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Abstract
The purpose of this paper is to introduce and study the general viscosity
approximation methods for quasi-nonexpansive mappings in the setting of
infinite-dimensional Hilbert spaces. Under suitable conditions, we prove that the
sequences generated by the proposed new algorithm converge strongly to a fixed
point of quasi-nonexpansive mappings in Hilbert spaces, which is also the unique
solution of some variational inequality. Then this result is used to study the split
equality fixed point problems, the split equality common fixed point problems, the
split equality null point problems, etc. Our results improve and generalize many
results in the literature and they should have many applications in nonlinear science.
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1 Introduction
Let C be a nonempty subset of a real Hilbert space H . A mapping T : C → C is called
nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. The set of the fixed points of T is
denoted by Fix(T) = {x ∈ C : Tx = x}. T : C → C is called quasi-nonexpansive if Fix(T) �= ∅,
and ‖Tx – p‖ ≤ ‖x – p‖ for all x ∈ C, p ∈ Fix(T).

The viscosity approximation method for nonlinear mappings was first introduced by
Moudafi [1]. Starting with an arbitrary initial x0 ∈ H , define a sequence {xn}n∈N generated
by

xn+1 =
εn

1 + εn
f (xn) +

1
1 + εn

Txn, ∀n ≥ 0, (1.1)

where f is a contraction with a coefficient θ ∈ [0, 1) on H , i.e., ‖f (x) – f (y)‖ ≤ θ‖x – y‖ for
all x, y ∈ H , and {εn}n∈N is a sequence in (0, 1) satisfying the following given conditions:

• limn→∞ εn = 0;
•

∑∞
n=0 εn = ∞;

• limn→∞( 1
εn

– 1
εn+1

) = 0.
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It is proved that the sequence {xn}n∈N generated by (1.1) converges strongly to the unique
solution p ∈ Fix(T) of the variational inequality

〈
(I – f )p, x – p

〉 ≥ 0, ∀x ∈ Fix(T). (1.2)

In [2], Maingé considered the following viscosity approximation method for quasi-
nonexpansive mappings. Starting with an arbitrary initial x0 ∈ C ⊂ H , {xn}n∈N generated
by

xn+1 = αnf (xn) + (1 – αn)Tωxn, ∀n ≥ 0, (1.3)

where Tω = ωI + (1 –ω)T , with T quasi-nonexpansive on C ⊂ H , Fix(T) �= ∅ and ω ∈ (0, 1),
{αn}n∈N is a sequence in (0, 1) satisfying the following given conditions:

(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞.

It is also proved that the sequence {xn}n∈N generated by (1.3) converges strongly to the
unique solution of the variational inequality (1.2).

In [3], Tian and Jin considered the following general iterative method:

xn+1 = αnγ f (xn) + (I – αnA)Tωxn, ∀n ≥ 0. (1.4)

It is proved that if the sequence {αn}n∈N satisfies appropriate conditions, the sequence
{xn}n∈N generated by (1.4) converges strongly to the unique solution of the variational
inequality

〈
(A – γ f )p, x – p

〉 ≥ 0, ∀x ∈ Fix(T), (1.5)

or equivalently p = PFix(T)(I – A + γ f )p, where Fix(T) is the fixed point set of a quasi-
nonexpansive mapping T , and A is a strongly positive linear bounded operator.

In [4], Marino et al. considered the following general viscosity explicit midpoint rule:

x̄n+1 = βnxn + (1 – βn)Txn;

xn+1 = αnf (xn) + (1 – αn)T
(
snxn + (1 – sn)x̄n+1

)
, ∀n ≥ 0.

(1.6)

It is proved that if the sequences {αn}n∈N, {βn}n∈N, and {sn}n∈N satisfy appropriate condi-
tions, the sequence {xn}n∈N generated by (1.6) converges strongly to the unique solution of
the variational inequality (1.2), where Fix(T) is the fixed point set of a quasi-nonexpansive
mapping T .

Let Hi, i = 1, 2, 3, be a real Hilbert space, and T : H1 → H1 with fixed point set Fix(T).
Let C1 and C2 be nonempty closed convex subsets of H1 and H2, respectively, and let
A : H1 → H2 be a bounded linear operator.

The split feasibility problem (SFP) is the problem of finding

x ∈ H1 such that x ∈ C1 and Ax ∈ C2.
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In 1994, Censor and Elfving [5] first introduced the (SFP) in finite-dimensional Hilbert
spaces for modeling inverse problems which arise from phase retrievals and in medical
image reconstruction.

Let A1 : H1 → H3, A2 : H2 → H3 be bounded linear operators. Moudafi [6] introduced
the following split equality feasibility problem (SEFP):

Find x1 ∈ C1, x2 ∈ C2 such that A1x1 = A2x2.

Obviously, if A2 = I (identity mapping on H2) and H2 = H3, then (SEFP) is reduced to
(SFP). Moudafi [6] introduced an iteration process to establish a weak convergence the-
orem for split equality feasibility problem under suitable assumptions. The (SEFP) has
many applications such as decomposition methods for PDEs and applications in game
theory and intensity-modulated radiation therapy.

Let T1 : H1 → H1 and T2 : H2 → H2 be firmly quasi-nonexpansive mappings such that
Fix(T1) �= ∅, Fix(T2) �= ∅, and let A1 : H1 → H3, A2 : H2 → H3 be bounded linear operators.
Moudafi [7] introduced an iteration process and established weak convergence theorem
for split equality fixed point problem (SEFPP):

Find x1 ∈ Fix(T1), x2 ∈ Fix(T2) such that A1x1 = A2x2.

When A2 = I and H2 = H3, then the (SEFPP) is reduced to the split common fixed point
problem (SCFPP):

Find x1 ∈ H such that x1 ∈ Fix(T1) and A1x1 ∈ Fix(T2).

When C1 ⊂ H1, C1 �= ∅, C2 ⊂ H2, C2 �= ∅, let T1 = PC1 and T2 = PC2 , the (SEFPP) is then
reduced to the (SEFP), where PC1 and PC2 denote the metric projection of C1 and C2,
respectively.

Very recently there have been many works concerning fixed point methods for nonex-
pansive mappings. For more details, see, e.g., [8–11] and the references therein.

Motivated and inspired by the above works on viscosity approximation method for
quasi-nonexpansive mappings and split equality problems, in this paper we first intro-
duce a general viscosity approximation method for quasi-nonexpansive mappings. Un-
der suitable conditions, we prove that the sequences generated by the proposed new al-
gorithm converge strongly to a fixed point of quasi-nonexpansive mappings in Hilbert
spaces, which is also the unique solution of some variational inequality. Then this result
is used to study the split equality fixed point problems, the split equality common fixed
point problems, the split equality null point problems, etc. Our results improve and gen-
eralize many results in the literature and they should have many applications in nonlinear
science.

