – αA1)2(b – d1 + 8αA1) – 27d1(αA1)2 < 0;
(B4) αA1 < b and σ 2

1 > 2[(
√

b –
√

αA1)2 – d1],
then the solution (x(t), y(t)) of model (1.2) with any initial value (x0, y0) satisfies
limt→∞ x(t) = 0 and limt→∞ y(t) = 0 a.s.

Obviously, if condition (B1) or (B2) holds, then condition (C1) in Corollary 4.4 holds.
If condition (B3) holds, then condition (C1) or (C2) in Corollary 4.4 holds. If condition
(B4) holds, then condition (C1) or (C2) in Corollary 4.4 holds. Moreover, if αA1 > b and
b < d1 ≤ 3b, then condition (C1) holds. However, if αA1 > b and b < d1 ≤ 3b, then 0 <
d1 –b ≤ 2b < 2αA1, which means all the conditions of Theorem 3.2 in [10] are not satisfied.
Therefore, Corollary 4.4 improves Theorem 3.2 in [10].

5 Stochastically ultimate boundness
In this section, we investigate the stochastically ultimate boundedness of system (1.3).
Firstly, its definition will be given.

Definition 5.1 ([22]) The solutions of system (1.3) are called stochastically ultimately
bounded, if for any ε ∈ (0, 1), there exist two positive constants H1 = H1(ε) and H2 = H2(ε)
such that the solution (x(t), y(t)) of model (1.3) with any initial value in R

2
+ has the property

that

lim sup
t→∞

P
{

x(t) > H1
}

< ε, lim sup
t→∞

P
{

y(t) > H2
}

< ε.

We provide the following useful lemmas from which the stochastically ultimate bound-
edness follows directly. Denote R+ = (0,∞).

Lemma 5.2 Let Φ(t) be the solution of the first equation in system (2.3) with the initial
value Φ(0) = x0 ∈R+, then

lim sup
t→∞

E
[
Φ(t)

] ≤ b
α

.

Proof Integrating both sides of the first equation in system (2.3) from 0 to t yields

Φ(t) = x0 +
∫ t

0
Φ(s)

[
b – αΦ(s)

]
ds –

∫ t

0
σ1Φ(s) dw1(s)

–
∫ t

0

∫

Γ

γ1(u)Φ(s)Ñ(ds, du). (5.1)
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Note that
∫ t

0 σ1Φ(s) dw1(s) is a real-valued continuous local martingale and
∫ t

0
∫

Γ
γ1(u)Φ(s)Ñ(ds, du) is a real-valued local martingale. Taking the expectation on both

sides of (5.1), we have

E
[
Φ(t)

]
= x0 + E

∫ t

0
Φ(s)

[
b – αΦ(s)

]
ds. (5.2)

Using the Hölder inequality, it follows that

dE[Φ(t)]
dt

= bE
[
Φ(t)

]
– αE

[
Φ2(t)

] ≤ bE
[
Φ(t)

]
– αE2[Φ(t)

]
.

The Bernoulli equation

dϕ(t)
dt

= bϕ(t) – αϕ2(t)

with the initial value ϕ(0) = x0, has the solution

ϕ(t) =
b

α(1 – e–bt + x–1
0

α
b e–bt)

.

Then, by the comparison theorem, we have

E
[
Φ(t)

] ≤ b
α(1 – e–bt + x–1

0
α
b e–bt)

.

From b > 0, it follows that

lim sup
t→∞

E
[
Φ(t)

] ≤ lim
t→∞

b
α(1 – e–bt + x–1

0 e–bt)
=

b
α

.

The proof is therefore complete. �

Lemma 5.3 Let Ψ (t) be the solution of the second equation in system (2.3) with initial
value Ψ (0) = y0 ∈R+. If c1

h1
– d2 < 0, then

lim
t→∞E

[
Ψ (t)

]
= 0.

Proof Integrating both sides of the second equation in system (2.3) from 0 to t yields

Ψ (t) = y0 +
∫ t

0

(
c1

h1
– d2

)

Ψ (s) ds –
∫ t

0
σ2Ψ (s) dw2(s)

–
∫ t

0

∫

Γ

γ2(u)Ψ (s)Ñ(ds, du). (5.3)

Note that
∫ t

0 σ2Ψ (s) dw2(s) is a real-valued continuous local martingale and
∫ t

0
∫

Γ
γ2(u)Ψ (s)Ñ(ds, du) is a real-valued local martingale. Taking the expectation on both

sides of (5.3), we have

E
[
Ψ (t)

]
= y0 + E

∫ t

0

(
c1

h1
– d2

)

Ψ (s) ds, (5.4)
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which implies the differentiability of E[Ψ (t)]. Then

dE[Ψ (t)]
dt

=
(

c1

h1
– d2

)

E
[
Ψ (t)

]
. (5.5)

It is easy to show that the solution of Eq. (5.5) with initial E[Ψ (0)] = y0 is

E
[
Ψ (t)

]
= y0 exp

{(
c1

h1
– d2

)

t
}

.

