General viscosity approximation methods for quasi-nonexpansive mappings with applications

Xindong Liu ${ }^{1,3} \oplus 0^{\circ}$, Zili Chen ${ }^{2 *}$ and Yun Xiao ${ }^{3}$

Correspondence:
zlchen@home.swjtu.edu.cn
${ }^{2}$ School of Mathematics, Southwest Jiaotong University, Chengdu, China Full list of author information is available at the end of the article

Abstract

The purpose of this paper is to introduce and study the general viscosity approximation methods for quasi-nonexpansive mappings in the setting of infinite-dimensional Hilbert spaces. Under suitable conditions, we prove that the sequences generated by the proposed new algorithm converge strongly to a fixed point of quasi-nonexpansive mappings in Hilbert spaces, which is also the unique solution of some variational inequality. Then this result is used to study the split equality fixed point problems, the split equality common fixed point problems, the split equality null point problems, etc. Our results improve and generalize many results in the literature and they should have many applications in nonlinear science.

MSC: 47H09; 47J25
Keywords: Viscosity approximation methods; Quasi-nonexpansive mappings; Variational inequalities; Split equality fixed point problems; Split equality null point problems

1 Introduction

Let C be a nonempty subset of a real Hilbert space H. A mapping $T: C \rightarrow C$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. The set of the fixed points of T is denoted by $\operatorname{Fix}(T)=\{x \in C: T x=x\} . T: C \rightarrow C$ is called quasi-nonexpansive if $\operatorname{Fix}(T) \neq \emptyset$, and $\|T x-p\| \leq\|x-p\|$ for all $x \in C, p \in \operatorname{Fix}(T)$.

The viscosity approximation method for nonlinear mappings was first introduced by Moudafi [1]. Starting with an arbitrary initial $x_{0} \in H$, define a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ generated by

$$
\begin{equation*}
x_{n+1}=\frac{\epsilon_{n}}{1+\epsilon_{n}} f\left(x_{n}\right)+\frac{1}{1+\epsilon_{n}} T x_{n}, \quad \forall n \geq 0, \tag{1.1}
\end{equation*}
$$

where f is a contraction with a coefficient $\theta \in[0,1)$ on H, i.e., $\|f(x)-f(y)\| \leq \theta\|x-y\|$ for all $x, y \in H$, and $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in $(0,1)$ satisfying the following given conditions:

- $\lim _{n \rightarrow \infty} \epsilon_{n}=0$;
- $\sum_{n=0}^{\infty} \epsilon_{n}=\infty$;
- $\lim _{n \rightarrow \infty}\left(\frac{1}{\epsilon_{n}}-\frac{1}{\epsilon_{n+1}}\right)=0$.

It is proved that the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ generated by (1.1) converges strongly to the unique solution $p \in \operatorname{Fix}(T)$ of the variational inequality

$$
\begin{equation*}
\langle(I-f) p, x-p\rangle \geq 0, \quad \forall x \in \operatorname{Fix}(T) \tag{1.2}
\end{equation*}
$$

In [2], Maingé considered the following viscosity approximation method for quasinonexpansive mappings. Starting with an arbitrary initial $x_{0} \in C \subset H,\left\{x_{n}\right\}_{n \in \mathbb{N}}$ generated by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T_{\omega} x_{n}, \quad \forall n \geq 0, \tag{1.3}
\end{equation*}
$$

where $T_{\omega}=\omega I+(1-\omega) T$, with T quasi-nonexpansive on $C \subset H, \operatorname{Fix}(T) \neq \emptyset$ and $\omega \in(0,1)$, $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in $(0,1)$ satisfying the following given conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$.

It is also proved that the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ generated by (1.3) converges strongly to the unique solution of the variational inequality (1.2).

In [3], Tian and Jin considered the following general iterative method:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) T_{\omega} x_{n}, \quad \forall n \geq 0 . \tag{1.4}
\end{equation*}
$$

It is proved that if the sequence $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ satisfies appropriate conditions, the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ generated by (1.4) converges strongly to the unique solution of the variational inequality

$$
\begin{equation*}
\langle(A-\gamma f) p, x-p\rangle \geq 0, \quad \forall x \in \operatorname{Fix}(T) \tag{1.5}
\end{equation*}
$$

or equivalently $p=P_{\operatorname{Fix}(T)}(I-A+\gamma f) p$, where $\operatorname{Fix}(T)$ is the fixed point set of a quasinonexpansive mapping T, and A is a strongly positive linear bounded operator.

In [4], Marino et al. considered the following general viscosity explicit midpoint rule:

$$
\begin{align*}
& \bar{x}_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n} ; \tag{1.6}\\
& x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T\left(s_{n} x_{n}+\left(1-s_{n}\right) \bar{x}_{n+1}\right), \quad \forall n \geq 0 .
\end{align*}
$$

It is proved that if the sequences $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}},\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$, and $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ satisfy appropriate conditions, the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ generated by (1.6) converges strongly to the unique solution of the variational inequality (1.2), where $\operatorname{Fix}(T)$ is the fixed point set of a quasi-nonexpansive mapping T.
Let $H_{i}, i=1,2,3$, be a real Hilbert space, and $T: H_{1} \rightarrow H_{1}$ with fixed point set $\operatorname{Fix}(T)$. Let C_{1} and C_{2} be nonempty closed convex subsets of H_{1} and H_{2}, respectively, and let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator.

The split feasibility problem (SFP) is the problem of finding

$$
x \in H_{1} \text { such that } x \in C_{1} \text { and } A x \in C_{2} .
$$

In 1994, Censor and Elfving [5] first introduced the (SFP) in finite-dimensional Hilbert spaces for modeling inverse problems which arise from phase retrievals and in medical image reconstruction.
Let $A_{1}: H_{1} \rightarrow H_{3}, A_{2}: H_{2} \rightarrow H_{3}$ be bounded linear operators. Moudafi [6] introduced the following split equality feasibility problem (SEFP):

$$
\text { Find } x_{1} \in C_{1}, x_{2} \in C_{2} \text { such that } A_{1} x_{1}=A_{2} x_{2} .
$$

Obviously, if $A_{2}=I$ (identity mapping on H_{2}) and $H_{2}=H_{3}$, then (SEFP) is reduced to (SFP). Moudafi [6] introduced an iteration process to establish a weak convergence theorem for split equality feasibility problem under suitable assumptions. The (SEFP) has many applications such as decomposition methods for PDEs and applications in game theory and intensity-modulated radiation therapy.
Let $T_{1}: H_{1} \rightarrow H_{1}$ and $T_{2}: H_{2} \rightarrow H_{2}$ be firmly quasi-nonexpansive mappings such that $\operatorname{Fix}\left(T_{1}\right) \neq \emptyset, \operatorname{Fix}\left(T_{2}\right) \neq \emptyset$, and let $A_{1}: H_{1} \rightarrow H_{3}, A_{2}: H_{2} \rightarrow H_{3}$ be bounded linear operators. Moudafi [7] introduced an iteration process and established weak convergence theorem for split equality fixed point problem (SEFPP):

$$
\text { Find } x_{1} \in \operatorname{Fix}\left(T_{1}\right), x_{2} \in \operatorname{Fix}\left(T_{2}\right) \text { such that } A_{1} x_{1}=A_{2} x_{2}
$$

When $A_{2}=I$ and $H_{2}=H_{3}$, then the (SEFPP) is reduced to the split common fixed point problem (SCFPP):

$$
\text { Find } x_{1} \in H \text { such that } x_{1} \in \operatorname{Fix}\left(T_{1}\right) \text { and } A_{1} x_{1} \in \operatorname{Fix}\left(T_{2}\right) .
$$

When $C_{1} \subset H_{1}, C_{1} \neq \emptyset, C_{2} \subset H_{2}, C_{2} \neq \emptyset$, let $T_{1}=P_{C_{1}}$ and $T_{2}=P_{C_{2}}$, the (SEFPP) is then reduced to the (SEFP), where $P_{C_{1}}$ and $P_{C_{2}}$ denote the metric projection of C_{1} and C_{2}, respectively.

Very recently there have been many works concerning fixed point methods for nonexpansive mappings. For more details, see, e.g., [8-11] and the references therein.
Motivated and inspired by the above works on viscosity approximation method for quasi-nonexpansive mappings and split equality problems, in this paper we first introduce a general viscosity approximation method for quasi-nonexpansive mappings. Under suitable conditions, we prove that the sequences generated by the proposed new algorithm converge strongly to a fixed point of quasi-nonexpansive mappings in Hilbert spaces, which is also the unique solution of some variational inequality. Then this result is used to study the split equality fixed point problems, the split equality common fixed point problems, the split equality null point problems, etc. Our results improve and generalize many results in the literature and they should have many applications in nonlinear science.