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖·‖. Let I : H → H
be an identity mapping on H . We denote the strong convergence and the weak conver-
gence of {xn}n∈N to x ∈ H by xn → x and xn ⇀ x, respectively. Throughout this paper, we
use these notations and assumptions unless specified otherwise.

The following identities are valid in a Hilbert space H : for each x, y ∈ H , t ∈ [0, 1],



Liu et al. Journal of Inequalities and Applications         (2019) 2019:71 Page 4 of 20

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(ii) ‖tx + (1 – t)y‖2 = t‖x‖2 + (1 – t)‖y‖2 – t(1 – t)‖x – y‖2.
Let C be a nonempty subset of the real Hilbert space H , and let T : C → H be a single-

valued mapping. Then T is called
(1) nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C;
(2) L-Lipschitz continuous if there exists L > 0 such that ‖Tx – Ty‖ ≤ L‖x – y‖ for all

x, y ∈ C;
(3) quasi-nonexpansive if Fix(T) �= ∅, and

‖Tx – p‖ ≤ ‖x – p‖ for all x ∈ C and for all p ∈ Fix(T);

(4) ρ-strongly quasi-nonexpansive, where ρ ≥ 0, if Fix(T) �= ∅ and

‖Tx – p‖2 ≤ ‖x – p‖2 – ρ‖Tx – x‖

for all x ∈ C and for all p ∈ Fix(T);
(5) strictly quasi-nonexpansive if Fix(T) �= ∅ and ‖Tx – p‖ < ‖x – p‖ for all p ∈ Fix(T)

and for all x ∈ C \ Fix(T);
(6) monotone if 〈x – y, Tx – Ty〉 ≥ 0 for all x, y ∈ C;
(7) η-strongly monotone if there exists η > 0 such that 〈x – y, Tx – Ty〉 ≥ η‖x – y‖2 for

all x, y ∈ C;
(8) α-inverse-strongly monotone (in short α-ism) if there exists α > 0 such that

〈x – y, Tx – Ty〉 ≥ η‖Tx – Ty‖2 for all x, y ∈ C;
(9) demiclosed if for each sequence {xn}n∈N and x ∈ C with xn ⇀ x and (I – T)xn → 0

implies (I – T)x = 0;
(10) firmly nonexpansive if ‖Tx – Ty‖2 ≤ 〈Tx – Ty, x – y〉 for all x, y ∈ C;
(11) α-averaged if there exist α ∈ (0, 1) and nonexpansive S : C → H such that

T = (1 – α)I + αS.
It is easy to see that every strongly quasi-nonexpansive mapping is a strictly quasi-

nonexpansive mapping and every strictly quasi-nonexpansive mapping is a quasi-nonex-
pansive mapping.

Lemma 2.1 Let H be a Hilbert space and let Tρ : H → H with Fix(Tρ) �= ∅. Then Tρ is
a ρ-strongly quasi-nonexpansive mapping with ρ ≥ 0 if and only if there exists a quasi-
nonexpansive mapping T such that Tρ = (1 – 1

1+ρ
)I + 1

1+ρ
T and Fix(Tρ) = Fix(T).

Proof Since the statement Fix(Tρ) = Fix(T) is evident, we only prove that Tρ is a ρ-
strongly quasi-nonexpansive mapping if and only if T is a quasi-nonexpansive mapping.

(Necessity) For all x ∈ H and for all p ∈ Fix(T),

‖Tρx – p‖2 =
∥
∥
∥
∥

(

1 –
1

1 + ρ

)

(x – p) +
1

1 + ρ
(Tx – p)

∥
∥
∥
∥

2

=
(

1 –
1

1 + ρ

)

‖x – p‖2 +
1

1 + ρ
‖Tx – p‖2

–
(

1 –
1

1 + ρ

)(
1

1 + ρ

)

‖Tx – x‖2
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=
(

1 –
1

1 + ρ

)

‖x – p‖2 +
1

1 + ρ
‖Tx – p‖2

– ρ

∥
∥
∥
∥

((

1 –
1

1 + ρ

)

x +
1

1 + ρ
Tx

)

– x
∥
∥
∥
∥

2

=
(

1 –
1

1 + ρ

)

‖x – p‖2 +
1

1 + ρ
‖Tx – p‖2 – ρ‖Tρx – x‖2. (2.1)

Since Tρ is ρ-strongly quasi-nonexpansive, we have

‖Tρx – p‖2 ≤ ‖x – p‖2 – ρ‖Tρx – x‖2. (2.2)

It follows from (2.1) and (2.2) that

‖Tx – p‖2 ≤ ‖x – p‖2,

i.e., T is a quasi-nonexpansive mapping.
(Sufficiency) Since

‖Tx – p‖ ≤ ‖x – p‖,

then

‖Tρx – p‖2 =
∥
∥
∥
∥

(

1 –
1

1 + ρ

)

(x – p) +
1

1 + ρ
(Tx – p)

∥
∥
∥
∥

2

=
(

1 –
1

1 + ρ

)

‖x – p‖2 +
1

1 + ρ
‖Tx – p‖2

–
(

1 –
1

1 + ρ

)(
1

1 + ρ

)

‖Tx – x‖2

≤
(

1 –
1

1 + ρ

)

‖x – p‖2 +
1

1 + ρ
‖x – p‖2

– ρ

∥
∥
∥
∥

(
1

1 + ρ
Tx +

(

1 –
1

1 + ρ

)

x
)

– x
∥
∥
∥
∥

2

= ‖x – p‖2 – ρ‖Tρx – x‖2,

i.e., Tρ is a ρ-strongly quasi-nonexpansive mapping. �

Lemma 2.2 Let F : H → H be L-Lipschitz continuous and η-strongly monotone with L > 0
and η > 0. Then, for all μ ∈ (0, 2η

L2 ) and β ∈ (0, 1), I – βμF is (1 – βτ )-contraction, where
τ = μ(η – 1

2μL2).

Proof By assumption, it is easy to see that η ≤ L. Since μ ∈ (0, 2η

L2 ), τ = μ(η – 1
2μL2) > 0,

we have 1 – βτ < 1. On the other hand, τ = μ(η – 1
2μL2) = – 1

2 L2(μ – η

L2 )2 + η2

2L2 ≤ η2

2L2 ≤ 1
2 .

