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1 Introduction
Let C be a nonempty subset of a real Hilbert space H. A mapping T': C — C is called
nonexpansive if || Tx — Ty|| < |lx — y|| for all x,y € C. The set of the fixed points of T is
denoted by Fix(T) = {x € C: Tx =x}. T : C — C is called quasi-nonexpansive if Fix(T) # ¢,
and || Tx - p|| < |lx - p|| for all x € C, p € Fix(T).

The viscosity approximation method for nonlinear mappings was first introduced by
Moudafi [1]. Starting with an arbitrary initial xy € H, define a sequence {x,},cn generated
by

€ 1
Xpel = Xn) + 1x,, Vn=>0, 1.1
n+1 1+ fnf( n) 1+ e, n - ( )

where f is a contraction with a coefficient 6 € [0,1) on H, i.e., |[f(x) —f(»)| <0]x - y| for
all x,y € H, and {€,},cn is a sequence in (0, 1) satisfying the following given conditions:

o lim, €, =0;

« Yo€n =09

: 1 1
i hmn—>oo(a - En+1) =0.
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It is proved that the sequence {x,},cn generated by (1.1) converges strongly to the unique

solution p € Fix(T) of the variational inequality
(I -f)px—p)=>0, VxeFix(T). (1.2)

In [2], Maingé considered the following viscosity approximation method for quasi-
nonexpansive mappings. Starting with an arbitrary initial xo € C C H, {x,},en generated
by

K1 = f () + (1 — ) Tk, Ym >0, (1.3)

where T, = wl + (1 - )T, with T quasi-nonexpansive on C C H, Fix(T) ## and w € (0, 1),
{on}nen is a sequence in (0, 1) satisfying the following given conditions:

(i) lim,_ o0, =0;

(ii) D 0o oty = 00.
It is also proved that the sequence {x,},cn generated by (1.3) converges strongly to the
unique solution of the variational inequality (1.2).

In [3], Tian and Jin considered the following general iterative method:
Xn+l = wa(xn) +( - a,A)Tox,, Yn=0. (1.4)

It is proved that if the sequence {o,},cn satisfies appropriate conditions, the sequence
{x,}nen generated by (1.4) converges strongly to the unique solution of the variational

inequality
(A=yfipx-p)=0, VxeFix(T), (15)
or equivalently p = Prixr)({ — A + yf)p, where Fix(T) is the fixed point set of a quasi-

nonexpansive mapping 7, and A is a strongly positive linear bounded operator.

In [4], Marino et al. considered the following general viscosity explicit midpoint rule:

Xns1 = BnXn + (1 - ,Bn)Txn;

Xn+l = ot,,f(x,,) + (1 - an)T<Snxn + (1 - sn)»;crﬁl): Vn > 0.

(1.6)

It is proved that if the sequences {&,},en, {Bn}nen, and {s,}.cn satisfy appropriate condi-
tions, the sequence {x,},cn generated by (1.6) converges strongly to the unique solution of
the variational inequality (1.2), where Fix(T) is the fixed point set of a quasi-nonexpansive
mapping T.

Let H;, i = 1,2, 3, be a real Hilbert space, and T : H; — H; with fixed point set Fix(T).
Let C; and C; be nonempty closed convex subsets of H; and Hj, respectively, and let
A: H; — H, be a bounded linear operator.

The split feasibility problem (SFP) is the problem of finding

x € Hy such that x € C; and Ax € C,.
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In 1994, Censor and Elfving [5] first introduced the (SFP) in finite-dimensional Hilbert
spaces for modeling inverse problems which arise from phase retrievals and in medical
image reconstruction.

Let A, : Hi — Hs, Ay : Hy — H3 be bounded linear operators. Moudafi [6] introduced
the following split equality feasibility problem (SEFP):

Find x; € C1,x, € C, such that A;x; = Ayx,.

Obviously, if A, = I (identity mapping on H,) and H, = H3, then (SEFP) is reduced to
(SFP). Moudafi [6] introduced an iteration process to establish a weak convergence the-
orem for split equality feasibility problem under suitable assumptions. The (SEFP) has
many applications such as decomposition methods for PDEs and applications in game
theory and intensity-modulated radiation therapy.

Let Ty : H; — H; and T, : H, — H, be firmly quasi-nonexpansive mappings such that
Fix(Ty) # 0, Fix(T,) # ¥, and let A; : H — H3, A, : H, — H3 be bounded linear operators.
Moudafi [7] introduced an iteration process and established weak convergence theorem
for split equality fixed point problem (SEFPP):

Find x; € Fix(T1),x, € Fix(T,) such that A;x; = Ayx,.

When A, = I and H, = H3, then the (SEFPP) is reduced to the split common fixed point
problem (SCFPP):

Find x; € H such that x; € Fix(T7) and Ax; € Fix(T5).

When C, C Hy, C; #9, Cy C Hy, Cy # 9, let Ty = P, and T = Pc,, the (SEFPP) is then
reduced to the (SEFP), where Pc, and P¢, denote the metric projection of C; and C,
respectively.

Very recently there have been many works concerning fixed point methods for nonex-
pansive mappings. For more details, see, e.g., [8—11] and the references therein.