2 Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Let $I: H \rightarrow H$ be an identity mapping on H. We denote the strong convergence and the weak convergence of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ to $x \in H$ by $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$, respectively. Throughout this paper, we use these notations and assumptions unless specified otherwise.

The following identities are valid in a Hilbert space H : for each $x, y \in H, t \in[0,1]$,
(i) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$;
(ii) $\|t x+(1-t) y\|^{2}=t\|x\|^{2}+(1-t)\|y\|^{2}-t(1-t)\|x-y\|^{2}$.

Let C be a nonempty subset of the real Hilbert space H, and let $T: C \rightarrow H$ be a singlevalued mapping. Then T is called
(1) nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$;
(2) L-Lipschitz continuous if there exists $L>0$ such that $\|T x-T y\| \leq L\|x-y\|$ for all $x, y \in C ;$
(3) quasi-nonexpansive if $\operatorname{Fix}(T) \neq \emptyset$, and

$$
\|T x-p\| \leq\|x-p\| \quad \text { for all } x \in C \text { and for all } p \in \operatorname{Fix}(T) ;
$$

(4) ρ-strongly quasi-nonexpansive, where $\rho \geq 0$, if $\operatorname{Fix}(T) \neq \emptyset$ and

$$
\|T x-p\|^{2} \leq\|x-p\|^{2}-\rho\|T x-x\|
$$

for all $x \in C$ and for all $p \in \operatorname{Fix}(T)$;
(5) strictly quasi-nonexpansive if $\operatorname{Fix}(T) \neq \emptyset$ and $\|T x-p\|<\|x-p\|$ for all $p \in \operatorname{Fix}(T)$ and for all $x \in C \backslash \operatorname{Fix}(T)$;
(6) monotone if $\langle x-y, T x-T y\rangle \geq 0$ for all $x, y \in C$;
(7) η-strongly monotone if there exists $\eta>0$ such that $\langle x-y, T x-T y\rangle \geq \eta\|x-y\|^{2}$ for all $x, y \in C$;
(8) α-inverse-strongly monotone (in short α-ism) if there exists $\alpha>0$ such that $\langle x-y, T x-T y\rangle \geq \eta\|T x-T y\|^{2}$ for all $x, y \in C ;$
(9) demiclosed if for each sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $x \in C$ with $x_{n} \rightharpoonup x$ and $(I-T) x_{n} \rightarrow 0$ implies $(I-T) x=0$;
(10) firmly nonexpansive if $\|T x-T y\|^{2} \leq\langle T x-T y, x-y\rangle$ for all $x, y \in C$;
(11) α-averaged if there exist $\alpha \in(0,1)$ and nonexpansive $S: C \rightarrow H$ such that $T=(1-\alpha) I+\alpha S$.

It is easy to see that every strongly quasi-nonexpansive mapping is a strictly quasinonexpansive mapping and every strictly quasi-nonexpansive mapping is a quasi-nonexpansive mapping.

Lemma 2.1 Let H be a Hilbert space and let $T_{\rho}: H \rightarrow H$ with $\operatorname{Fix}\left(T_{\rho}\right) \neq \emptyset$. Then T_{ρ} is a ρ-strongly quasi-nonexpansive mapping with $\rho \geq 0$ if and only if there exists a quasinonexpansive mapping T such that $T_{\rho}=\left(1-\frac{1}{1+\rho}\right) I+\frac{1}{1+\rho} T$ and $\operatorname{Fix}\left(T_{\rho}\right)=\operatorname{Fix}(T)$.

Proof Since the statement $\operatorname{Fix}\left(T_{\rho}\right)=\operatorname{Fix}(T)$ is evident, we only prove that T_{ρ} is a ρ strongly quasi-nonexpansive mapping if and only if T is a quasi-nonexpansive mapping.
(Necessity) For all $x \in H$ and for all $p \in \operatorname{Fix}(T)$,

$$
\begin{aligned}
\left\|T_{\rho} x-p\right\|^{2}= & \left\|\left(1-\frac{1}{1+\rho}\right)(x-p)+\frac{1}{1+\rho}(T x-p)\right\|^{2} \\
= & \left(1-\frac{1}{1+\rho}\right)\|x-p\|^{2}+\frac{1}{1+\rho}\|T x-p\|^{2} \\
& -\left(1-\frac{1}{1+\rho}\right)\left(\frac{1}{1+\rho}\right)\|T x-x\|^{2}
\end{aligned}
$$

$$
\begin{align*}
= & \left(1-\frac{1}{1+\rho}\right)\|x-p\|^{2}+\frac{1}{1+\rho}\|T x-p\|^{2} \\
& -\rho\left\|\left(\left(1-\frac{1}{1+\rho}\right) x+\frac{1}{1+\rho} T x\right)-x\right\|^{2} \\
= & \left(1-\frac{1}{1+\rho}\right)\|x-p\|^{2}+\frac{1}{1+\rho}\|T x-p\|^{2}-\rho\left\|T_{\rho} x-x\right\|^{2} . \tag{2.1}
\end{align*}
$$

Since T_{ρ} is ρ-strongly quasi-nonexpansive, we have

$$
\begin{equation*}
\left\|T_{\rho} x-p\right\|^{2} \leq\|x-p\|^{2}-\rho\left\|T_{\rho} x-x\right\|^{2} . \tag{2.2}
\end{equation*}
$$

It follows from (2.1) and (2.2) that

$$
\|T x-p\|^{2} \leq\|x-p\|^{2},
$$

i.e., T is a quasi-nonexpansive mapping.
(Sufficiency) Since

$$
\|T x-p\| \leq\|x-p\|,
$$

then

$$
\begin{aligned}
\left\|T_{\rho} x-p\right\|^{2}= & \left\|\left(1-\frac{1}{1+\rho}\right)(x-p)+\frac{1}{1+\rho}(T x-p)\right\|^{2} \\
= & \left(1-\frac{1}{1+\rho}\right)\|x-p\|^{2}+\frac{1}{1+\rho}\|T x-p\|^{2} \\
& -\left(1-\frac{1}{1+\rho}\right)\left(\frac{1}{1+\rho}\right)\|T x-x\|^{2} \\
\leq & \left(1-\frac{1}{1+\rho}\right)\|x-p\|^{2}+\frac{1}{1+\rho}\|x-p\|^{2} \\
& -\rho\left\|\left(\frac{1}{1+\rho} T x+\left(1-\frac{1}{1+\rho}\right) x\right)-x\right\|^{2} \\
= & \|x-p\|^{2}-\rho\left\|T_{\rho} x-x\right\|^{2},
\end{aligned}
$$

i.e., T_{ρ} is a ρ-strongly quasi-nonexpansive mapping.

Lemma 2.2 Let $F: H \rightarrow H$ be L-Lipschitz continuous and η-strongly monotone with $L>0$ and $\eta>0$. Then, for all $\mu \in\left(0, \frac{2 \eta}{L^{2}}\right)$ and $\beta \in(0,1), I-\beta \mu F$ is $(1-\beta \tau)$-contraction, where $\tau=\mu\left(\eta-\frac{1}{2} \mu L^{2}\right)$.

Proof By assumption, it is easy to see that $\eta \leq L$. Since $\mu \in\left(0, \frac{2 \eta}{L^{2}}\right), \tau=\mu\left(\eta-\frac{1}{2} \mu L^{2}\right)>0$, we have $1-\beta \tau<1$. On the other hand, $\tau=\mu\left(\eta-\frac{1}{2} \mu L^{2}\right)=-\frac{1}{2} L^{2}\left(\mu-\frac{\eta}{L^{2}}\right)^{2}+\frac{\eta^{2}}{2 L^{2}} \leq \frac{\eta^{2}}{2 L^{2}} \leq \frac{1}{2}$. Hence $1-\beta \tau>0$.

For all $x, y \in H$,

$$
\begin{aligned}
\|(I-\beta \mu F) x-(I-\beta \mu F) y\|^{2} & =\|(x-y)-\beta \mu(F x-F y)\|^{2} \\
& =\|x-y\|^{2}+\beta^{2} \mu^{2}\|F x-F y\|^{2}-2 \beta \mu\langle x-y, F x-F y\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \leq\|x-y\|^{2}+\beta^{2} \mu^{2} L^{2}\|x-y\|^{2}-2 \beta \mu \eta\|x-y\|^{2} \\
& =\left[\left(1-2 \beta \tau+\beta^{2} \tau^{2}\right)-\beta^{2} \tau^{2}-\beta \mu^{2} L^{2}+\beta^{2} \mu^{2} L^{2}\right]\|x-y\|^{2} \\
& \leq(1-\beta \tau)^{2}\|x-y\|^{2},
\end{aligned}
$$

i.e.,

$$
\|(I-\beta \mu F) x-(I-\beta \mu F) y\| \leq(1-\beta \tau)\|x-y\| .
$$

Lemma 2.3 ([12]) Let C be a nonempty subset of H, and let $T_{1}, T_{2}: C \rightarrow C$ be quasinonexpansive operators. Suppose that either T_{1} or T_{2} is strictly quasi-nonexpansive, and $\operatorname{Fix}\left(T_{1}\right) \cap \operatorname{Fix}\left(T_{2}\right) \neq \emptyset$. Then the following hold:
(i) $\operatorname{Fix}\left(T_{1} T_{2}\right)=\operatorname{Fix}\left(T_{1}\right) \cap \operatorname{Fix}\left(T_{2}\right)$;
(ii) $T_{1} T_{2}$ is quasi-nonexpansive;
(iii) When both T_{1} and T_{2} are strictly quasi-nonexpansive, $T_{1} T_{2}$ is strictly quasi-nonexpansive.