Hence 1 – βτ > 0.
For all x, y ∈ H ,

∥
∥(I – βμF)x – (I – βμF)y

∥
∥2 =

∥
∥(x – y) – βμ(Fx – Fy)

∥
∥2

= ‖x – y‖2 + β2μ2‖Fx – Fy‖2 – 2βμ〈x – y, Fx – Fy〉
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≤ ‖x – y‖2 + β2μ2L2‖x – y‖2 – 2βμη‖x – y‖2

=
[(

1 – 2βτ + β2τ 2) – β2τ 2 – βμ2L2 + β2μ2L2]‖x – y‖2

≤ (1 – βτ )2‖x – y‖2,

i.e.,

∥
∥(I – βμF)x – (I – βμF)y

∥
∥ ≤ (1 – βτ )‖x – y‖. �

Lemma 2.3 ([12]) Let C be a nonempty subset of H , and let T1, T2 : C → C be quasi-
nonexpansive operators. Suppose that either T1 or T2 is strictly quasi-nonexpansive, and
Fix(T1) ∩ Fix(T2) �= ∅. Then the following hold:

(i) Fix(T1T2) = Fix(T1) ∩ Fix(T2);
(ii) T1T2 is quasi-nonexpansive;

(iii) When both T1 and T2 are strictly quasi-nonexpansive, T1T2 is strictly
quasi-nonexpansive.

Lemma 2.4 ([12]) Let C be a nonempty subset of a Hilbert space H , and let T : C → H be
nonexpansive operators, and α ∈ (0, 1). Then the following are equivalent:

(i) T is averaged;
(ii) ‖Tx – Ty‖2 ≤ ‖x – y‖2 – 1–α

α
‖(I – T)x – (I – T)y‖2, ∀x, y ∈ C.

Lemma 2.5 Let C be a nonempty subset of H , and let T1 : C → C be a quasi-nonexpansive
mapping and T2 : C → C be a firmly nonexpansive mapping such that Fix(T1) ∩
Fix(T2) �= ∅. Then T1T2 is quasi-nonexpansive and Fix(T1T2) = Fix(T1) ∩ Fix(T2).

Proof Since each firmly nonexpansive mapping is nonexpansive and 1
2 -averaged, by

Lemma 2.4, for all p ∈ Fix(T2) and for all x ∈ C \ Fix(T2), we have

‖T2x – p‖2 ≤ ‖x – p‖2 – ‖x – T2x‖2 < ‖x – p‖2,

i.e., T2 is strictly quasi-nonexpansive. Then Lemma 2.5 follows from Lemma 2.3. �

Recall that the metric projection PK from a Hilbert space H to a closed convex subset K
of H is defined as follows: for each x ∈ H , there exists a unique element PK x ∈ K such that

‖x – PK x‖ = inf
{‖x – y‖ : y ∈ K

}
.

Lemma 2.6 ([13]) Let K be a closed convex subset of H . Given x ∈ H and z ∈ K . Then
z = PK x if and only if there holds the inequality

〈z – x, y – z〉 ≥ 0, ∀y ∈ K .

Lemma 2.7 ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T be a nonexpansive self-mapping on C. Then I – T is demiclosed, i.e., for each sequence
{xn}n∈N and x ∈ C with xn ⇀ x and (I – T)xn → 0 implies (I – T)x = 0.
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Lemma 2.8 ([15]) Let {an}n∈N be a sequence of nonnegative real numbers such that

an+1 ≤ (1 – αn)an + αnσn + γn, n ≥ 0,

with
• {αn}n∈N ⊂ [0, 1],

∑∞
n=0 αn = ∞;

• lim supn→∞ σn ≤ 0;
• γn ≥ 0,

∑∞
n=0 γn < ∞.

Then limn→∞ an = 0.

Lemma 2.9 ([16]) Let {Γn}n∈N be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence {Γnk }k∈N of {Γn}n∈N which satisfies Γnj <
Γnj+1 for all j ≥ 0. Also consider the sequence of integers {δ(n)}n∈N defined by

δ(n) = max{k ≤ n : Γk < Γk+1}.

Then {δ(n)}n∈N is a nondecreasing sequence verifying limn→∞ δ(n) = ∞, and for all n ≥ n0,
it holds that Γδ(n) < Γδ(n)+1 and we have

Γn < Γδ(n)+1.

3 General viscosity approximation methods for quasi-nonexpansive mappings
Let f : H → H be θ -contractive with θ ∈ (0, 1), F : H → H be L-Lipschitz continuous and
η-strongly monotone with L > 0, and η > 0. Choose μ ∈ (0, 2η

L2 ) and θ ∈ (0, τ ), where τ =
μ(η – 1

2μL2). Throughout this section, we use these notations and assumptions unless
specified otherwise.

Theorem 3.1 Let T : H → H be a quasi-nonexpansive mapping such that Fix(T) �= ∅, with
I – T demiclosed at 0. For any given x0 ∈ H , the iterative sequence {xn}n∈N ⊂ H is generated
by

vn = βnxn + (1 – βn)Txn,

xn+1 = αnf (xn) + (I – αnμF)vn,
(3.1)

where {αn}n∈N and {βn}n∈N are two sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0;

(ii)
∑∞

n=0 αn = ∞;
(iii) lim supn→∞ βn(1 – βn) > 0.

Then the sequence {xn}n∈N defined by (3.1) converges strongly to p ∈ Fix(T), which is the
unique solution in Fix(T) of the variational inequality (VI)

〈
μF(p) – f (p), x – p

〉 ≥ 0, ∀x ∈ Fix(T). (3.2)

Proof Clearly, Fix(T) is closed and convex.
Step 1. There exists unique p ∈ Fix(T) such that

〈
μF(p) – f (p), x – p

〉 ≥ 0, ∀x ∈ Fix(T).
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Take λ = μη–θ

(μL+θ )2 , for ∀x, y ∈ H , we have

∥
∥
(
I – λ(μF – f )

)
x –

(
I – λ(μF – f )

)
y
∥
∥2

=
∥
∥(x – y) – λ

(
(μF – f )x – (μF – f )y

)∥
∥2

= ‖x – y‖2 + λ2∥∥(μF – f )x – (μF – f )y
∥
∥2

– 2λ
〈
x – y, (μF – f )x – (μF – f )y

〉

= ‖x – y‖2 + λ2∥∥μ
(
F(x) – F(y)

)
–

(
f (x) – f (y)

)∥
∥2

– 2λμ
〈
x – y, F(x) – F(y)

〉
+ 2λ

〈
x – y, f (x) – f (y)

〉

≤ ‖x – y‖2 + λ2(μ
∥
∥F(x) – F(y)

∥
∥ +

∥
∥f (x) – f (y)

∥
∥
)2

– 2λμη‖x – y‖2 + 2λ‖x – y‖ · ∥∥f (x) – f (y)
∥
∥

≤ [
1 + λ2(μL + θ )2 – 2λ(μη – θ )

]‖x – y‖2

=
[
1 – λ(μη – θ )

]‖x – y‖2,

i.e., I – λ(μF – f ) is a contractive mapping. So is PFix(T)(I – λ(μF – f )). Hence, there exists
unique p ∈ Fix(T) such that p = PFix(T)(I – λ(μF – f ))p, then

〈
μF(p) – f (p), x – p

〉 ≥ 0, ∀x ∈ Fix(T).