Motivated and inspired by the above works on viscosity approximation method for
quasi-nonexpansive mappings and split equality problems, in this paper we first intro-
duce a general viscosity approximation method for quasi-nonexpansive mappings. Un-
der suitable conditions, we prove that the sequences generated by the proposed new al-
gorithm converge strongly to a fixed point of quasi-nonexpansive mappings in Hilbert
spaces, which is also the unique solution of some variational inequality. Then this result
is used to study the split equality fixed point problems, the split equality common fixed
point problems, the split equality null point problems, etc. Our results improve and gen-
eralize many results in the literature and they should have many applications in nonlinear

science.

2 Preliminaries
Let H be a real Hilbert space with inner product (-, -) and induced norm || - ||. Let/ : H - H
be an identity mapping on H. We denote the strong convergence and the weak conver-
gence of {x,},en to x € H by x, — x and x,, — x, respectively. Throughout this paper, we
use these notations and assumptions unless specified otherwise.

The following identities are valid in a Hilbert space H: for each x,y € H, ¢ € [0,1],
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@) N+ y0I> < llll> + 20y + 9);
(ii) [ltx+ (1= e)yl* = tllll® + (1= ) Iyl> - t(X = )l — yII>.
Let C be a nonempty subset of the real Hilbert space H, and let T': C — H be a single-
valued mapping. Then T is called
(1) nonexpansive if | Tx — Ty|| < ||x — y|| for allx,y € C;
(2) L-Lipschitz continuous if there exists L > 0 such that || Tx — Ty|| < L||x — y|| for all
x,y€C;
(3) quasi-nonexpansive if Fix(T) # @, and

I Tx - pll < llx—pll forallx € C and for all p € Fix(T);
(4) p-strongly quasi-nonexpansive, where p > 0, if Fix(T') # ¥ and
I Tx - pl* < % plI* - pll Tx — x|

for all x € C and for all p € Fix(T);
(5) strictly quasi-nonexpansive if Fix(T) # ¥ and || Tx — p|| < ||x — p|| for all p € Fix(T)
and for all x € C \ Fix(7T);
(6) monotone if (x —y, Tx — Ty) > 0 for all %,y € C;
(7) n-strongly monotone if there exists 1 > 0 such that (x — y, Tx — T) > n|lx — y||? for
allx,y € C;
(8) a-inverse-strongly monotone (in short «-ism) if there exists & > 0 such that
(x =y, Tx — Ty) > n|| Tx — Ty||* for all x,y € C;
(9) demiclosed if for each sequence {x,},cn and x € C with x, = x and (I - T)x, — 0
implies (I - T)x = 0;
(10) firmly nonexpansive if || Tx — Ty||? < (Tx — Ty,x — y) for all %,y € C;
(11) «-averaged if there exist @ € (0,1) and nonexpansive S : C — H such that
T=(01-a)+as.
It is easy to see that every strongly quasi-nonexpansive mapping is a strictly quasi-
nonexpansive mapping and every strictly quasi-nonexpansive mapping is a quasi-nonex-
pansive mapping.

Lemma 2.1 Let H be a Hilbert space and let T, : H — H with Fix(T,) # 0. Then T, is

a p-strongly quasi-nonexpansive mapping with p > 0 if and only if there exists a quasi-

nonexpansive mapping T such that T, = (1 - ﬁ)] + ﬁ T and Fix(T,) = Fix(T).

Proof Since the statement Fix(T,) = Fix(T) is evident, we only prove that T, is a p-

strongly quasi-nonexpansive mapping if and only if T is a quasi-nonexpansive mapping.
(Necessity) For all x € H and for all p € Fix(T),

2

(Tx - p)

1
I T,x - pll? = H (1 - ﬂ)(""p) * T

1 2 1 2
=({1- lx—pl” + [ Tx - pll
1+p l+p

1 1 9
- 1- |1 Tx — x||
1+p 1+p
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1 1
- <1 - —>||x—p||2 + —— | T p?

1+p l+p
1 1 >
-p 1- X+ Tx ) —x
1+p l+p
= L 2 L T 2 T 2
=|1- lx—pII” + 1T - plI” = plI Tpx — x||”. (2.1)
1+p 1+p

Since T, is p-strongly quasi-nonexpansive, we have

ITyx - pl* < 2= pI* - oIl T,x - x| (2.2)
It follows from (2.1) and (2.2) that

I1Tx - pll* < llx-pl%,

i.e., T is a quasi-nonexpansive mapping.

(Sufficiency) Since
I Tx - pll < llx-pll,

then

2

(Tx - p)

1
I T,x - pll? = H (1 - m)(x—p) * 17

1 2 1 2
=({1- lx—pl” + [ Tx - pll
1+p l+p

1 1 9
- 1- |1 Tx — x||
1+p 1+p

1 2 1 2
<|\1-—lx-pl"+ llx—pll
1+p 1+p

1 1
—plll —Tx+(1- x| —-x
1+p 1+p

= lx = plI* - pll Tpx — x|1%,

2

i.e, T, is a p-strongly quasi-nonexpansive mapping. O

Lemma 2.2 Let F: H — H be L-Lipschitz continuous and n-strongly monotone with L > 0
and n > 0. Then, for all u € (0, i—g) and B € (0,1), I — BuF is (1 — Bt)-contraction, where
= pu(n - 3ul?).