Lemma 2.4 ([12]) Let C be a nonempty subset of a Hilbert space H, and let $T: C \rightarrow H$ be nonexpansive operators, and $\alpha \in(0,1)$. Then the following are equivalent:
(i) T is averaged;
(ii) $\|T x-T y\|^{2} \leq\|x-y\|^{2}-\frac{1-\alpha}{\alpha}\|(I-T) x-(I-T) y\|^{2}, \forall x, y \in C$.

Lemma 2.5 Let C be a nonempty subset of H, and let $T_{1}: C \rightarrow C$ be a quasi-nonexpansive mapping and $T_{2}: C \rightarrow C$ be a firmly nonexpansive mapping such that $\operatorname{Fix}\left(T_{1}\right) \cap$ $\operatorname{Fix}\left(T_{2}\right) \neq \emptyset$. Then $T_{1} T_{2}$ is quasi-nonexpansive and $\operatorname{Fix}\left(T_{1} T_{2}\right)=\operatorname{Fix}\left(T_{1}\right) \cap \operatorname{Fix}\left(T_{2}\right)$.

Proof Since each firmly nonexpansive mapping is nonexpansive and $\frac{1}{2}$-averaged, by Lemma 2.4, for all $p \in \operatorname{Fix}\left(T_{2}\right)$ and for all $x \in C \backslash \operatorname{Fix}\left(T_{2}\right)$, we have

$$
\left\|T_{2} x-p\right\|^{2} \leq\|x-p\|^{2}-\left\|x-T_{2} x\right\|^{2}<\|x-p\|^{2},
$$

i.e., T_{2} is strictly quasi-nonexpansive. Then Lemma 2.5 follows from Lemma 2.3.

Recall that the metric projection P_{K} from a Hilbert space H to a closed convex subset K of H is defined as follows: for each $x \in H$, there exists a unique element $P_{K} x \in K$ such that

$$
\left\|x-P_{K} x\right\|=\inf \{\|x-y\|: y \in K\} .
$$

Lemma 2.6 ([13]) Let K be a closed convex subset of H. Given $x \in H$ and $z \in K$. Then $z=P_{K} x$ if and only if there holds the inequality

$$
\langle z-x, y-z\rangle \geq 0, \quad \forall y \in K .
$$

Lemma 2.7 ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a nonexpansive self-mapping on C. Then $I-T$ is demiclosed, i.e., for each sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $x \in C$ with $x_{n} \rightharpoonup x$ and $(I-T) x_{n} \rightarrow 0$ implies $(I-T) x=0$.

Lemma 2.8 ([15]) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \sigma_{n}+\gamma_{n}, \quad n \geq 0,
$$

with

- $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}} \subset[0,1], \sum_{n=0}^{\infty} \alpha_{n}=\infty ;$
- $\lim \sup _{n \rightarrow \infty} \sigma_{n} \leq 0$;
- $\gamma_{n} \geq 0, \sum_{n=0}^{\infty} \gamma_{n}<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.9 ([16]) Let $\left\{\Gamma_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of real numbers that does not decrease at infinity, in the sense that there exists a subsequence $\left\{\Gamma_{n_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{\Gamma_{n}\right\}_{n \in \mathbb{N}}$ which satisfies $\Gamma_{n_{j}}<$ $\Gamma_{n_{j}+1}$ for all $j \geq 0$. Also consider the sequence of integers $\{\delta(n)\}_{n \in \mathbb{N}}$ defined by

$$
\delta(n)=\max \left\{k \leq n: \Gamma_{k}<\Gamma_{k+1}\right\} .
$$

Then $\{\delta(n)\}_{n \in \mathbb{N}}$ is a nondecreasing sequence verifying $\lim _{n \rightarrow \infty} \delta(n)=\infty$, and for all $n \geq n_{0}$, it holds that $\Gamma_{\delta(n)}<\Gamma_{\delta(n)+1}$ and we have

$$
\Gamma_{n}<\Gamma_{\delta(n)+1} .
$$

3 General viscosity approximation methods for quasi-nonexpansive mappings

Let $f: H \rightarrow H$ be θ-contractive with $\theta \in(0,1), F: H \rightarrow H$ be L-Lipschitz continuous and η-strongly monotone with $L>0$, and $\eta>0$. Choose $\mu \in\left(0, \frac{2 \eta}{L^{2}}\right)$ and $\theta \in(0, \tau)$, where $\tau=$ $\mu\left(\eta-\frac{1}{2} \mu L^{2}\right)$. Throughout this section, we use these notations and assumptions unless specified otherwise.

Theorem 3.1 Let $T: H \rightarrow H$ be a quasi-nonexpansive mapping such that $\operatorname{Fix}(T) \neq \emptyset$, with $I-T$ demiclosed at 0 . For any given $x_{0} \in H$, the iterative sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset H$ is generated by

$$
\begin{align*}
& v_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}, \tag{3.1}\\
& x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \mu F\right) v_{n},
\end{align*}
$$

where $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ are two sequences in $(0,1)$ satisfying the following conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(iii) $\lim \sup _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0$.

Then the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ defined by (3.1) converges strongly to $p \in \operatorname{Fix}(T)$, which is the unique solution in $\operatorname{Fix}(T)$ of the variational inequality (VI)

$$
\begin{equation*}
\langle\mu F(p)-f(p), x-p\rangle \geq 0, \quad \forall x \in \operatorname{Fix}(T) \tag{3.2}
\end{equation*}
$$

Proof Clearly, $\operatorname{Fix}(T)$ is closed and convex.
Step 1 . There exists unique $p \in \operatorname{Fix}(T)$ such that

$$
\langle\mu F(p)-f(p), x-p\rangle \geq 0, \quad \forall x \in \operatorname{Fix}(T)
$$

Take $\lambda=\frac{\mu \eta-\theta}{(\mu L+\theta)^{2}}$, for $\forall x, y \in H$, we have

$$
\begin{aligned}
&\|(I-\lambda(\mu F-f)) x-(I-\lambda(\mu F-f)) y\|^{2} \\
&=\|(x-y)-\lambda((\mu F-f) x-(\mu F-f) y)\|^{2} \\
&=\|x-y\|^{2}+\lambda^{2}\|(\mu F-f) x-(\mu F-f) y\|^{2} \\
&-2 \lambda\langle x-y,(\mu F-f) x-(\mu F-f) y\rangle \\
&=\|x-y\|^{2}+\lambda^{2}\|\mu(F(x)-F(y))-(f(x)-f(y))\|^{2} \\
&-2 \lambda \mu\langle x-y, F(x)-F(y)\rangle+2 \lambda\langle x-y, f(x)-f(y)\rangle \\
& \leq\|x-y\|^{2}+\lambda^{2}(\mu\|F(x)-F(y)\|+\|f(x)-f(y)\|)^{2} \\
&-2 \lambda \mu \eta\|x-y\|^{2}+2 \lambda\|x-y\| \cdot\|f(x)-f(y)\| \\
& \leq {\left[1+\lambda^{2}(\mu L+\theta)^{2}-2 \lambda(\mu \eta-\theta)\right]\|x-y\|^{2} } \\
&= {[1-\lambda(\mu \eta-\theta)]\|x-y\|^{2}, }
\end{aligned}
$$

i.e., $I-\lambda(\mu F-f)$ is a contractive mapping. So is $P_{\mathrm{Fix}(T)}(I-\lambda(\mu F-f))$. Hence, there exists unique $p \in \operatorname{Fix}(T)$ such that $p=P_{\operatorname{Fix}(T)}(I-\lambda(\mu F-f)) p$, then

$$
\langle\mu F(p)-f(p), x-p\rangle \geq 0, \quad \forall x \in \operatorname{Fix}(T)
$$