This, together with c1
h1

– d2 < 0, yields

lim
t→∞E

[
Ψ (t)

]
= lim

t→∞ y0 exp

{(
c1

h1
– d2

)

t
}

= 0.

The proof is therefore complete. �

According to Chebyshev’s inequality and the application of Lemmas 5.2 and 5.3, we have
the following result.

Theorem 5.4 If c1
h1

– d2 < 0, then the solutions of model (1.3) are stochastically ultimately
bounded.

Proof Let (x(t), y(t)) be the solution of model (1.3) with any initial values (x0, y0) ∈ R
2
+.

Combining x(t) ≤ Φ(t), y(t) ≤ Ψ (t) a.s. with Lemmas 5.2 and 5.3, it follows that

lim sup
t→∞

E
[
x(t)

] ≤ b
α

, lim
t→∞E

[
y(t)

]
= 0.

Now, for any ε ∈ (0, 1), let H1 = b
αε

+ 1 and H2 = 1. Then by Chebyshev’s inequality

P
{

x(t) > H1
} ≤ E[x(t)]

H1
, P

{
y(t) > H2

} ≤ E[y(t)]
H2

.

Hence,

lim sup
t→∞

P
{

x(t) > H1
} ≤ lim sup

t→∞
E[x1(t)]

H1
< ε,

lim sup
t→∞

P
{

y(t) > H2
} ≤ lim sup

t→∞
E[y(t)]

H2
= 0.

The proof is therefore complete. �

6 Numerical simulations
In this section, we make numerical simulations to illustrate our results by using the method
by stationary Poisson point processes [11]. Numerical experiments are made by using the
following set of parameters: Γ = (0, +∞), λ(Γ ) = 1, initial value (30, 4) and some parameter
values are shown in the table below (see [10]).

(i) Assume that α = 0.01, A1 = 0.5, σ 2
1 = σ 2

2 = 0.005, γ1(u) = γ2(u) = 0.05 and for the other
parameter values see Table 1. By a simple computation, αA1 = 0.005, βi = 0.0038, i = 1, 2.
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Table 1 The parameters of the model

Parameters Description Values

b per capita maximum reproduction rate of prey population 0.22 per year
d1 per capita death rates of prey 0.008 per year
d2 per capita death rates of predators 0.7 per year
s effective search rate 0.05 per year
h1 handling time of predators 25 days
c1 conversion efficiency of ingested prey into new predators 0.005 per year

Figure 1 Deterministic and stochastic trajectories of prey population and predator population with
parameters in Table 1. Moreover, σ 2

1 = σ 2
2 = 0.005 and γ1(u) = γ2(u) = 0.05. (a) Trajectories of prey population.

(b) Trajectories of predator population. (Color figure online)

Thus, b – (d1 + β1) = 0.2082, (
√

b –
√

d1 + β1)2 ≈ 0.13 and c1
h1

– d2 – β2 < 0. Therefore,
the conditions of Theorem 4.3 are not satisfied while the condition of Theorem 4.1 is
fulfilled. From Theorem 4.1, it follows that the predator population becomes extinct with
probability one. As can be seen from Fig. 1 that the prey population does not become
extinct and predator population becomes extinct.

(ii) Moreover, for the same α = 0.01, intensities of white noises σ 2
1 = σ 2

2 = 0.005, jumps
γ1(u) = γ2(u) = 0.05 and greater Allee effect constant, A1 = 20, we can obtain αA1 = 0.2,
b – (d1 + β1) = 0.2082 and (

√
b –

√
d1 + β1)2 = 0.1299. This implies the condition (ii) of

Theorem 4.3 is fulfilled. Then, from Theorem 4.3, it follows that both prey population
and predator population become extinct. Figures 2(a) and 2(b) are the trajectories of prey
population and predator population, respectively. From Fig. 2, we can see that both prey
population and predator population become extinct. Comparing Figs. 1(a) and 2(a), we
can conclude that stronger Allee effects can lead to the extinction of the prey population,
even if intensity of noise is not high.