Step 2. {xn}n∈N is a bounded sequence.
Let p ∈ Fix(T) be the unique solution of the variational inequality (3.2). Then Tp = p and

‖Tp – p‖ ≤ ‖x – p‖. (3.3)

From Lemma 2.2 and (3.3), it follows that

‖xn+1 – p‖ =
∥
∥αnf (xn) + (I – αnμF)vn – p

∥
∥

=
∥
∥αn

(
f (xn) – f (p)

)
+ (I – αnμF)vn – (I – αnμF)p + αn

(
f (p) – μF(p)

)∥
∥

≤ αnθ‖xn – p‖ + (1 – αnτ )‖vn – p‖ + αn
∥
∥f (p) – μF(p)

∥
∥

= αnθ‖xn – p‖ + (1 – αnτ )
∥
∥βnxn + (1 – βn)Txn – p

∥
∥ + αn

∥
∥f (p) – μF(p)

∥
∥

≤ αnθ‖xn – p‖ + (1 – αnτ )
(
βn‖xn – p‖ + (1 – βn)‖Txn – p‖)

+ αn
∥
∥f (p) – μF(p)

∥
∥

≤ αnθ‖xn – p‖ + (1 – αnτ )
(
βn‖xn – p‖ + (1 – βn)‖xn – p‖)

+ αn
∥
∥f (p) – μF(p)

∥
∥

=
(
1 – αn(τ – θ )

)‖xn – p‖ + αn(τ – θ )
‖f (p) – μF(p)‖

τ – θ

≤ max

{

‖xn – p‖,
‖f (p) – μF(p)‖

τ – θ

}

.

Then, by induction on n, {xn}n∈N is a bounded sequence. So are {vn}n∈N, {f (xn)}n∈N, and
{F(xn)}n∈N.
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Step 3. limn→∞ ‖xn – p‖ = 0.
From the well-known inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉,

which holds for all x, y ∈ H , it follows that

‖xn+1 – p‖2 ≤ ∥
∥αnf (xn) + (I – αnμF)vn – p

∥
∥2

=
∥
∥αn

(
f (xn) – μF(p)

)
+ (I – αnμF)vn – (I – αnμF)p

∥
∥2

≤ ∥
∥(I – αnμF)vn – (I – αnμF)p

∥
∥2 + 2αn

〈
f (xn) – μF(p), xn+1 – p

〉

≤ (1 – αnτ )2‖vn – p‖2 + 2αn
〈
f (xn) – f (p), xn+1 – p

〉

+ 2αn
〈
f (p) – μF(p), xn+1 – p

〉

≤ (1 – αnτ )2∥∥βn(xn – p) + (1 – βn)(Txn – p)
∥
∥2

+ 2αn
∥
∥f (xn) – f (p)

∥
∥ · ‖xn+1 – p‖ + 2αn

〈
f (p) – μF(p), xn+1 – p

〉

= (1 – αnτ )2(βn‖xn – p‖2 + (1 – βn)‖Txn – p‖2 – βn(1 – βn)‖Txn – xn‖2)

+ 2αn
∥
∥f (xn) – f (p)

∥
∥ · ‖xn+1 – p‖ + 2αn

〈
f (p) – μF(p), xn+1 – p

〉

≤ (1 – αnτ )2(‖xn – p‖2 – βn(1 – βn)‖Txn – xn‖2)

+ αnθ
(‖xn – p‖2 + ‖xn+1 – p‖2) + 2αn

〈
f (p) – μF(p), xn+1 – p

〉

= (1 – 2αnτ + αnθ )‖xn – p‖2 + α2
nτ

2‖xn – p‖2 + αnθ‖xn+1 – p‖2

– (1 – αnτ )2βn(1 – βn)‖Txn – xn‖2 + 2αn
〈
f (p) – μF(p), xn+1 – p

〉
.

Summarizing, we get that

‖xn+1 – p‖2 ≤
(

1 –
2αn(τ – θ )

1 – αnθ

)

‖xn – p‖2 +
α2

nτ
2

1 – αnθ
‖xn – p‖2

–
(1 – αnτ )2βn(1 – βn)

1 – αnθ
‖Txn – xn‖2

+
2αn

1 – αnθ

〈
f (p) – μF(p), xn+1 – p

〉
. (3.4)

Set Γn = ‖xn –p‖2, neglecting the negative term – (1–αnτ )2βn(1–βn)
1–αnθ

‖Txn –xn‖2 in the obtained
relation, we get the following inequality:

Γn+1 ≤
(

1 –
2αn(τ – θ )

1 – αnθ

)

Γn +
α2

nτ
2

1 – αnθ
Γn

+
2αn

1 – αnθ

〈
f (p) – μF(p), xn+1 – p

〉

=
(

1 –
2αn(τ – θ )

1 – αnθ

)

Γn +
2αn(τ – θ )

1 – αnθ

1
2αnτ

2Γn

τ – θ

+
2αn(τ – θ )

1 – αnθ

[
1

τ – θ

〈
f (p) – μF(p), xn+1 – p

〉
]

. (3.5)
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From relation (3.4) we also obtain

(1 – αnτ )2βn(1 – βn)
1 – αnθ

‖Txn – xn‖2 ≤ (Γn – Γn+1) + αnM, (3.6)

where M = supn∈N{ αnτ2

1–αnθ
Γn + 2

1–αnθ
‖μF(p) – f (p)‖ · ‖xn+1 – p‖}.

Case 1: Suppose that there exists n0 such that {Γn}n≥n0 is nonincreasing, it is equal to
Γn+1 ≤ Γn for all n ≥ n0. It follows that limn→∞ Γn exists, so we conclude that

lim
n→∞(Γn – Γn+1) = 0. (3.7)

Since limn→∞ αn = 0, and from (3.6), (3.7) we deduce that

0 ≤ lim sup
n→∞

(1 – αnτ )2βn(1 – βn)
1 – αnθ

‖Txn – xn‖2

≤ lim sup
n→∞

(
(Γn – Γn+1) + αnM

)
= 0.