Proof By assumption, it is easy to see that n < L. Since u € (0, i—g), T=puln- %,LLLZ) >0,

we have 1 - 7 < 1. On the other hand, 7 = u(n - 3uL*) = —3L*(u - 55)* + % < 2'7L—22 <1

Hence 1- 8t >0.
Forallx,y € H,

| = BuF)x— (I - Bub)y|” = |(x-y) - Bu(Fx—Fy)|
= v —ylI* + B2u | Fx — Fy|* — 2Bu(x — y, Fx — Fy)
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< =1 + B2 L2l = y11* = 2Bpn - y1)°
=[(1-2p7+ B°7%) - B2 - Bu?L? + P21’ Lllx ~ 511

<(1-Br)llx-yI?

| = BuF)x — (I - BuF)y|| < 1 - B)llx - yll. 0

Lemma 2.3 ([12]) Let C be a nonempty subset of H, and let T1,T, : C — C be quasi-
nonexpansive operators. Suppose that either Ty or T, is strictly quasi-nonexpansive, and
Fix(T1) NFix(Ty) # 9. Then the following hold.:
(i) Fix(T1T,) = Fix(T1) NFix(T3);
(i) T1T, is quasi-nonexpansive;
(i) When both Ty and T, are strictly quasi-nonexpansive, Ty T is strictly

quasi-nonexpansive.

Lemma 2.4 ([12]) Let C be a nonempty subset of a Hilbert space H, and let T : C — H be
nonexpansive operators, and o € (0,1). Then the following are equivalent:

(i) T is averaged;

(i) 7% - Tyl* <l = ylI> = E2)1(I - T)x - (I - T)yll*, Vx,y € C.

Lemma 2.5 Let C be a nonempty subset of H, and let Ty : C — C be a quasi-nonexpansive
mapping and T, : C — C be a firmly nonexpansive mapping such that Fix(T;) N
Fix(T3) # 0. Then T\ T, is quasi-nonexpansive and Fix(T, Ty) = Fix(T1) N Fix(T5).

Proof Since each firmly nonexpansive mapping is nonexpansive and %—averaged, by
Lemma 2.4, for all p € Fix(T5) and for all x € C \ Fix(T5), we have

I Tox - plI* < llx = plI* = llx = Tox|l? < [lx - plI?,
i.e., T, is strictly quasi-nonexpansive. Then Lemma 2.5 follows from Lemma 2.3. 0

Recall that the metric projection Px from a Hilbert space H to a closed convex subset K
of H is defined as follows: for each x € H, there exists a unique element Pxx € K such that

|l — Pl = inf{[|lx -y : y € K}.

Lemma 2.6 ([13]) Let K be a closed convex subset of H. Given x € H and z € K. Then
z = Pxx if and only if there holds the inequality

(z—x,y-2)>0, VyeKk.
Lemma 2.7 ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let

T be a nonexpansive self-mapping on C. Then I — T is demiclosed, i.e., for each sequence
{xn}nen and x € C with x,, — x and (I — T)x,, — 0 implies (I — T)x = 0.
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Lemma 2.8 ([15]) Let {a,},en be a sequence of nonnegative real numbers such that
An+l S (1 - Ol,,)ﬂy, + 00 + Vs n 2 01

with
o {ondnen C[0,1], 3252 oty = 005
« limsup,_, 0, <0;

e Vu >0, Z:Zoyn < 0Q.
Then lim,,_, o a,, = 0.

Lemma 2.9 ([16]) Let {I},},cn be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence (I, Jxen of { Iy} new which satisfies F,,]. <
Ly for all j > 0. Also consider the sequence of integers {3(n)},en defined by

S(n)=max{k <m: Iy < Ty}

Then {8(n)},en is a nondecreasing sequence verifying lim,,_, o, §(n) = 00, and for all n > ny,
it holds that sy < I's(n+1 and we have

Fn < I—:S(n)+1-

3 General viscosity approximation methods for quasi-nonexpansive mappings
Let f: H — H be 6-contractive with 6 € (0,1), F : H — H be L-Lipschitz continuous and
n-strongly monotone with L > 0, and n > 0. Choose u € (0, j—g) and 0 € (0, 1), where T =
u(n — % wL?). Throughout this section, we use these notations and assumptions unless

specified otherwise.

Theorem 3.1 Let T : H — H be a quasi-nonexpansive mapping such that Fix(T) # ¥, with
I—T demiclosed at 0. For any given xy € H, the iterative sequence {x,},cn C H is generated

by

Vn = ﬁnxn + (1 - lgn)Txm
(3.1)

K1 = Uyf () + (I — €yl F )V,

where {a,,}nen and {B,}uen are two sequences in (0, 1) satisfying the following conditions:
(i) lim,_ o @y, = 0;
(ii) D o02oon = 00;
(iii) limsup,_, . Bu(1 = By) > 0.
Then the sequence {x,},cN defined by (3.1) converges strongly to p € Fix(T), which is the
unique solution in Fix(T) of the variational inequality (VI)

(uF(p) —f(p),x —p) >0, VxeFix(T). (3.2)

Proof Clearly, Fix(T) is closed and convex.
Step 1. There exists unique p € Fix(T) such that

(LF(p) —f(p),x - p) > 0, Vx € Fix(T).
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Take A = W’ for Vx,y € H, we have

| (1 = A(E = )2 = (1= 1uE =)
= =) = 2((WE = f)x - (WE - f)p) |
= b= yI> + A2 | (uF —f)x— (WF ~ )|
- 2M(x -y, (WF = f)x — (F — f)y)
= = y1? + 22| 1 (FG) — FO)) — (f) — ) |
— 2hufx — 3, F(x) - F)) + 2A{x = 3,£ (%) = £ (7))
< b= y11% + 22 (1| E@) - EG) | + [f ) -0 )
=20l = y1I* + 24 ]2 =yl - [[f ) = f ) |
< [L+22(uL +6)* = 2x(un - 0)]llx - yII>
[1 - A(un -0)]llx -1

i.e., I — MuF —f) is a contractive mapping. So is Prix¢r)(I — A(uF - f)). Hence, there exists
unique p € Fix(T) such that p = Priy1)({ — A(LF — f))p, then

(WE(p) —f(p),x—p) =0, VxeFix(T).