Step 2. $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a bounded sequence.
Let $p \in \operatorname{Fix}(T)$ be the unique solution of the variational inequality (3.2). Then $T p=p$ and

$$
\begin{equation*}
\|T p-p\| \leq\|x-p\| \tag{3.3}
\end{equation*}
$$

From Lemma 2.2 and (3.3), it follows that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|= & \left\|\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \mu F\right) v_{n}-p\right\| \\
= & \left\|\alpha_{n}\left(f\left(x_{n}\right)-f(p)\right)+\left(I-\alpha_{n} \mu F\right) v_{n}-\left(I-\alpha_{n} \mu F\right) p+\alpha_{n}(f(p)-\mu F(p))\right\| \\
\leq & \alpha_{n} \theta\left\|x_{n}-p\right\|+\left(1-\alpha_{n} \tau\right)\left\|v_{n}-p\right\|+\alpha_{n}\|f(p)-\mu F(p)\| \\
= & \alpha_{n} \theta\left\|x_{n}-p\right\|+\left(1-\alpha_{n} \tau\right)\left\|\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}-p\right\|+\alpha_{n}\|f(p)-\mu F(p)\| \\
\leq & \alpha_{n} \theta\left\|x_{n}-p\right\|+\left(1-\alpha_{n} \tau\right)\left(\beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|T x_{n}-p\right\|\right) \\
& +\alpha_{n}\|f(p)-\mu F(p)\| \\
\leq & \alpha_{n} \theta\left\|x_{n}-p\right\|+\left(1-\alpha_{n} \tau\right)\left(\beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|x_{n}-p\right\|\right) \\
& +\alpha_{n}\|f(p)-\mu F(p)\| \\
= & \left(1-\alpha_{n}(\tau-\theta)\right)\left\|x_{n}-p\right\|+\alpha_{n}(\tau-\theta) \frac{\|f(p)-\mu F(p)\|}{\tau-\theta} \\
\leq & \max \left\{\left\|x_{n}-p\right\|, \frac{\|f(p)-\mu F(p)\|}{\tau-\theta}\right\} .
\end{aligned}
$$

Then, by induction on $n,\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a bounded sequence. So are $\left\{v_{n}\right\}_{n \in \mathbb{N}},\left\{f\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$, and $\left\{F\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$.

Step 3. $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0$.
From the well-known inequality

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle
$$

which holds for all $x, y \in H$, it follows that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left\|\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \mu F\right) v_{n}-p\right\|^{2} \\
= & \left\|\alpha_{n}\left(f\left(x_{n}\right)-\mu F(p)\right)+\left(I-\alpha_{n} \mu F\right) v_{n}-\left(I-\alpha_{n} \mu F\right) p\right\|^{2} \\
\leq & \left\|\left(I-\alpha_{n} \mu F\right) v_{n}-\left(I-\alpha_{n} \mu F\right) p\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-\mu F(p), x_{n+1}-p\right\rangle \\
\leq & \left(1-\alpha_{n} \tau\right)^{2}\left\|v_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-f(p), x_{n+1}-p\right\rangle \\
& +2 \alpha_{n}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle \\
\leq & \left(1-\alpha_{n} \tau\right)^{2}\left\|\beta_{n}\left(x_{n}-p\right)+\left(1-\beta_{n}\right)\left(T x_{n}-p\right)\right\|^{2} \\
& +2 \alpha_{n}\left\|f\left(x_{n}\right)-f(p)\right\| \cdot\left\|x_{n+1}-p\right\|+2 \alpha_{n}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle \\
= & \left(1-\alpha_{n} \tau\right)^{2}\left(\beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|T x_{n}-p\right\|^{2}-\beta_{n}\left(1-\beta_{n}\right)\left\|T x_{n}-x_{n}\right\|^{2}\right) \\
& +2 \alpha_{n}\left\|f\left(x_{n}\right)-f(p)\right\| \cdot\left\|x_{n+1}-p\right\|+2 \alpha_{n}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle \\
\leq & \left(1-\alpha_{n} \tau\right)^{2}\left(\left\|x_{n}-p\right\|^{2}-\beta_{n}\left(1-\beta_{n}\right)\left\|T x_{n}-x_{n}\right\|^{2}\right) \\
& +\alpha_{n} \theta\left(\left\|x_{n}-p\right\|^{2}+\left\|x_{n+1}-p\right\|^{2}\right)+2 \alpha_{n}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle \\
= & \left(1-2 \alpha_{n} \tau+\alpha_{n} \theta\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}^{2} \tau^{2}\left\|x_{n}-p\right\|^{2}+\alpha_{n} \theta\left\|x_{n+1}-p\right\|^{2} \\
& -\left(1-\alpha_{n} \tau\right)^{2} \beta_{n}\left(1-\beta_{n}\right)\left\|T x_{n}-x_{n}\right\|^{2}+2 \alpha_{n}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle .
\end{aligned}
$$

Summarizing, we get that

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-\frac{2 \alpha_{n}(\tau-\theta)}{1-\alpha_{n} \theta}\right)\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}^{2} \tau^{2}}{1-\alpha_{n} \theta}\left\|x_{n}-p\right\|^{2} \\
& -\frac{\left(1-\alpha_{n} \tau\right)^{2} \beta_{n}\left(1-\beta_{n}\right)}{1-\alpha_{n} \theta}\left\|T x_{n}-x_{n}\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-\alpha_{n} \theta}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle . \tag{3.4}
\end{align*}
$$

Set $\Gamma_{n}=\left\|x_{n}-p\right\|^{2}$, neglecting the negative term $-\frac{\left(1-\alpha_{n} \tau\right)^{2} \beta_{n}\left(1-\beta_{n}\right)}{1-\alpha_{n} \theta}\left\|T x_{n}-x_{n}\right\|^{2}$ in the obtained relation, we get the following inequality:

$$
\begin{align*}
\Gamma_{n+1} \leq & \left(1-\frac{2 \alpha_{n}(\tau-\theta)}{1-\alpha_{n} \theta}\right) \Gamma_{n}+\frac{\alpha_{n}^{2} \tau^{2}}{1-\alpha_{n} \theta} \Gamma_{n} \\
& +\frac{2 \alpha_{n}}{1-\alpha_{n} \theta}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle \\
= & \left(1-\frac{2 \alpha_{n}(\tau-\theta)}{1-\alpha_{n} \theta}\right) \Gamma_{n}+\frac{2 \alpha_{n}(\tau-\theta)}{1-\alpha_{n} \theta} \frac{\frac{1}{2} \alpha_{n} \tau^{2} \Gamma_{n}}{\tau-\theta} \\
& +\frac{2 \alpha_{n}(\tau-\theta)}{1-\alpha_{n} \theta}\left[\frac{1}{\tau-\theta}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle\right] . \tag{3.5}
\end{align*}
$$

From relation (3.4) we also obtain

$$
\begin{equation*}
\frac{\left(1-\alpha_{n} \tau\right)^{2} \beta_{n}\left(1-\beta_{n}\right)}{1-\alpha_{n} \theta}\left\|T x_{n}-x_{n}\right\|^{2} \leq\left(\Gamma_{n}-\Gamma_{n+1}\right)+\alpha_{n} M, \tag{3.6}
\end{equation*}
$$

where $M=\sup _{n \in \mathbb{N}}\left\{\frac{\alpha_{n} \tau^{2}}{1-\alpha_{n} \theta} \Gamma_{n}+\frac{2}{1-\alpha_{n} \theta}\|\mu F(p)-f(p)\| \cdot\left\|x_{n+1}-p\right\|\right\}$.
Case 1: Suppose that there exists n_{0} such that $\left\{\Gamma_{n}\right\}_{n_{\geq n_{0}}}$ is nonincreasing, it is equal to $\Gamma_{n+1} \leq \Gamma_{n}$ for all $n \geq n_{0}$. It follows that $\lim _{n \rightarrow \infty} \Gamma_{n}$ exists, so we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\Gamma_{n}-\Gamma_{n+1}\right)=0 . \tag{3.7}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} \alpha_{n}=0$, and from (3.6), (3.7) we deduce that

$$
\begin{aligned}
0 & \leq \limsup _{n \rightarrow \infty} \frac{\left(1-\alpha_{n} \tau\right)^{2} \beta_{n}\left(1-\beta_{n}\right)}{1-\alpha_{n} \theta}\left\|T x_{n}-x_{n}\right\|^{2} \\
& \leq \limsup _{n \rightarrow \infty}\left(\left(\Gamma_{n}-\Gamma_{n+1}\right)+\alpha_{n} M\right)=0 .
\end{aligned}
$$

From assumption (iii), we obtain that

$$
\limsup _{n \rightarrow \infty} \frac{\left(1-\alpha_{n} \tau\right)^{2} \beta_{n}\left(1-\beta_{n}\right)}{1-\alpha_{n} \theta}>0 .
$$

Therefore we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0 \tag{3.8}
\end{equation*}
$$