From assumption (iii), we obtain that

lim sup
n→∞

(1 – αnτ )2βn(1 – βn)
1 – αnθ

> 0.

Therefore we get

lim
n→∞‖Txn – xn‖ = 0. (3.8)

In order to apply Xu’s Lemma 2.8 to the sequence an = Γn, we show that

lim sup
n→∞

〈
f (p) – μF(p), xn – p

〉 ≤ 0,

where p is the unique solution of the variational inequality (3.2).
Since {xn}n∈N is bounded, there exists {xnk }k∈N of {xn}n∈N and x ∈ H such that xnk ⇀ x

and

lim sup
n→∞

〈
f (p) – μF(p), xn – p

〉
= lim

n→∞
〈
f (p) – μF(p), xnk – p

〉

=
〈
f (p) – μF(p), x – p

〉
.

From (3.8) and I – T demiclosed at 0, we know that x ∈ Fix(T). Since p = PFix(T)(I –
λ(μF – f ))p and x ∈ Fix(T), we have

lim sup
n→∞

〈
f (p) – μF(p), xn – p

〉
=

〈
f (p) – μF(p), x – p

〉 ≤ 0. (3.9)

Set σn =
1
2 αnτ2Γn

τ–θ
+ 1

τ–θ
〈f (p) – μF(p), xn+1 – p〉. Since {xn}n∈N is bounded, so is {Γn}n∈N.

Equation (3.9) and assumption (i) imply lim supn→∞ σn ≤ 0. It follows from assumptions
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(i) and (ii) that

lim
n→∞

2αn(τ – θ )
1 – αnθ

= 0, and
∞∑

n=0

2αn(τ – θ )
1 – αnθ

= ∞.

Then limn→∞ ‖xn – p‖ = 0 by Lemma 2.8.
Case 2: Suppose that there exists {nk}k∈N of {n}n∈N such that ‖xnk – p‖ < ‖xnk +1 – p‖ for

all k ∈N.
From Maingé’s Lemma 2.9, there exists a nondecreasing sequence of integers {δ(n)}n∈N

satisfying, for all n ≥ n0, the following:
(a) limn→∞ δ(n) = ∞;
(b) ‖xδ(n) – p‖ < ‖xδ(n)+1 – p‖;
(c) ‖xn – p‖ < ‖xδ(n)+1 – p‖.

From the last and relation (3.5), we have

0 ≤ lim inf
n→∞ (Γδ(n)+1 – Γδ(n))

≤ lim sup
n→∞

(Γδ(n)+1 – Γδ(n))

≤ lim sup
n→∞

(Γn+1 – Γn)

≤ lim sup
n→∞

{
2αn(τ – θ )

1 – αnθ

1
2αnτ

2Γn

τ – θ

+
2αn(τ – θ )

1 – αnθ

[
1

τ – θ

〈
f (p) – μF(p), xn+1 – p

〉
]}

= 0.

Hence it turns out that

lim
n→∞(Γδ(n)+1 – Γδ(n)) = 0. (3.10)

By (3.10), (3.6), and arguing as in case 1, we get

lim
n→∞‖Txδ(n) – xδ(n)‖ = 0.

Similar to Case 1, we have

lim sup
n→∞

〈
f (p) – μF(p), xδ(n)+1 – p

〉 ≤ 0. (3.11)

If we replace n with δ(n) in (3.5), by condition (b), we obtain

Γδ(n)+1 ≤
(

1 –
2ατ (n)(τ – θ )

1 – αδ(n)θ

)

Γδ(n) +
α2

δ(n)τ
2

1 – αδ(n)θ
Γδ(n)

+
2αδ(n)

1 – αδ(n)θ

〈
f (p) – μF(p), xδ(n)+1 – p

〉

≤
(

1 –
2αδ(n)(τ – θ )

1 – αδ(n)θ

)

Γδ(n)+1 +
α2

δ(n)τ
2

1 – αδ(n)θ
Γδ(n)

+
2αδ(n)

1 – αδ(n)θ

〈
f (p) – μF(p), xδ(n)+1 – p

〉
,
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and also

2αδ(n)(τ – θ )
1 – αδ(n)θ

Γδ(n)+1 ≤ α2
δ(n)τ

2

1 – αδ(n)θ
Γδ(n)

+
2αδ(n)

1 – αδ(n)θ

〈
f (p) – μF(p), xδ(n)+1 – p

〉
.

Therefore dividing both sides of the obtained inequality by αδ(n), we have

2(τ – θ )
1 – αδ(n)θ

Γδ(n)+1 ≤ αδ(n)τ
2

1 – αδ(n)θ
Γδ(n)

+
2

1 – αδ(n)θ

〈
f (p) – μF(p), xδ(n)+1 – p

〉
. (3.12)

Since limn→∞ αδ(n) = 0, by (3.11) and (3.12), we get limn→∞ ‖xδ(n) – p‖ = 0. By condition
(c), limn→∞ ‖xn – p‖ = 0. �

Corollary 3.2 Let Tρ : H → H be a ρ-strongly quasi-nonexpansive mapping such that
Fix(Tρ) �= ∅, with ρ > 0 and I – Tρ demiclosed at 0. For any given x0 ∈ H , the iterative
sequence {xn}n∈N ⊂ H is generated by

xn+1 = αnf (xn) + (I – αnμF)Tρxn, (3.13)

where {αn}n∈N and {βn}n∈N are two sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0;

(ii)
∑∞

n=0 αn = ∞.
Then the sequence {xn}n∈N, defined by (3.13), converges strongly to p ∈ Fix(Tρ), which is the
unique solution in Fix(Tρ) of the variational inequality (VI)

〈
μF(p) – f (p), x – p

〉 ≥ 0, ∀x ∈ Fix(Tρ).

Proof By Lemma 2.1, there exists a quasi-nonexpansive mapping T such that Tρ = (1 –
1

1+ρ
)I + 1

1+ρ
T and Fix(Tρ) = Fix(T). I – Tρ is demiclosed at 0, so is I – T . Take βn = 1 – 1

1+ρ

for all n ∈ N, since ρ > 0, then βn(1 – βn) = ρ

(1+ρ)2 > 0. Then Corollary 3.2 follows from
Theorem 3.1. �

4 Split equality fixed point problems
Let H1 and H2 be two real Hilbert spaces, the product H = H1 × H2 is a Hilbert space with
inner product and norm given by

〈x, y〉 = 〈x1, y1〉 + 〈x2, y2〉, and ‖x‖2 = ‖x1‖2 + ‖x2‖2

for any x =
[ x1

x2

]
, y =

[ y1
y2

] ∈ H .
In this section we always assume that
(1) H1, H2, H3 are three real Hilbert spaces and H = H1 × H2;
(2) T =

[ T1
T2

]
, where Ti, i = 1, 2, is a one-to-one and quasi-nonexpansive mapping;
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(3) G = [A1 –A2] and G∗G =
[ A∗

1A2 –A∗
2A1

–A∗
1A2 A∗

2A2

]
, where Ai, i = 1, 2 is a bounded linear

operator from Hi into H3 and A∗
i is the adjoint of Ai;

(4) f =
[ f1

f2

]
, where fi, i = 1, 2 is a θ -contraction on Hi with θ ∈ (0, 1);

(5) F =
[ F1

F2

]
, where Fi, i = 1, 2, is L-Lipschitz continuous and η-strongly monotone on

Hi with L > 0, and η > 0.