Step 2. {x,}nen is a bounded sequence.
Let p € Fix(T) be the unique solution of the variational inequality (3.2). Then Tp = p and

1Ty - pll < llx-pl. (3.3)
From Lemma 2.2 and (3.3), it follows that

%1 = 2l = [Jotnf () + (I = ctutF)vis = p|
= [len(f @) = f @) + (I = awptF)vyy = I = ctuptF)p + i (f () = E(p)) |
< a,bllx, = pll + (1 = @,7) v = pll + 0 | f (0) = LE )
= 0 |0 = pll + (1 = u)|| Bun + (1 = Ba) T — p|| + t||f () — LE (D)
< a0 1%0 = pll + (1= T) (Bulln = pll + (1 = Bo) | T — pll)
+an|[f(p) - uE(p)|
< a0 1%, — pll + (1 = y)(Bulln — pll + (1= Bo) I — p)
+ o, |[f(p) - LE )

= (1= ault = 0)) 1% — pll + (7 - e)w
Emax{nxn_p”,w}.
T-6

Then, by induction on #, {x,},cn is a bounded sequence. So are {v,},en, {f(*1)}nen, and
{F(xn)}neN-

Page 8 of 20
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Step 3. lim,,_, » ||x, — pll = 0.
From the well-known inequality

e+ y1> < llcl® + 20y, + ),
which holds for all x,y € H, it follows that

e = pII? < [ernf @) + (I - @uuF)v, - p||*
= [lotn (F(x) = KE®)) + (U = oty FYvy — (I = ayuF)p?
< [ = uptF)v,y = (I = aal E)p || + 20{f (%) = LF ), %01 - )
< (1= 0u)? Vi =PI + 20u{f (%) = f (D), X1 — D)
+20,{f (p) = LE(P), Xns1 — )
< (1= a0 Bulon =) + (1= B)(Tw - p)|”
+ 20 |[f ) = )] - 19001 =PIl + 20 {f (p) = LE (D), X1 — )
= (1= 0,0 (Bulln — pII*> + (1 = BT — pII* = Bu(1 = Bu) | Tt — %4 1%)
+ 20 |[f () = F @) - 121 =PIl + 20{f () = F (p), 21 — )
< (1= au?)*(ll%n = pII* = Bu(1 = Bu) | T — 24ll*)
+ 0 (1% = P11 + %01 — P1I) + 200{f () = LE (), %1 — p)
= (1= 20,7 + a,0) 1%, = plI* + @yt 1%, = P11 + 20 %1 —pII?

— (1= 0u7)*Bu(1 = B Ton — 2ull* + 20{f (p) = LE (D), Xns1 — D).

Summarizing, we get that

20,(T - 6) a?t?
a2 < (2t 2 n 2
lni1 = pIl _< -0 )IIxn pll +1_an9|lxn pll
1-a,7)%B,(1-
_( o, T)* Bl Bn) ”Txn_xnllz
1-o,6
L (f(p) - WF(p),x ) (3.4)
1—a,0 122 »Xnel — P .

2
Set I', = ||z, —pl|%, neglecting the negative term _%W || Tx,, — %, ||? in the obtained

relation, we get the following inequality:

20,(7 — 6) a2t?
Fn+1 = 1- nt Fn
1-a,0 1-a,0
b 22 1() — WE ) - )
1—a,0 1% WXnrl — P
_(1 20,(t — 6) 2a,(t - 6) e, 72T,
N 1-o,0 " 1-w,0 T-6
20,(t-0)[ 1
_ — uFE(p), -p)|. 35
+ 1—a,0 [T—9<f(p) KE(p), %11 P)] (3.5)

Page 9 of 20
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From relation (3.4) we also obtain

(1- Ol,,‘l,')zﬂ,,,(l - Bu)

l—ab ”Txn_anZE(Fn_FnJrl)"'anM: (3.6)
—Qy

2
where M = SupneN{%Fn + ﬁ ”/’LF(p) _f(p)” : ”xn+1 —P”}
Case 1: Suppose that there exists 7y such that {I}},>,, is nonincreasing, it is equal to
1 < T, for all n > ny. It follows that lim,,_, o, I',, exists, so we conclude that

lim (I, = Tye1) = 0. (3.7)
n—00

Since lim,,_, o 7, = 0, and from (3.6), (3.7) we deduce that

1_ n 2 n 1_ n
0 <tlimsup LoD Pl =B) 2
n—00 1-a,0

<limsup((I; = Fys1) + ouM) = 0.

n—0o0

From assumption (iii), we obtain that

. ¢! —0(,,1')2,3,,,(1—,3")
lim sup > 0.
n—00 1-o,0

Therefore we get
lim || Tx, — x,|| = O. (3.8)
Hn—0Q

In order to apply Xu’s Lemma 2.8 to the sequence a,, = I';, we show that

lim suplf (p) — wF(p), %, — p) <0,

n— 00

where p is the unique solution of the variational inequality (3.2).
Since {x,},en is bounded, there exists {x;, }ien Of {X,}sen and x € H such that x,, — x

and
lim sup{f (p) — wF (p), %, — p) = lim {f(p) — wF (p), %, — p)
= (f(p) — uF(p),x _p>'

From (3.8) and / — T demiclosed at 0, we know that x € Fix(T). Since p = Prix)(I —
AMuF - f))p and x € Fix(T), we have

lim sup(f(p) - uF(p),x, —p) = (f(p) - uF(p),x —p) <0. (3.9)
n—0o0
1
Set 0, = 7a:f;F" + %{f(p) — WE(p),x,41 — p). Since {x,},en is bounded, so is {I},},en.