In order to apply Xu's Lemma 2.8 to the sequence $a_{n}=\Gamma_{n}$, we show that

$$
\limsup _{n \rightarrow \infty}\left\langle f(p)-\mu F(p), x_{n}-p\right\rangle \leq 0
$$

where p is the unique solution of the variational inequality (3.2).
Since $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is bounded, there exists $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $x \in H$ such that $x_{n_{k}} \rightharpoonup x$ and

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\langle f(p)-\mu F(p), x_{n}-p\right\rangle & =\lim _{n \rightarrow \infty}\left\langle f(p)-\mu F(p), x_{n_{k}}-p\right\rangle \\
& =\langle f(p)-\mu F(p), x-p\rangle .
\end{aligned}
$$

From (3.8) and $I-T$ demiclosed at 0 , we know that $x \in \operatorname{Fix}(T)$. Since $p=P_{\operatorname{Fix}(T)}(I-$ $\lambda(\mu F-f)) p$ and $x \in \operatorname{Fix}(T)$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(p)-\mu F(p), x_{n}-p\right\rangle=\langle f(p)-\mu F(p), x-p\rangle \leq 0 . \tag{3.9}
\end{equation*}
$$

Set $\sigma_{n}=\frac{\frac{1}{2} \alpha_{n} \tau^{2} \Gamma_{n}}{\tau-\theta}+\frac{1}{\tau-\theta}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle$. Since $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is bounded, so is $\left\{\Gamma_{n}\right\}_{n \in \mathbb{N}}$. Equation (3.9) and assumption (i) imply $\lim \sup _{n \rightarrow \infty} \sigma_{n} \leq 0$. It follows from assumptions
(i) and (ii) that

$$
\lim _{n \rightarrow \infty} \frac{2 \alpha_{n}(\tau-\theta)}{1-\alpha_{n} \theta}=0, \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{2 \alpha_{n}(\tau-\theta)}{1-\alpha_{n} \theta}=\infty .
$$

Then $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0$ by Lemma 2.8.
Case 2: Suppose that there exists $\left\{n_{k}\right\}_{k \in \mathbb{N}}$ of $\{n\}_{n \in \mathbb{N}}$ such that $\left\|x_{n_{k}}-p\right\|<\left\|x_{n_{k}+1}-p\right\|$ for all $k \in \mathbb{N}$.

From Maingé's Lemma 2.9, there exists a nondecreasing sequence of integers $\{\delta(n)\}_{n \in \mathbb{N}}$ satisfying, for all $n \geq n_{0}$, the following:
(a) $\lim _{n \rightarrow \infty} \delta(n)=\infty$;
(b) $\left\|x_{\delta(n)}-p\right\|<\left\|x_{\delta(n)+1}-p\right\|$;
(c) $\left\|x_{n}-p\right\|<\left\|x_{\delta(n)+1}-p\right\|$.

From the last and relation (3.5), we have

$$
\begin{aligned}
0 & \leq \liminf _{n \rightarrow \infty}\left(\Gamma_{\delta(n)+1}-\Gamma_{\delta(n)}\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(\Gamma_{\delta(n)+1}-\Gamma_{\delta(n)}\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(\Gamma_{n+1}-\Gamma_{n}\right) \\
\leq & \limsup _{n \rightarrow \infty}\left\{\frac{2 \alpha_{n}(\tau-\theta)}{1-\alpha_{n} \theta} \frac{\frac{1}{2} \alpha_{n} \tau^{2} \Gamma_{n}}{\tau-\theta}\right. \\
& \left.+\frac{2 \alpha_{n}(\tau-\theta)}{1-\alpha_{n} \theta}\left[\frac{1}{\tau-\theta}\left\langle f(p)-\mu F(p), x_{n+1}-p\right\rangle\right]\right\}=0 .
\end{aligned}
$$

Hence it turns out that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\Gamma_{\delta(n)+1}-\Gamma_{\delta(n)}\right)=0 \tag{3.10}
\end{equation*}
$$

By (3.10), (3.6), and arguing as in case 1, we get

$$
\lim _{n \rightarrow \infty}\left\|T x_{\delta(n)}-x_{\delta(n)}\right\|=0
$$

Similar to Case 1, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(p)-\mu F(p), x_{\delta(n)+1}-p\right\rangle \leq 0 \tag{3.11}
\end{equation*}
$$

If we replace n with $\delta(n)$ in (3.5), by condition (b), we obtain

$$
\begin{aligned}
\Gamma_{\delta(n)+1} \leq & \left(1-\frac{2 \alpha_{\tau(n)}(\tau-\theta)}{1-\alpha_{\delta(n)} \theta}\right) \Gamma_{\delta(n)}+\frac{\alpha_{\delta(n)}^{2} \tau^{2}}{1-\alpha_{\delta(n)} \theta} \Gamma_{\delta(n)} \\
& +\frac{2 \alpha_{\delta(n)}}{1-\alpha_{\delta(n)} \theta}\left\langle f(p)-\mu F(p), x_{\delta(n)+1}-p\right\rangle \\
\leq & \left(1-\frac{2 \alpha_{\delta(n)}(\tau-\theta)}{1-\alpha_{\delta(n)} \theta}\right) \Gamma_{\delta(n)+1}+\frac{\alpha_{\delta(n)}^{2} \tau^{2}}{1-\alpha_{\delta(n)} \theta} \Gamma_{\delta(n)} \\
& +\frac{2 \alpha_{\delta(n)}}{1-\alpha_{\delta(n)} \theta}\left\langle f(p)-\mu F(p), x_{\delta(n)+1}-p\right\rangle,
\end{aligned}
$$

and also

$$
\begin{aligned}
\frac{2 \alpha_{\delta(n)}(\tau-\theta)}{1-\alpha_{\delta(n)} \theta} \Gamma_{\delta(n)+1} \leq & \frac{\alpha_{\delta(n)}^{2} \tau^{2}}{1-\alpha_{\delta(n)} \theta} \Gamma_{\delta(n)} \\
& +\frac{2 \alpha_{\delta(n)}}{1-\alpha_{\delta(n)}}\left\langle f(p)-\mu F(p), x_{\delta(n)+1}-p\right\rangle .
\end{aligned}
$$

Therefore dividing both sides of the obtained inequality by $\alpha_{\delta(n)}$, we have

$$
\begin{align*}
\frac{2(\tau-\theta)}{1-\alpha_{\delta(n)} \theta} \Gamma_{\delta(n)+1} \leq & \frac{\alpha_{\delta(n)} \tau^{2}}{1-\alpha_{\delta(n)} \theta} \Gamma_{\delta(n)} \\
& +\frac{2}{1-\alpha_{\delta(n)} \theta}\left\langle f(p)-\mu F(p), x_{\delta(n)+1}-p\right\rangle . \tag{3.12}
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} \alpha_{\delta(n)}=0$, by (3.11) and (3.12), we get $\lim _{n \rightarrow \infty}\left\|x_{\delta(n)}-p\right\|=0$. By condition (c), $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0$.

Corollary 3.2 Let $T_{\rho}: H \rightarrow H$ be a ρ-strongly quasi-nonexpansive mapping such that $\operatorname{Fix}\left(T_{\rho}\right) \neq \emptyset$, with $\rho>0$ and $I-T_{\rho}$ demiclosed at 0 . For any given $x_{0} \in H$, the iterative sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset H$ is generated by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \mu F\right) T_{\rho} x_{n}, \tag{3.13}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ are two sequences in $(0,1)$ satisfying the following conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$.

Then the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, defined by (3.13), converges strongly to $p \in \operatorname{Fix}\left(T_{\rho}\right)$, which is the unique solution in $\operatorname{Fix}\left(T_{\rho}\right)$ of the variational inequality (VI)

$$
\langle\mu F(p)-f(p), x-p\rangle \geq 0, \quad \forall x \in \operatorname{Fix}\left(T_{\rho}\right)
$$

Proof By Lemma 2.1, there exists a quasi-nonexpansive mapping T such that $T_{\rho}=(1-$ $\left.\frac{1}{1+\rho}\right) I+\frac{1}{1+\rho} T$ and $\operatorname{Fix}\left(T_{\rho}\right)=\operatorname{Fix}(T) . I-T_{\rho}$ is demiclosed at 0 , so is $I-T$. Take $\beta_{n}=1-\frac{1}{1+\rho}$ for all $n \in \mathbb{N}$, since $\rho>0$, then $\beta_{n}\left(1-\beta_{n}\right)=\frac{\rho}{(1+\rho)^{2}}>0$. Then Corollary 3.2 follows from Theorem 3.1.