(iii) For the same α and A1 taken as those in (i). If intensities of white noises σ 2
1 = 0.31,

σ 2
2 = 0.2 and jumps γ1(u) = 0.1, γ2(u) = 0.05, then αA1 = 0.005, b – (d1 + β1) = 0.0516,

(
√

b –
√

d1 + β1)2 = 0.003481, b – (d1 + σ 2
1
2 ) = 0.057 and (

√
b –

√

d1 + σ 2
1
2 )2 = 0.00426. Then

condition (ii) in Theorem 4.3 holds and condition (C2) in Corollary 4.4 holds. Thus, from
Theorem 4.3 and Corollary 4.4 the prey populations in (1.2) and (1.3) both become ex-
tinct. As can be seen from Fig. 3(a) that the prey population in system (1.2) and (1.3) both
become extinct. Moreover, if intensity of white noise σ 2

1 = 0.05, σ 2
2 = 0.2 and jumps γ1(u) =
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Figure 2 Deterministic and stochastic trajectories of prey population and predator population with
parameters in Table 1. Moreover, α = 0.01, A1 = 20 σ 2

1 = σ 2
2 = 0.005 and γ1(u) = γ2(u) = 0.05. (a) Trajectories of

prey population. (b) Trajectories of predator population. (Color figure online)

Figure 3 Deterministic and stochastic trajectories of prey population with parameters in Table 1, α = 0.01,
A1 = 0.5 and different intensities of white noise and jumps. (a) σ 2

1 = 0.31, σ 2
2 = 0.2, γ1(u) = 0.1, γ2(u) = 0.05.

(b) σ 2
1 = 0.05, σ 2

2 = 0.2, γ1(u) = 0.5, γ2(u) = 0.2. (Color figure online)

0.5, γ2(u) = 0.2, then αA1 = 0.005, b – (d1 + β1) = 0.0165, (
√

b –
√

d1 + β1)2 = 0.00032,

b – (d1 + σ 2
1
2 ) = 0.2095 and (

√
b –

√

d1 + σ 2
1
2 )2 = 0.1343. Thus, condition (ii) in Theorem 4.3

holds while all the conditions in Corollary 4.4 are not satisfied. Therefore, from Theo-
rem 4.3, it follows that the prey population in system (1.3) becomes extinct. As can be
seen from Fig. 3(b) that the prey population in system (1.3) becomes extinct while the
prey population in model (1.2) does not become extinct. Comparing Figs. 1(a) and 3(a),
we conclude that white noise can lead to the extinction of prey population. Comparing
Figs. 3(a) and 3(b), we conclude that jumps can lead to the extinction of prey population.

(iv) Choose b = 0.02, d1 = 0.04, α = 0.01, A1 = 3, σ 2
1 = 0.3, σ 2

2 = 0.2, γ1(u) = γ2(u) = 0.1
and the other parameters are taken as in Table 1. By a simple computation, αA1 = 0.03 >
–0.175 = b – (d1 + β1). This means condition (i) in Theorem 4.3 holds. Hence, from Theo-
rem 4.3, it follows that the prey population and predator both become extinct. Moreover,
we have αA1 > b and b < d1 ≤ 3b. However, from Remark 4.5, if αA1 > b and b < d1 ≤ 3b,
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Figure 4 Deterministic and stochastic trajectories of prey population and predator population with b = 0.02,
d1 = 0.04, α = 0.01, A1 = 3, σ 2

1 = 0.3, σ 2
2 = 0.2, γ1(u) = γ2(u) = 0.1 and other parameters are taken as in Table 1.

(a) Trajectories of prey population. (b) Trajectories of predator population. (Color figure online)

then all conditions of Theorem 3.2 in [10] are not hold. From Fig. 4, we can see that the
prey population will become extinct with probability one and then the predator popula-
tion.

7 Conclusions and discussions
In this paper, we consider a stochastic predator–prey population model with Allee effect
and Lévy noise. First, by the comparison theorem of stochastic differential equations and
the Itô formula, we prove that this model has a unique global positive solution starting
from the positive initial value. Then we investigate the asymptotic pathwise behavior of
the model by the generalized exponential martingale inequality and the Borel–Cantelli
lemma. Next, we establish the conditions under which extinction of predator and prey
populations occur. Furthermore, we show that the global positive solution is stochastically
ultimate bounded under some conditions by using the Chebyshev’s inequality. At last, we
introduce some numerical simulations to support the main results obtained.

When γ1(u) = γ2(u) = 0, we can get the stochastic predator–prey population (1.2), which
is studied in [10]. From Remark 4.5, it follows that Corollary 4.4 generalizes and im-
proves Theorem 3.2 in [10]. Moreover, our investigation shows that the Allee effect, white
noise and jumps may cause great influence on the survival of species. It can be seen from
Figs. 1(a) and 2(a) that stronger Allee effects can lead to the extinction of prey population,
even if intensity of noise is not high. From Figs. 1(a), 3(a) and 3(b), we can conclude that
the high intensity noise and jumps can also lead to the extinction of prey population, even
if the Allee effects is not large. Therefore, Allee effect is an important factor in population
modeling. Moreover, considering the sudden environmental shocks, a stochastic model
especially with jumps is better than a deterministic model in describing the population
dynamics.
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