Equation (3.9) and assumption (i) imply limsup,,_, ., 0, < 0. It follows from assumptions
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(i) and (ii) that

2a,(t -6 20,
limM:O, and Z (v -

n—oo 1-—q,0 1-a,6

Then lim,,_, « [|%, — p|| = 0 by Lemma 2.8.

Case 2: Suppose that there exists {s }xen of {11} ,en such that |x,, —pll < ||#4,+1 — p|| for
all k e N.

From Maingé’s Lemma 2.9, there exists a nondecreasing sequence of integers {§(#)},cn
satisfying, for all # > ny, the following:

(a) lim,,_ o 8(n1) = 00;

(b) llxspn =PIl < 15641 = pIs

© llxn = pll < lIxs62)01 = Pl
From the last and relation (3.5), we have

0 < liminf(F(ms1 — Tsr)
n— 00

< limsup(Fspy1 — Lsm)

n—oo

<limsup(l;1 - I)

n—0o0

. 20,(T —6) %anﬂ[‘n
<limsup
n—00 1 —Olng T-6
20,,(t —0)
_— - =0.
i 1-a,0 |: p>:“

Hence it turns out that
lim (I_Zs(n)+1 - FB(n)) =0. (310)
n—00
By (3.10), (3.6), and arguing as in case 1, we get
nlglolo | Tx5(1) — %5(m)|l = O.
Similar to Case 1, we have

lim sup(f(p — WE (D), %s(m)+1 —p) <0. (3.11)

n—o0

If we replace n with §(n) in (3.5), by condition (b), we obtain

200 (T — 0) a?  7?
I—ZS(n)+1 = (1 - L)Q n) t Lrﬁ(rz)
1-asmb 1—oasmf
20[5
(f(P /‘LF(p):sz(n)+l —P)
205 (T = 6) a? T2
< (1 ———— | D51 + LF&(;«)
1 — a0 1— o500
20[5

(f(p MF(p)’xS(nHl —P),

Page 11 of 20
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and also
2050 (T —6’) o5, T
- (n)+1 =< 7F8(n)
1—oasmwf 1—asf
20[5
1_ {f(p) MF(P) X§(n)+1 — >
s(n)

Therefore dividing both sides of the obtained inequality by o), we have

2(t - 6) s T2
—1"5(” . < L

I;
1 —6\!5(,,)9 wl= 1 —0(5( )9 3(r)

(f(p) LE(p), Xs(nys1 — P)- (3.12)

1 — o

Since lim,,_, o0 o5y = 0, by (3.11) and (3.12), we get lim,,_, « [|%5:) — pll = 0. By condition
(C); 11mn—>oo ”xn —19” - ' D

Corollary 3.2 Let T, : H — H be a p-strongly quasi-nonexpansive mapping such that
Fix(T,) # 9, with p >0 and I — T,, demiclosed at 0. For any given xo € H, the iterative
sequence {x,},en C H is generated by

Xn+l = ar(f(xn) + (1 - anl'LF)Tpxnr (313)

where {0, }nen and {Buluen are two sequences in (0, 1) satisfying the following conditions:
(i) lim,_ o0, = O0;
(ii) Yooy =00
Then the sequence {x,},cn, defined by (3.13), converges strongly to p € Fix(T,), which is the
unique solution in Fix(T,) of the variational inequality (VI)

(WE(p) —f(p),x—p) =0, VxeFix(T,).

Proof By Lemma 2.1, there exists a quasi-nonexpansive mapping 7 such that T, = (1 -
1+p) + 1+p T and Fix(T,) =Fix(T). I - T, is demlclosed at0,sois/—T. Take 8, =1- m
for all # € N, since p > 0, then B,(1 - 8,) = 1+p T > 0. Then Corollary 3.2 follows from

Theorem 3.1. O

4 Split equality fixed point problems
Let H; and H; be two real Hilbert spaces, the product H = H; x H, is a Hilbert space with
inner product and norm given by

(%) = (@L,01) + (X2, 92),  and  Jlal® = flacr[|* + |21

x1 n
for any x = [xz],y: [yz] €H.
In this section we always assume that
(1) Hhy, Hy, Hs are three real Hilbert spaces and H = Hy x Ha;

(2) T= [ ] where T;, i = 1,2, is a one-to-one and quasi-nonexpansive mapping;
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A¥Ay -AZA
(3) G=[A1 -A)]and GG =[ " Aty

operator from H; into Hs and A7 is the adjoint of A;;

4) f= [2], where f;, i = 1,2 is a 0-contraction on H; with 8 € (0, 1);

(5) F= [gl], where F;, i = 1,2, is L-Lipschitz continuous and n-strongly monotone on
H; with L >0, and n > 0.