Lemma 4.1 ([17]) Let U = I – λG∗G, where 0 < λ < 2/ρ(G∗G) with ρ(G∗G) being the spec-
tral radius of the self-adjoint operator G∗G on H . Then we have the following result:

(1) ‖U‖ ≤ 1 (i.e., U is nonexpansive) and averaged;
(2) Fix(U) =

{
x =

[ x1
x2

] ∈ H : A1x1 = A2x2
}

, Fix(PCU) = Fix(PC) ∩ Fix(U).

Theorem 4.2 Let H1, H2, H3, H , T1, T2, T , A1, A2, G, G∗G, f1, f2, f , F1, F2, F satisfy the
above conditions (1)–(5). For any given x0 ∈ H , the iterative sequence {xn}n∈N =

[ x1,n
x2,n

]
n∈N ⊂

H is generated by

vn = βnxn + (1 – βn)T
(
I – λG∗G

)
xn,

xn+1 = αnf (xn) + (I – αnμF)vn,
(4.1)

or its equivalent form

v1,n = βnx1,n + (1 – βn)T1
(
x1,n – λA∗

1(A1x1,n – A2x2,n)
)
,

v2,n = βnx2,n + (1 – βn)T2
(
x2,n + λA∗

2(A1x1,n – A2x2,n)
)
,

x1,n+1 = αnf1(x1,n) + (I1 – αnμF1)v1,n,

x2,n+1 = αnf2(x2,n) + (I2 – αnμF2)v2,n,

where {αn}n∈N and {βn}n∈N are two sequences in (0, 1). If the solution set Γ =
{

x =
[ x1

x2

] ∈ H :
x1 ∈ Fix(T1), x2 ∈ Fix(T2) such that A1x1 = A2x2

}
of (SEFP) is nonempty and the following

conditions are satisfied:
(i) limn→∞ αn = 0;

(ii)
∑∞

n=0 αn = ∞;
(iii) lim supn→∞ βn(1 – βn) > 0;
(iv) λ ∈ (0, 2

R ), where R = ‖G‖2;
(v) for each i = 1, 2, Ti is demiclosed;

(vi) μ ∈ (0, 2η

L2 ) and θ ∈ (0, τ ), where τ = μ(η – 1
2μL2).

Then the sequence {xn}n∈N, defined by (4.1), converges strongly to p ∈ Γ , which is the unique
solution in Γ of the variational inequality (VI)

〈
μF(p) – f (p), x – p

〉 ≥ 0, ∀x ∈ Γ . (4.2)

Proof For each i = 1, 2, since fi is θ -contraction, Fi is L-Lipschitz continuous and η-
strongly monotone on Hi with L > 0 and η > 0, and Ti is quasi-nonexpansive, we have

∥
∥f (x) – f (y)

∥
∥2 =

∥
∥f1(x1) – f1(y1)

∥
∥2 +

∥
∥f2(x2) – f2(y2)

∥
∥2

≤ θ2(‖x1 – y1‖2 + ‖x2 – y2‖2)

= θ2‖x – y‖2,
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i.e.,

∥
∥f (x) – f (y)

∥
∥ ≤ θ‖x – y‖

for all x =
[ x1

x2

]
, y =

[ y1
y2

] ∈ H . This shows that f is a θ -contraction. Similarly, F is L-Lipschitz
continuous and η-strongly monotone, and T is a quasi-nonexpansive mapping.

Let {xn}n∈N =
[ x1,n

x2,n

]
n∈N be a sequence in H = H1 × H2 such that xn ⇀ x =

[ x1
x2

]
, and

limn→∞ ‖Txn – xn‖ = 0. Then, for each i = 1, 2, we have limn→∞ ‖Tixi,n – xi,n‖ = 0, and

〈xn – x, y〉 = 〈x1,n – x1, y1〉 + 〈x2,n – x2, y2〉 → 0

for each y =
[ y1

y2

] ∈ H . For each i = 1, 2, let yi ∈ Hi and y =
[ y1

y2

] ∈ H with yj = 0 (j �= i). Then
limn→∞〈xn – x, y〉 = 0 implies limn→∞〈xi,n – xi, yi〉 = 0 and xi,n ⇀ xi.

For each i = 1, 2, since Ti : Hi → Hi is demiclosed, xi ∈ Fix(Ti). It is easy to see that
x ∈ Fix(T) �= ∅. Hence T is demiclosed.

By Lemma 4.1, U = I – λG∗G is a 1–α
α

-strongly quasi-nonexpansive mapping for some
α > 0, and Fix(U) =

{
x =

[ x1
x2

] ∈ H : A1x1 = A2x2
}

. Since Γ �= ∅, U is a strictly quasi-
nonexpansive mapping. By Lemma 2.3, Fix(TU) = Fix(T) ∩ Fix(U) = Γ �= ∅.

Then Theorem 4.2 follows from Theorem 3.1. �

5 Applications
In this section, we always assume that H1, H2, H3, H , T1, T2, T , A1, A2, G, G∗G, f1, f2, f ,
F1, F2, F satisfy conditions (1)–(5) in Sect. 4.

5.1 Split equality common fixed point problems
The split equality common fixed point problem (SECFPP) is the problem of finding

x1 ∈ H1, x2 ∈ H2 such that x1 ∈ Fix(T1) ∩ Fix(S1),

x2 ∈ Fix(T2) ∩ Fix(S2), and A1x1 = A2x2,
(5.1)

where Ti, i = 1, 2, is a quasi-nonexpansive mapping on Hi and Si, i = 1, 2, is a firmly non-
expansive mapping on Hi, respectively. Its solution set is denoted by ΓCF =

{
x =

[ x1
x2

] ∈
H : x1 ∈ Fix(T1) ∩ Fix(S1), x2 ∈ Fix(T2) ∩ Fix(S2) such that A1x1 = A2x2

}
, then we have the

following result.