4 Split equality fixed point problems

Let H_{1} and H_{2} be two real Hilbert spaces, the product $H=H_{1} \times H_{2}$ is a Hilbert space with inner product and norm given by

$$
\langle x, y\rangle=\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle, \quad \text { and } \quad\|x\|^{2}=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}
$$

for any $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right] \in H$.
In this section we always assume that
(1) H_{1}, H_{2}, H_{3} are three real Hilbert spaces and $H=H_{1} \times H_{2}$;
(2) $T=\left[\begin{array}{c}T_{1} \\ T_{2}\end{array}\right]$, where $T_{i}, i=1,2$, is a one-to-one and quasi-nonexpansive mapping;
(3) $G=\left[A_{1}-A_{2}\right]$ and $G^{*} G=\left[\begin{array}{cc}A_{1}^{*} A_{2} & -A_{2}^{*} A_{1} \\ -A_{1}^{*} A_{2} & A_{2}^{*} A_{2}\end{array}\right]$, where $A_{i}, i=1,2$ is a bounded linear operator from H_{i} into H_{3} and A_{i}^{*} is the adjoint of A_{i};
(4) $f=\left[\begin{array}{l}f_{1} \\ f_{2}\end{array}\right]$, where $f_{i}, i=1,2$ is a θ-contraction on H_{i} with $\theta \in(0,1)$;
(5) $F=\left[\begin{array}{l}F_{1} \\ F_{2}\end{array}\right]$, where $F_{i}, i=1,2$, is L-Lipschitz continuous and η-strongly monotone on H_{i} with $L>0$, and $\eta>0$.

Lemma 4.1 ([17]) Let $U=I-\lambda G^{*} G$, where $0<\lambda<2 / \rho\left(G^{*} G\right)$ with $\rho\left(G^{*} G\right)$ being the spectral radius of the self-adjoint operator $G^{*} G$ on H. Then we have the following result:
(1) $\|U\| \leq 1$ (i.e., U is nonexpansive) and averaged;
(2) $\operatorname{Fix}(U)=\left\{x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in H: A_{1} x_{1}=A_{2} x_{2}\right\}, \operatorname{Fix}\left(P_{C} U\right)=\operatorname{Fix}\left(P_{C}\right) \cap \operatorname{Fix}(U)$.

Theorem 4.2 Let $H_{1}, H_{2}, H_{3}, H, T_{1}, T_{2}, T, A_{1}, A_{2}, G, G^{*} G, f_{1}, f_{2}, f, F_{1}, F_{2}, F$ satisfy the above conditions (1)-(5). For any given $x_{0} \in H$, the iterative sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}=\left[\begin{array}{l}x_{1, n} \\ x_{2, n}\end{array}\right]_{n \in \mathbb{N}} \subset$ H is generated by

$$
\begin{align*}
& v_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T\left(I-\lambda G^{*} G\right) x_{n}, \tag{4.1}\\
& x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \mu F\right) v_{n},
\end{align*}
$$

or its equivalent form

$$
\begin{aligned}
& v_{1, n}=\beta_{n} x_{1, n}+\left(1-\beta_{n}\right) T_{1}\left(x_{1, n}-\lambda A_{1}^{*}\left(A_{1} x_{1, n}-A_{2} x_{2, n}\right)\right), \\
& v_{2, n}=\beta_{n} x_{2, n}+\left(1-\beta_{n}\right) T_{2}\left(x_{2, n}+\lambda A_{2}^{*}\left(A_{1} x_{1, n}-A_{2} x_{2, n}\right)\right), \\
& x_{1, n+1}=\alpha_{n} f_{1}\left(x_{1, n}\right)+\left(I_{1}-\alpha_{n} \mu F_{1}\right) v_{1, n}, \\
& x_{2, n+1}=\alpha_{n} f_{2}\left(x_{2, n}\right)+\left(I_{2}-\alpha_{n} \mu F_{2}\right) v_{2, n},
\end{aligned}
$$

where $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ are two sequences in (0,1). If the solution set $\Gamma=\left\{x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in H\right.$: $x_{1} \in \operatorname{Fix}\left(T_{1}\right), x_{2} \in \operatorname{Fix}\left(T_{2}\right)$ such that $\left.A_{1} x_{1}=A_{2} x_{2}\right\}$ of $(S E F P)$ is nonempty and the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(iii) $\lim \sup _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0$;
(iv) $\lambda \in\left(0, \frac{2}{R}\right)$, where $R=\|G\|^{2}$;
(v) for each $i=1,2, T_{i}$ is demiclosed;
(vi) $\mu \in\left(0, \frac{2 \eta}{L^{2}}\right)$ and $\theta \in(0, \tau)$, where $\tau=\mu\left(\eta-\frac{1}{2} \mu L^{2}\right)$.

Then the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, defined by (4.1), converges strongly to $p \in \Gamma$, which is the unique solution in Γ of the variational inequality (VI)

$$
\begin{equation*}
\langle\mu F(p)-f(p), x-p\rangle \geq 0, \quad \forall x \in \Gamma . \tag{4.2}
\end{equation*}
$$

Proof For each $i=1,2$, since f_{i} is θ-contraction, F_{i} is L-Lipschitz continuous and η strongly monotone on H_{i} with $L>0$ and $\eta>0$, and T_{i} is quasi-nonexpansive, we have

$$
\begin{aligned}
\|f(x)-f(y)\|^{2} & =\left\|f_{1}\left(x_{1}\right)-f_{1}\left(y_{1}\right)\right\|^{2}+\left\|f_{2}\left(x_{2}\right)-f_{2}\left(y_{2}\right)\right\|^{2} \\
& \leq \theta^{2}\left(\left\|x_{1}-y_{1}\right\|^{2}+\left\|x_{2}-y_{2}\right\|^{2}\right) \\
& =\theta^{2}\|x-y\|^{2},
\end{aligned}
$$

i.e.,

$$
\|f(x)-f(y)\| \leq \theta\|x-y\|
$$

for all $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right] \in H$. This shows that f is a θ-contraction. Similarly, F is L-Lipschitz continuous and η-strongly monotone, and T is a quasi-nonexpansive mapping.
Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}=\left[\begin{array}{l}x_{1, n} \\ x_{2, n}\end{array}\right]_{n \in \mathbb{N}}$ be a sequence in $H=H_{1} \times H_{2}$ such that $x_{n} \rightharpoonup x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$. Then, for each $i=1,2$, we have $\lim _{n \rightarrow \infty}\left\|T_{i} x_{i, n}-x_{i, n}\right\|=0$, and

$$
\left\langle x_{n}-x, y\right\rangle=\left\langle x_{1, n}-x_{1}, y_{1}\right\rangle+\left\langle x_{2, n}-x_{2}, y_{2}\right\rangle \rightarrow 0
$$

for each $y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right] \in H$. For each $i=1,2$, let $y_{i} \in H_{i}$ and $y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right] \in H$ with $y_{j}=0(j \neq i)$. Then $\lim _{n \rightarrow \infty}\left\langle x_{n}-x, y\right\rangle=0$ implies $\lim _{n \rightarrow \infty}\left\langle x_{i, n}-x_{i}, y_{i}\right\rangle=0$ and $x_{i, n} \rightharpoonup x_{i}$.

For each $i=1,2$, since $T_{i}: H_{i} \rightarrow H_{i}$ is demiclosed, $x_{i} \in \operatorname{Fix}\left(T_{i}\right)$. It is easy to see that $x \in \operatorname{Fix}(T) \neq \emptyset$. Hence T is demiclosed.

By Lemma 4.1, $U=I-\lambda G^{*} G$ is a $\frac{1-\alpha}{\alpha}$-strongly quasi-nonexpansive mapping for some $\alpha>0$, and $\operatorname{Fix}(U)=\left\{x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in H: A_{1} x_{1}=A_{2} x_{2}\right\}$. Since $\Gamma \neq \emptyset, U$ is a strictly quasinonexpansive mapping. By Lemma 2.3, $\operatorname{Fix}(T U)=\operatorname{Fix}(T) \cap \operatorname{Fix}(U)=\Gamma \neq \emptyset$.
Then Theorem 4.2 follows from Theorem 3.1.

5 Applications

In this section, we always assume that $H_{1}, H_{2}, H_{3}, H, T_{1}, T_{2}, T, A_{1}, A_{2}, G, G * G, f_{1}, f_{2}, f$, F_{1}, F_{2}, F satisfy conditions (1)-(5) in Sect. 4.

5.1 Split equality common fixed point problems

The split equality common fixed point problem (SECFPP) is the problem of finding

$$
\begin{align*}
& x_{1} \in H_{1}, x_{2} \in H_{2} \text { such that } x_{1} \in \operatorname{Fix}\left(T_{1}\right) \cap \operatorname{Fix}\left(S_{1}\right), \tag{5.1}\\
& x_{2} \in \operatorname{Fix}\left(T_{2}\right) \cap \operatorname{Fix}\left(S_{2}\right), \text { and } A_{1} x_{1}=A_{2} x_{2},
\end{align*}
$$

where $T_{i}, i=1,2$, is a quasi-nonexpansive mapping on H_{i} and $S_{i}, i=1,2$, is a firmly nonexpansive mapping on H_{i}, respectively. Its solution set is denoted by $\Gamma_{\mathrm{CF}}=\left\{x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in\right.$ $H: x_{1} \in \operatorname{Fix}\left(T_{1}\right) \cap \operatorname{Fix}\left(S_{1}\right), x_{2} \in \operatorname{Fix}\left(T_{2}\right) \cap \operatorname{Fix}\left(S_{2}\right)$ such that $\left.A_{1} x_{1}=A_{2} x_{2}\right\}$, then we have the following result.