], where A;, i = 1,2 is a bounded linear

Lemma 4.1 ([17]) Let U =1 - AG*G, where 0 < A < 2/p(G*G) with p(G*G) being the spec-
tral radius of the self-adjoint operator G*G on H. Then we have the following result:

(1) Ul €1 (ie., U is nonexpansive) and averaged;

(2) Fix(U) = {x =[] € H: Aix1 = Asx,}, Fix(Pcl) = Fix(Pc) NFix(U).

Theorem 4.2 Let Hy, Hy, H3, H, Ty, T, T, Ay, Az, G, G*G, fi, fo, f» F1, F», F satisfy the
above conditions (1)—(5). For any given xo € H, the iterative sequence {x,},cN = [;621::]}161\] C

H is generated by

Vi = Buxn + (1= B)T(I = LG*G) %,
(4.1)

Kn+l = anf(xn) + (I_an//LF)Vm

or its equivalent form

Vin = ,anl,n + (1 - IBn)Tl (xl,n - )VAT(Alxl,n _A2x2,n))»
Vo = BuXom + (1= ) Ta (%o, + LA5 (A1, — Asan)),
K1 = Uf1(®1n) + (1 — 0 tF1) V1,

KXol = Uyfa(Xon) + (T2 — 0t tF2) Vo,

where {at,} nen and { B} nen are two sequences in (0, 1). If the solution set I' = {x = [2] €EH:
x1 € Fix(T1), %y € Fix(Ty) such that Ax, = Agxz} of (SEFP) is nonempty and the following
conditions are satisfied:
(i) lim,_ o, =0;

(ii) D02y on = 00;

(iii) limsup,_, ., Bu(1 = Bu) > 0;

(iv) A €(0,2), where R = ||G||%;

(v) foreachi=1,2, T; is demiclosed;

(vi) e (0, %) and 0 € (0,7), where T = ju(n — 3 uL?).
Then the sequence {x,},cN, defined by (4.1), converges strongly to p € I, which is the unique
solution in I" of the variational inequality (VI)

(WF(p)-f(p)x—p)=0, Vxel. (4.2)
Proof For each i = 1,2, since f; is 0-contraction, F; is L-Lipschitz continuous and 5-
strongly monotone on H; with L > 0 and 5 > 0, and T; is quasi-nonexpansive, we have

I

lF® -0 = i) A0 + [h6x) - fya)
<0*(llx1 = y1 1% + ll%2 = y211%)
=0%|lx—yl%

Page 13 of 20
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ie.,

lf @) -fo)| <0llx -yl

forallx = [xl],y = [ﬁ] € H. This shows that f is a 6 -contraction. Similarly, F is L-Lipschitz

X2
continuous and 7-strongly monotone, and 7 is a quasi-nonexpansive mapping.
X1,n

Let {x,}nen = [x“]neN be a sequence in H = H; x H, such that x, — x = [;621], and
lim,,— o || T, — x| = 0. Then, for each i = 1,2, we have lim,_, o || Tix;,, — %;,,|| = 0, and

(Xn —%,9) = (X1, — X1, Y1) + (Kon —%2,92) = 0

foreach y =[] € H.For each i=1,2,let y; € Hyand y = [}, | € H with y; = 0 (j # ). Then
lim,, oo (%, — %, ) = 0 implies lim,_, o {x;,, — %5, ¥:) = 0 and x;,, — x;.

For each i = 1,2, since T; : H; — H; is demiclosed, x; € Fix(T;). It is easy to see that
x € Fix(T) #@. Hence T is demiclosed.

By Lemma 4.1, U =1 -AG*Gisa le“—strongly quasi-nonexpansive mapping for some
a >0, and Fix(U) = {x = [;621] € H: Aixy = Ayxp}. Since ' # ¥, U is a strictly quasi-
nonexpansive mapping. By Lemma 2.3, Fix(TU) = Fix(T) N Fix(U) = I" # ?.

Then Theorem 4.2 follows from Theorem 3.1. O

5 Applications
In this section, we always assume that Hy, Hy, Hs, H, T1, T2, T, A1, Az, G, G*G, fi, fo, f
Fy, B, F satisfy conditions (1)—(5) in Sect. 4.

5.1 Split equality common fixed point problems
The split equality common fixed point problem (SECFPP) is the problem of finding

x1 € Hy,xy € Hy such that x; € Fix(7T7) N Fix(Sy),
(5.1)
Xy € FIX(TZ) N FiX(Sz), and Alxl = AQ.XQ,

where T}, i = 1,2, is a quasi-nonexpansive mapping on H; and S;, i = 1,2, is a firmly non-
expansive mapping on Hj, respectively. Its solution set is denoted by I'cp = {x = [2] €

H : x;, € Fix(T7) NFix(S1), %, € Fix(T,) N Fix(S,) such that A;x; = Azxz}, then we have the
following result.