Theorem 5.1 Let S =
[ S1

S2

]
, where Si, i = 1, 2, is a firmly nonexpansive mapping on Hi. For

any given x0 ∈ H , the iterative sequence {xn}n∈N =
[ x1,n

x2,n

]
n∈N ⊂ H is generated by

un = S
(
I – λG∗G

)
xn,

vn = βnxn + (1 – βn)Tun,

xn+1 = αnf (xn) + (I – αnμF)vn,

(5.2)

where {αn}n∈N and {βn}n∈N are two sequences in (0, 1). If the solution set ΓCF is nonempty
and the following conditions are satisfied:

(i) limn→∞ αn = 0;
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(ii)
∑∞

n=0 αn = ∞;
(iii) lim supn→∞ βn(1 – βn) > 0;
(iv) λ ∈ (0, 2

R ), where R = ‖G‖2;
(v) for each i = 1, 2, Ti is demiclosed;

(vi) μ ∈ (0, 2η

L2 ) and θ ∈ (0, τ ), where τ = μ(η – 1
2μL2).

Then the sequence {xn}n∈N, defined by (5.2), converges strongly to p ∈ ΓCF, which is the
unique solution in ΓCF of the variational inequality (VI)

〈
μF(p) – f (p), x – p

〉 ≥ 0, ∀x ∈ ΓCF.

Proof For each i = 1, 2, Si is a firmly nonexpansive mapping on Hi, it is easy to verify that
S is a firmly nonexpansive mapping on H . Since ΓCF �= ∅, S is a strictly quasi-nonexpansive
mapping on H . By Lemma 2.3, Fix(TS) = Fix(T) ∩ Fix(S) and TS is a quasi-nonexpansive
mapping. Then Theorem 5.1 follows from Theorem 4.2. �

5.2 Split equality null point problems and split equality fixed point problems
Let M be a set-valued mapping of H into 2H . The effective domain of M is denoted by
dom(M); that is, dom(M) = {x ∈ H : Mx �= ∅}. A set-valued mapping M is said to be a
monotone operator on H if 〈u – v, x – y〉 ≥ 0 for all x, y ∈ dom(M), u ∈ Mx, and v ∈ My.
A monotone operator M on H is said to be maximal if its graph is not properly contained
in the graph of any other monotone operator on H .

The split equality null point problems and split equality fixed point problems are the
problem of finding

x1 ∈ Fix(T1) ∩M–1
1 (0), x2 ∈ Fix(T2) ∩M–1

2 (0) such that A1x1 = A2x2, (5.3)

where Ti, i = 1, 2 is a quasi-nonexpansive mapping on Hi, and Mi, i = 1, 2, is a set-
valued maximal monotone operator of Hi into 2Hi with r > 0, respectively. Its solu-
tion set is denoted by ΓNF =

{
x =

[ x1
x2

] ∈ H : x1 ∈ Fix(T1) ∩ M–1
1 (0), x2 ∈ Fix(T2) ∩

M–1
2 (0) such that A1x1 = A2x2

}
.

For a maximal monotone operator M on H and r > 0, we may define a single-valued
operator JMr = (I + rM)–1 : H → dom(M), which is called the resolvent of M for r. From
Chuang [18] and Chang [19], we know that the associated resolvent mapping JMr is a firmly
nonexpansive mapping, and

x ∈M–1(0) ⇔ x ∈ Fix
(
JMr

)
.

This implies that the split equality null point problems and split equality fixed point prob-
lems (5.3) are equivalent to SECFPP (5.1). Then the following theorem can be obtained
from Theorem 5.1 immediately.

Theorem 5.2 Let JMr =
[ JM1

r

JM2
r

]
, where Mi, i = 1, 2, is a set-valued maximal monotone op-

erator of Hi into 2Hi , JMi
r is the associated resolvent of Mi with r > 0, respectively. For any
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given x0 ∈ H , the iterative sequence {xn}n∈N =
[ x1,n

x2,n

]
n∈N ⊂ H is generated by

un = JMr
(
I – λG∗G

)
xn,

vn = βnxn + (1 – βn)Tun,

xn+1 = αnf (xn) + (I – αnμF)vn,

(5.4)

where {αn}n∈N and {βn}n∈N are two sequences in (0, 1). If the solution set ΓNF is nonempty
and the following conditions are satisfied:

(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii) lim supn→∞ βn(1 – βn) > 0;
(iv) λ ∈ (0, 2

R ), where R = ‖G‖2;
(v) for each i = 1, 2, Ti is demiclosed;

(vi) μ ∈ (0, 2η

L2 ) and θ ∈ (0, τ ), where τ = μ(η – 1
2μL2).

Then the sequence {xn}n∈N, defined by (5.4), converges strongly to p ∈ ΓNF , which is the
unique solution in ΓNF of the variational inequality (VI)

〈
μF(p) – f (p), x – p

〉 ≥ 0, ∀x ∈ ΓNF .

5.3 Split equality optimization problems and split equality fixed point problems
Let Hi, i = 1, 2, 3, be a real Hilbert space. Let gi : Hi → R, i = 1, 2, be a proper, convex, and
lower semi-continuous function, and Ai : Hi → H3, i = 1, 2, be a bounded linear operator.

The split equality optimization problem (SEOP) is the problem of finding

x1 ∈ H1, x2 ∈ H2 such that g1(x1) = min
y∈H1

g1(y),

g2(x2) = min
y∈H2

g2(y), and A1x1 = A2x2.
(5.5)

The split equality optimization problem and split equality fixed point problems are the
problem of finding

x1 ∈ Fix(T1), x2 ∈ Fix(T2) such that g1(x1) = min
y∈H1

g1(y),

g2(x2) = min
y∈H2

g2(y) and A1x1 = A2x2,
(5.6)

where Ti, i = 1, 2, is a quasi-nonexpansive mapping on Hi. The solution set of (5.6) is de-
noted by ΓOF =

{
x =

[ x1
x2

] ∈ H : x1 ∈ Fix(T1), x2 ∈ Fix(T2) such that g1(x1) = miny∈H1 g1(y),
g2(x2) = miny∈H2 g2(y), and A1x1 = A2x2

}
.

The subdifferential of gi, i = 1, 2, at x is the set

∂gi(x) =
{

u ∈ Hi : gi(y) ≥ gi(x) + 〈u, y – x〉,∀y ∈ Hi
}

.