Theorem 5.1 Let $S=\left[\begin{array}{l}S_{1} \\ S_{2}\end{array}\right]$, where $S_{i}, i=1,2$, is a firmly nonexpansive mapping on H_{i}. For any given $x_{0} \in H$, the iterative sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}=\left[\begin{array}{l}x_{1, n} \\ x_{2, n}\end{array}\right]_{n \in \mathbb{N}} \subset H$ is generated by

$$
\begin{align*}
& u_{n}=S\left(I-\lambda G^{*} G\right) x_{n}, \\
& v_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T u_{n}, \tag{5.2}\\
& x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \mu F\right) v_{n},
\end{align*}
$$

where $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ are two sequences in $(0,1)$. If the solution set Γ_{CF} is nonempty and the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(iii) $\lim \sup _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0$;
(iv) $\lambda \in\left(0, \frac{2}{R}\right)$, where $R=\|G\|^{2}$;
(v) for each $i=1,2, T_{i}$ is demiclosed;
(vi) $\mu \in\left(0, \frac{2 \eta}{L^{2}}\right)$ and $\theta \in(0, \tau)$, where $\tau=\mu\left(\eta-\frac{1}{2} \mu L^{2}\right)$.

Then the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, defined by (5.2), converges strongly to $p \in \Gamma_{\mathrm{CF}}$, which is the unique solution in $\Gamma_{\text {CF }}$ of the variational inequality (VI)

$$
\langle\mu F(p)-f(p), x-p\rangle \geq 0, \quad \forall x \in \Gamma_{\mathrm{CF}}
$$

Proof For each $i=1,2, S_{i}$ is a firmly nonexpansive mapping on H_{i}, it is easy to verify that S is a firmly nonexpansive mapping on H. Since $\Gamma_{\mathrm{CF}} \neq \emptyset, S$ is a strictly quasi-nonexpansive mapping on H. By Lemma 2.3, $\operatorname{Fix}(T S)=\operatorname{Fix}(T) \cap \operatorname{Fix}(S)$ and $T S$ is a quasi-nonexpansive mapping. Then Theorem 5.1 follows from Theorem 4.2.

5.2 Split equality null point problems and split equality fixed point problems

Let \mathcal{M} be a set-valued mapping of H into 2^{H}. The effective domain of \mathcal{M} is denoted by $\operatorname{dom}(\mathcal{M})$; that is, $\operatorname{dom}(\mathcal{M})=\{x \in H: \mathcal{M} x \neq \emptyset\}$. A set-valued mapping \mathcal{M} is said to be a monotone operator on H if $\langle u-v, x-y\rangle \geq 0$ for all $x, y \in \operatorname{dom}(M), u \in \mathcal{M} x$, and $v \in \mathcal{M} y$. A monotone operator \mathcal{M} on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H.
The split equality null point problems and split equality fixed point problems are the problem of finding

$$
\begin{equation*}
x_{1} \in \operatorname{Fix}\left(T_{1}\right) \cap \mathcal{M}_{1}^{-1}(0), x_{2} \in \operatorname{Fix}\left(T_{2}\right) \cap \mathcal{M}_{2}^{-1}(0) \text { such that } A_{1} x_{1}=A_{2} x_{2}, \tag{5.3}
\end{equation*}
$$

where $T_{i}, i=1,2$ is a quasi-nonexpansive mapping on H_{i}, and $\mathcal{M}_{i}, i=1,2$, is a setvalued maximal monotone operator of H_{i} into $2^{H_{i}}$ with $r>0$, respectively. Its solution set is denoted by $\Gamma_{N F}=\left\{x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in H: x_{1} \in \operatorname{Fix}\left(T_{1}\right) \cap \mathcal{M}_{1}^{-1}(0), x_{2} \in \operatorname{Fix}\left(T_{2}\right) \cap\right.$ $\mathcal{M}_{2}^{-1}(0)$ such that $\left.A_{1} x_{1}=A_{2} x_{2}\right\}$.

For a maximal monotone operator \mathcal{M} on H and $r>0$, we may define a single-valued operator $J_{r}^{\mathcal{M}}=(I+r \mathcal{M})^{-1}: H \rightarrow \operatorname{dom}(\mathcal{M})$, which is called the resolvent of \mathcal{M} for r. From Chuang [18] and Chang [19], we know that the associated resolvent mapping $J_{r}^{\mathcal{M}}$ is a firmly nonexpansive mapping, and

$$
x \in \mathcal{M}^{-1}(0) \quad \Leftrightarrow \quad x \in \operatorname{Fix}\left(J_{r}^{\mathcal{M}}\right)
$$

This implies that the split equality null point problems and split equality fixed point problems (5.3) are equivalent to SECFPP (5.1). Then the following theorem can be obtained from Theorem 5.1 immediately.

Theorem 5.2 Let $J_{r}^{\mathcal{M}}=\left[\begin{array}{c}J_{r}^{\mathcal{M}_{1}} \\ J_{r}^{\mathcal{M}_{2}}\end{array}\right]$, where $\mathcal{M}_{i}, i=1,2$, is a set-valued maximal monotone operator of H_{i} into $2^{H_{i}}, J_{r}^{\mathcal{M}_{i}}$ is the associated resolvent of \mathcal{M}_{i} with $r>0$, respectively. For any
given $x_{0} \in H$, the iterative sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}=\left[\begin{array}{l}x_{1, n} \\ x_{2}, n\end{array}\right]_{n \in \mathbb{N}} \subset H$ is generated by

$$
\begin{align*}
& u_{n}=J_{r}^{\mathcal{M}}\left(I-\lambda G^{*} G\right) x_{n} \\
& v_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T u_{n} \tag{5.4}\\
& x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \mu F\right) v_{n}
\end{align*}
$$

where $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ are two sequences in $(0,1)$. If the solution set $\Gamma_{N F}$ is nonempty and the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(iii) $\lim \sup _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0$;
(iv) $\lambda \in\left(0, \frac{2}{R}\right)$, where $R=\|G\|^{2}$;
(v) for each $i=1,2, T_{i}$ is demiclosed;
(vi) $\mu \in\left(0, \frac{2 \eta}{L^{2}}\right)$ and $\theta \in(0, \tau)$, where $\tau=\mu\left(\eta-\frac{1}{2} \mu L^{2}\right)$.

Then the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, defined by (5.4), converges strongly to $p \in \Gamma_{N F}$, which is the unique solution in $\Gamma_{N F}$ of the variational inequality (VI)

$$
\langle\mu F(p)-f(p), x-p\rangle \geq 0, \quad \forall x \in \Gamma_{N F} .
$$

5.3 Split equality optimization problems and split equality fixed point problems

Let $H_{i}, i=1,2,3$, be a real Hilbert space. Let $g_{i}: H_{i} \rightarrow \mathbb{R}, i=1,2$, be a proper, convex, and lower semi-continuous function, and $A_{i}: H_{i} \rightarrow H_{3}, i=1,2$, be a bounded linear operator.
The split equality optimization problem (SEOP) is the problem of finding

$$
\begin{align*}
& x_{1} \in H_{1}, x_{2} \in H_{2} \text { such that } g_{1}\left(x_{1}\right)=\min _{y \in H_{1}} g_{1}(y), \tag{5.5}\\
& g_{2}\left(x_{2}\right)=\min _{y \in H_{2}} g_{2}(y), \text { and } A_{1} x_{1}=A_{2} x_{2} .
\end{align*}
$$

The split equality optimization problem and split equality fixed point problems are the problem of finding

$$
\begin{align*}
& x_{1} \in \operatorname{Fix}\left(T_{1}\right), x_{2} \in \operatorname{Fix}\left(T_{2}\right) \text { such that } g_{1}\left(x_{1}\right)=\min _{y \in H_{1}} g_{1}(y), \tag{5.6}\\
& g_{2}\left(x_{2}\right)=\min _{y \in H_{2}} g_{2}(y) \text { and } A_{1} x_{1}=A_{2} x_{2},
\end{align*}
$$

where $T_{i}, i=1,2$, is a quasi-nonexpansive mapping on H_{i}. The solution set of (5.6) is denoted by $\Gamma_{\mathrm{OF}}=\left\{x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in H: x_{1} \in \operatorname{Fix}\left(T_{1}\right), x_{2} \in \operatorname{Fix}\left(T_{2}\right)\right.$ such that $g_{1}\left(x_{1}\right)=\min _{y \in H_{1}} g_{1}(y)$, $g_{2}\left(x_{2}\right)=\min _{y \in H_{2}} g_{2}(y)$, and $\left.A_{1} x_{1}=A_{2} x_{2}\right\}$.