Theorem 5.1 Let S = [;21], where S;, i = 1,2, is a firmly nonexpansive mapping on H;. For

any given xo € H, the iterative sequence {x,} N = [;;:]n N CHis generated by
Uun = S(I - AG*G)xy,
Vi = Buxn + (1 = By) Tuyy, (5.2)

K1 = Uyf () + (I — €yl F)Vpy

where {at,}uen and {B,}nen are two sequences in (0,1). If the solution set I'cy is nonempty
and the following conditions are satisfied:

(1) lim,,_, o o, = 0;
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(ii) D02y = 00;
(iii) limsup,_, . Bu(1 = By) >0;
(iv) 1 €(0,%), where R = ||G||%;
(v) foreachi=1,2, T; is demiclosed;
(vi) e (0, %) and 0 € (0,7), where T = ju(n — 3 uL?).
Then the sequence {x,},cn, defined by (5.2), converges strongly to p € I'cg, which is the

unique solution in I'cp of the variational inequality (VI)

(uF(p) —f(p),x—p) >0, Vxelck.

Proof For eachi=1,2, S, is a firmly nonexpansive mapping on Hj, it is easy to verify that
S is a firmly nonexpansive mapping on H. Since I'cr # 9, S is a strictly quasi-nonexpansive
mapping on H. By Lemma 2.3, Fix(7T'S) = Fix(T") N Fix(S) and T is a quasi-nonexpansive
mapping. Then Theorem 5.1 follows from Theorem 4.2. d

5.2 Split equality null point problems and split equality fixed point problems
Let M be a set-valued mapping of H into 27, The effective domain of M is denoted by
dom(M); that is, dom(M) = {x € H : Mx # #J}. A set-valued mapping M is said to be a
monotone operator on H if (u —v,x —y) > 0 for all x,y € dom(M), u € Mx, and v € My.
A monotone operator M on H is said to be maximal if its graph is not properly contained
in the graph of any other monotone operator on H.

The split equality null point problems and split equality fixed point problems are the
problem of finding

%1 € Fix(T1) N M7 (0),%, € Fix(Ty) N M5 (0) such that A1x; = Ay, (5.3)

where T;, i = 1,2 is a quasi-nonexpansive mapping on H;, and M,, i = 1,2, is a set-
valued maximal monotone operator of H; into 2% with r > 0, respectively. Its solu-
tion set is denoted by I'nr = {x = [2] € H : x; € Fix(T1) N M7'(0),x, € Fix(Ty) N
M;31(0) such that Ajx; = Azxz}.

For a maximal monotone operator M on H and r > 0, we may define a single-valued
operator ]r/"l = +rM)™': H - dom(M), which is called the resolvent of M for r. From
Chuang [18] and Chang [19], we know that the associated resolvent mapping ],M isafirmly

nonexpansive mapping, and
xe M0 & xeFix(M).

This implies that the split equality null point problems and split equality fixed point prob-
lems (5.3) are equivalent to SECFPP (5.1). Then the following theorem can be obtained

from Theorem 5.1 immediately.

My

r

My
Theorem 5.2 Let],M = [I’ ], where M, i = 1,2, is a set-valued maximal monotone op-
7,

erator of H; into 2H; | ]rM " is the associated resolvent of M; with r > 0, respectively. For any
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XLn

given xy € H, the iterative sequence {x,}necN = [ o ]n o CHis generated by
wy = JM (1 - GG,
Vi = Buxn + (1= By) Tuy, (5.4)

K1 = yf () + (I — €y b F )V

where {oty}uen and {Bu}nen are two sequences in (0,1). If the solution set I'yr is nonempty
and the following conditions are satisfied:
(i) limy,_ o0 0ty = 0;

(ii) Do02oan = 00;

(i) Timsup, . Ba(1 - B,) > 0;

(iv) A€ (0,2), where R = |G|%

(v) foreachi=1,2, T; is demiclosed;

(vi) u € (0, %) and 6 € (0,1), where T = u(n — %ML2).
Then the sequence {x,},cn, defined by (5.4), converges strongly to p € I'ng, which is the
unique solution in I'nr of the variational inequality (VI)

(MF(p)_f(P),x—p>ZO, VxGFN;.

5.3 Split equality optimization problems and split equality fixed point problems

Let H;, i =1,2,3, be areal Hilbert space. Let g; : H; — R, i = 1,2, be a proper, convex, and

lower semi-continuous function, and A; : H; — Hs, i = 1,2, be a bounded linear operator.
The split equality optimization problem (SEOP) is the problem of finding

x1 € Hy,%, € Hy such that g1 (x;) = mIi{ngl ),
yeH:

(5.5)
£(%2) = min gy (y), and A1x1 = Aoy,
yEHy

The split equality optimization problem and split equality fixed point problems are the
problem of finding

x1 € Fix(T}1),x, € Fix(T,) such that gy (x;) = mIi{ngl ),
yeH1

(5.6)
g(2) = mingy(y) and A1x7 = Azxy,
yEH)

where T}, i = 1,2, is a quasi-nonexpansive mapping on H;. The solution set of (5.6) is de-
noted by IoF = {x = [2] € H : %1 € Fix(T1),x; € Fix(T3) such that g;(x1) = minyer, g1(9),
£(%2) = minyep, £(y),and Ayx; = Agx, |

The subdifferential of g, i = 1,2, at x is the set

0gi(x) = {u € H;: g(y) > gi(x) + (w,y —x),Vy € H;}.

Denoted by dg; = M;, i = 1,2, is a maximal monotone mapping, so we can define the re-
solvent ],/Vl !, where r > 0. Since x; and %, are a minimum of g; on H; and that of g, on H,
respectively, for any given r > 0, we have

x1 € M71(0)=Fix(JM) and x, € M;(0) = Fix(J""2).
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This implies that the split equality optimization problem and split equality fixed point
problems (5.6) are equivalent to the split equality null point problems and split equality
fixed point problems (5.3). Then the following theorem can be obtained from Theorem 5.2

immediately.