Denoted by ∂gi = Mi, i = 1, 2, is a maximal monotone mapping, so we can define the re-
solvent JMi

r , where r > 0. Since x1 and x2 are a minimum of g1 on H1 and that of g2 on H2,
respectively, for any given r > 0, we have

x1 ∈M–1
1 (0) = Fix

(
JM1
r

)
and x2 ∈M–1

2 (0) = Fix
(
JM2
r

)
.



Liu et al. Journal of Inequalities and Applications         (2019) 2019:71 Page 17 of 20

This implies that the split equality optimization problem and split equality fixed point
problems (5.6) are equivalent to the split equality null point problems and split equality
fixed point problems (5.3). Then the following theorem can be obtained from Theorem 5.2
immediately.

Theorem 5.3 Let gi : Hi → R, i = 1, 2, be a proper, convex, and lower semi-continuous

function. Let JMr =
[ JM1

r

JM2
r

]
, where Mi = ∂gi, i = 1, 2, and JMi

r is the associated resolvent
of Mi with r > 0, respectively. For any given x0 ∈ H , the iterative sequence {xn}n∈N =
[ x1,n

x2,n

]
n∈N ⊂ H is generated by

un = JMr
(
I – λG∗G

)
xn,

vn = βnxn + (1 – βn)Tun,

xn+1 = αnf (xn) + (I – αnμF)vn,

(5.7)

where {αn}n∈N and {βn}n∈N are two sequences in (0, 1). If the solution set ΓOF is nonempty
and the following conditions are satisfied:

(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii) lim supn→∞ βn(1 – βn) > 0;
(iv) λ ∈ (0, 2

R ), where R = ‖G‖2;
(v) for each i = 1, 2, Ti is demiclosed;

(vi) μ ∈ (0, 2η

L2 ) and θ ∈ (0, τ ), where τ = μ(η – 1
2μL2).

Then the sequence {xn}n∈N, defined by (5.7), converges strongly to p ∈ ΓOF, which is the
unique solution in ΓOF of the variational inequality (VI)

〈
μF(p) – f (p), x – p

〉 ≥ 0, ∀x ∈ ΓOF.

5.4 Split equality equilibrium problems and split equality fixed point problems
Let C be a nonempty closed and convex subset of a real Hilbert space. A bifunction Θ : C ×
C →R is called an equilibrium function if and only if it satisfies the following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C;
(A2) Θ is monotone, i.e., g(x, y) + g(y, x) ≤ 0 for all x, y ∈ C;
(A3) Θ is upper-hemicontinuous, i.e., for all x, y, z ∈ C,

lim supt→0+ Θ(tz + (1 – t)x, y) ≤ Θ(x, y);
(A4) Θ(x, ·) is convex and lower semicontinuous for all x ∈ C.

The so-called equilibrium problem with respect to the equilibrium function Θ is the prob-
lem of finding

x∗ ∈ C such that Θ
(
x∗, y

) ≥ 0, ∀y ∈ C. (5.8)

Its solution set is denoted by EP(Θ , C). Numerous problems in physics, optimization,
and economics are reduced to finding a solution of (5.8) (see [20, 21]).

The split equality equilibrium problems and split equality fixed point problems are the
problem of finding

x1 ∈ Fix(T1) ∩ EP(Θ1, C1), x2 ∈ Fix(T2) ∩ EP(Θ2, C2) such that A1x1 = A2x2, (5.9)
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where Ti, i = 1, 2, is a quasi-nonexpansive mapping on Hi and Θi is an equilibrium function
of Ci × Ci into R, respectively. Its solution set is denoted by ΓEF =

{
x =

[ x1
x2

] ∈ H : x1 ∈
Fix(T1) ∩ EP(Θ1, C1), x2 ∈ Fix(T2) ∩ EP(Θ2, C2) such that A1x1 = A2x2

}
.

For given r > 0 and x ∈ H , the resolvent of the equilibrium function Θ is the operator
defined by

TΘ
r (x) =

{

z ∈ C : Θ(z, y) +
1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

.

Proposition 5.4 ([22]) The resolvent operator TΘ
r of the equilibrium function Θ has the

following properties:
(i) TΘ

r is single-valued;
(ii) Fix(TΘ

r ) = EP(Θ , C), and EP(Θ , C) is a nonempty closed and convex subset of C;
(iii) TΘ

r is a firmly nonexpansive mapping.

Using the above lemma, Takahashi et al. [23] obtained the following lemma. See Aoyama
et al. [24] for a more general result.

Lemma 5.5 ([23, 24]) Let C be a nonempty closed convex subset of H , and let Θ be a
bifunction of C × C into R satisfying (A1) to (A4). Let MΘ be a set-valued mapping of H
into itself defined by

MΘ (x) =

⎧
⎨

⎩

{z ∈ H : Θ(x, y) + 〈y – x, z〉 ≥ 0,∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then EP(Θ , C) = M–1
Θ (0) and MΘ is a maximal monotone operator with dom(MΘ ) ⊂ C.

Furthermore, for any x ∈ H and r > 0, the resolvent TΘ
r of Θ coincides with the resolvent of

MΘ , i.e.,

TΘ
r (x) = (I + rMΘ )–1(x).

This implies that the split equality equilibrium problems and split equality fixed point
problems (5.9) are equivalent to the split equality null point problems and split equality
fixed point problems (5.3). Then we have the following result.

Theorem 5.6 Let Ci, i = 1, 2, be a nonempty closed convex subset of Hi. Let TΘ
r =

[ TΘ1
r

TΘ2
r

]
,

where Θi, i = 1, 2, is an equilibrium function of Ci × Ci into R with r > 0. For any given
x0 ∈ H , the iterative sequence {xn}n∈N =

[ x1,n
x2,n

]
n∈N ⊂ H is generated by

un = TΘ
r

(
I – λG∗G

)
xn,

vn = βnxn + (1 – βn)Tun,

xn+1 = αnf (xn) + (I – αnμF)vn,

(5.10)

where {αn}n∈N and {βn}n∈N are two sequences in (0, 1). If the solution set ΓOF is nonempty
and the following conditions are satisfied:

(i) limn→∞ αn = 0;
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(ii)
∑∞

n=0 αn = ∞;
(iii) lim supn→∞ βn(1 – βn) > 0;
(iv) λ ∈ (0, 2

R ), where R = ‖G‖2;
(v) for each i = 1, 2, Ti is demiclosed;

(vi) μ ∈ (0, 2η

L2 ) and θ ∈ (0, τ ), where τ = μ(η – 1
2μL2).

Then the sequence {xn}n∈N, defined by (5.10), converges strongly to p ∈ ΓOF, which is the
unique solution in ΓOF of the variational inequality (VI)

〈
μF(p) – f (p), x – p

〉 ≥ 0, ∀x ∈ ΓOF.
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