Theorem 5.3 Let g;: H; — R, i = 1,2, be a proper, convex, and lower semi-continuous

. M ]Ml
function. Let JIV' = [] My

], where M; = dg;, i = 1,2, and ],M" is the associated resolvent
of M; with r >0, re;pectively. For any given xo € H, the iterative sequence {x,}ncN =
[zzl::]neN C H is generated by

wy = JM (1 - 2G*G)x,

Vi = Bun + (1- ,Bn)Tunr (5.7)

Xn+l = ar(f(xn) + (I_Oln/LF)Vm

where {a,}yen and {B,}uen are two sequences in (0, 1). If the solution set I'or is nonempty
and the following conditions are satisfied:
(i) lim,_ 00, =0;

(if) Z:io a; = 00;

(ili) limsup,_, ., Bu(1 = Bu) > 0;

(iv) A €(0,2), where R =||G||%;

(v) foreachi=1,2, T; is demiclosed;

(vi) e (0, %) and 0 € (0,7), where T = pu(n — 3 ul?).
Then the sequence {x,},cn, defined by (5.7), converges strongly to p € I'og, which is the
unique solution in I'or of the variational inequality (VI)

(H’F(p)_f(p)’x_p>207 Vxe]"op.

5.4 Split equality equilibrium problems and split equality fixed point problems
Let C be a nonempty closed and convex subset of a real Hilbert space. A bifunction & : C x
C — Ris called an equilibrium function if and only if it satisfies the following conditions:

(Al) ©(x,x)=0forallx € C;

(A2) © is monotone, i.e., g(x,y) + g(y,x) <0 forallx,y € C;

(A3) O is upper-hemicontinuous, i.e., for all x,y,z € C,

limsup,_ o O(tz + (1 - t)x,y) < O(x,);

(A4) O(x,-) is convex and lower semicontinuous for all x € C.
The so-called equilibrium problem with respect to the equilibrium function © is the prob-
lem of finding

x* € C such that ©(x*,y) =0, VyeC. (5.8)

Its solution set is denoted by EP(®, C). Numerous problems in physics, optimization,
and economics are reduced to finding a solution of (5.8) (see [20, 21]).

The split equality equilibrium problems and split equality fixed point problems are the
problem of finding

X1 € FlX(Tl) N EP(@l, Cl),xz (S] FlX(Tz) N EP(@z, Cg) such that A1x1 = Azxz, (59)
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where T}, i = 1,2, isa quasi-nonexpansive mapping on H; and ©; is an equilibrium function
of C; x C; into R, respectively. Its solution set is denoted by I'gr = {x = [2] €H:x €
Fix(T1) NEP(®4, C1),x; € Fix(T,) N EP(®,, C;) such that A1x; = Azxz}.

For given r > 0 and x € H, the resolvent of the equilibrium function ® is the operator
defined by

1
T,@(x): {zeC:@(z,y)+ ;(y—z,z—x) zO,VyeC}.

Proposition 5.4 ([22]) The resolvent operator T? of the equilibrium function © has the
following properties:
(i) T issingle-valued;
(ii) Fix(T?) = EP(®, C), and EP(®, C) is a nonempty closed and convex subset of C;
(iti) T? is a firmly nonexpansive mapping.

Using the above lemma, Takahashi et al. [23] obtained the following lemma. See Aoyama
et al. [24] for a more general result.

Lemma 5.5 ([23, 24]) Let C be a nonempty closed convex subset of H, and let © be a
bifunction of C x C into R satisfying (A1) to (A4). Let Mg be a set-valued mapping of H
into itself defined by

{zeH:Ox,y)+ (y—x,2) >0,Vye C}, VxeC(C,
a, Vx ¢ C.

Mo (x) =

Then EP(®, C) = Mg (0) and Mg is a maximal monotone operator with dom(My) C C.
Furthermore, for any x € H and r > 0, the resolvent T® of © coincides with the resolvent of

M@, i.e.,
Tr@(x) = +rMeg) ().

This implies that the split equality equilibrium problems and split equality fixed point
problems (5.9) are equivalent to the split equality null point problems and split equality
fixed point problems (5.3). Then we have the following result.

1
Theorem 5.6 Let C;, i = 1,2, be a nonempty closed convex subset of H;. Let T® = []sz ],

where ©;, i = 1,2, is an equilibrium function of C; x C; into R with r > 0. For any given

X1,n

xo € H, the iterative sequence {x,},cn = [-xZ,n ]n N CHis generated by
up =T (I - 1G*G)xp,
Vi = Bun + (1- lsn)Tuny (510)

Xne1 = Uyf () + (I — €yl F )V,

where {ot,}yen and {Bn}nen are two sequences in (0,1). If the solution set I'or is nonempty
and the following conditions are satisfied:

(1) lim,,_, o a, = 0;
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(i) o2 an = 00;
(iii) limsup,_, o Bu(1 = By) > 0;
(iv) A €(0,2), where R = ||G||%;

(v) foreachi=1,2, T; is demiclosed;
(vi) u € (0, %) and 6 € (0,1), where T = u(n — %MLZ).
Then the sequence {x,}ncn, defined by (5.10), converges strongly to p € I'op, which is the

unique solution in I'or of the variational inequality (VI)
(MF(p) —f(lﬂ),x —P> >0, Vxe Fop.
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