The subdifferential of $g_{i}, i=1,2$, at x is the set

$$
\partial g_{i}(x)=\left\{u \in H_{i}: g_{i}(y) \geq g_{i}(x)+\langle u, y-x\rangle, \forall y \in H_{i}\right\} .
$$

Denoted by $\partial g_{i}=\mathcal{M}_{i}, i=1,2$, is a maximal monotone mapping, so we can define the resolvent $J_{r}^{\mathcal{M}_{i}}$, where $r>0$. Since x_{1} and x_{2} are a minimum of g_{1} on H_{1} and that of g_{2} on H_{2}, respectively, for any given $r>0$, we have

$$
x_{1} \in \mathcal{M}_{1}^{-1}(0)=\operatorname{Fix}\left(J_{r}^{\mathcal{M}_{1}}\right) \quad \text { and } \quad x_{2} \in \mathcal{M}_{2}^{-1}(0)=\operatorname{Fix}\left(J_{r}^{\mathcal{M}_{2}}\right) .
$$

This implies that the split equality optimization problem and split equality fixed point problems (5.6) are equivalent to the split equality null point problems and split equality fixed point problems (5.3). Then the following theorem can be obtained from Theorem 5.2 immediately.

Theorem 5.3 Let $g_{i}: H_{i} \rightarrow \mathbb{R}, i=1,2$, be a proper, convex, and lower semi-continuous function. Let $J_{r}^{\mathcal{M}}=\left[\begin{array}{c}J_{r}^{\mathcal{M}_{1}} \\ J_{r} \mathcal{M}_{2}\end{array}\right]$, where $\mathcal{M}_{i}=\partial g_{i}, i=1,2$, and $J_{r}^{\mathcal{M}_{i}}$ is the associated resolvent of \mathcal{M}_{i} with $r>0$, respectively. For any given $x_{0} \in H$, the iterative sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}=$ $\left[\begin{array}{l}x_{1, n} \\ x_{2, n}\end{array}\right]_{n \in \mathbb{N}} \subset H$ is generated by

$$
\begin{align*}
& u_{n}=J_{r}^{\mathcal{M}}\left(I-\lambda G^{*} G\right) x_{n} \\
& v_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T u_{n} \tag{5.7}\\
& x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \mu F\right) v_{n},
\end{align*}
$$

where $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ are two sequences in $(0,1)$. If the solution set Γ_{OF} is nonempty and the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(iii) $\lim \sup _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0$;
(iv) $\lambda \in\left(0, \frac{2}{R}\right)$, where $R=\|G\|^{2}$;
(v) for each $i=1,2, T_{i}$ is demiclosed;
(vi) $\mu \in\left(0, \frac{2 \eta}{L^{2}}\right)$ and $\theta \in(0, \tau)$, where $\tau=\mu\left(\eta-\frac{1}{2} \mu L^{2}\right)$.

Then the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, defined by (5.7), converges strongly to $p \in \Gamma_{\mathrm{OF}}$, which is the unique solution in $\Gamma_{\text {OF }}$ of the variational inequality (VI)

$$
\langle\mu F(p)-f(p), x-p\rangle \geq 0, \quad \forall x \in \Gamma_{\mathrm{OF}}
$$

5.4 Split equality equilibrium problems and split equality fixed point problems

Let C be a nonempty closed and convex subset of a real Hilbert space. A bifunction $\Theta: C \times$ $C \rightarrow \mathbb{R}$ is called an equilibrium function if and only if it satisfies the following conditions:
(A1) $\Theta(x, x)=0$ for all $x \in C$;
(A2) Θ is monotone, i.e., $g(x, y)+g(y, x) \leq 0$ for all $x, y \in C$;
(A3) Θ is upper-hemicontinuous, i.e., for all $x, y, z \in C$,
$\lim \sup _{t \rightarrow 0^{+}} \Theta(t z+(1-t) x, y) \leq \Theta(x, y) ;$
(A4) $\Theta(x, \cdot)$ is convex and lower semicontinuous for all $x \in C$.
The so-called equilibrium problem with respect to the equilibrium function Θ is the problem of finding

$$
\begin{equation*}
x^{*} \in C \text { such that } \Theta\left(x^{*}, y\right) \geq 0, \quad \forall y \in C . \tag{5.8}
\end{equation*}
$$

Its solution set is denoted by $\operatorname{EP}(\Theta, C)$. Numerous problems in physics, optimization, and economics are reduced to finding a solution of (5.8) (see [20, 21]).
The split equality equilibrium problems and split equality fixed point problems are the problem of finding

$$
\begin{equation*}
x_{1} \in \operatorname{Fix}\left(T_{1}\right) \cap \operatorname{EP}\left(\Theta_{1}, C_{1}\right), x_{2} \in \operatorname{Fix}\left(T_{2}\right) \cap \operatorname{EP}\left(\Theta_{2}, C_{2}\right) \text { such that } A_{1} x_{1}=A_{2} x_{2}, \tag{5.9}
\end{equation*}
$$

where $T_{i}, i=1,2$, is a quasi-nonexpansive mapping on H_{i} and Θ_{i} is an equilibrium function of $C_{i} \times C_{i}$ into \mathbb{R}, respectively. Its solution set is denoted by $\Gamma_{E F}=\left\{x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in H: x_{1} \in\right.$ $\operatorname{Fix}\left(T_{1}\right) \cap \operatorname{EP}\left(\Theta_{1}, C_{1}\right), x_{2} \in \operatorname{Fix}\left(T_{2}\right) \cap \operatorname{EP}\left(\Theta_{2}, C_{2}\right)$ such that $\left.A_{1} x_{1}=A_{2} x_{2}\right\}$.
For given $r>0$ and $x \in H$, the resolvent of the equilibrium function Θ is the operator defined by

$$
T_{r}^{\Theta}(x)=\left\{z \in C: \Theta(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\} .
$$

Proposition 5.4 ([22]) The resolvent operator T_{r}^{Θ} of the equilibrium function Θ has the following properties:
(i) T_{r}^{Θ} is single-valued;
(ii) $\operatorname{Fix}\left(T_{r}^{\Theta}\right)=\operatorname{EP}(\Theta, C)$, and $\mathrm{EP}(\Theta, C)$ is a nonempty closed and convex subset of C;
(iii) T_{r}^{Θ} is a firmly nonexpansive mapping.

Using the above lemma, Takahashi et al. [23] obtained the following lemma. See Aoyama et al. [24] for a more general result.

Lemma 5.5 ([23, 24]) Let C be a nonempty closed convex subset of H, and let Θ be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1) to (A4). Let \mathcal{M}_{Θ} be a set-valued mapping of H into itself defined by

$$
\mathcal{M}_{\Theta}(x)= \begin{cases}\{z \in H: \Theta(x, y)+\langle y-x, z\rangle \geq 0, \forall y \in C\}, & \forall x \in C \\ \emptyset, & \forall x \notin C\end{cases}
$$

Then $\operatorname{EP}(\Theta, C)=\mathcal{M}_{\Theta}^{-1}(0)$ and \mathcal{M}_{Θ} is a maximal monotone operator with $\operatorname{dom}\left(\mathcal{M}_{\Theta}\right) \subset C$. Furthermore, for any $x \in H$ and $r>0$, the resolvent T_{r}^{Θ} of Θ coincides with the resolvent of \mathcal{M}_{Θ}, i.e.,

$$
T_{r}^{\Theta}(x)=\left(I+r \mathcal{M}_{\Theta}\right)^{-1}(x)
$$

This implies that the split equality equilibrium problems and split equality fixed point problems (5.9) are equivalent to the split equality null point problems and split equality fixed point problems (5.3). Then we have the following result.

Theorem 5.6 Let $C_{i}, i=1,2$, be a nonempty closed convex subset of H_{i}. Let $T_{r}^{\Theta}=\left[\begin{array}{c}T_{r}^{\Theta_{1}} \\ T_{r}^{\Theta_{2}}\end{array}\right]$, where $\Theta_{i}, i=1,2$, is an equilibrium function of $C_{i} \times C_{i}$ into \mathbb{R} with $r>0$. For any given $x_{0} \in H$, the iterative sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}=\left[\begin{array}{l}x_{1, n} \\ x_{2, n}\end{array}\right]_{n \in \mathbb{N}} \subset H$ is generated by

$$
\begin{align*}
& u_{n}=T_{r}^{\Theta}\left(I-\lambda G^{*} G\right) x_{n} \\
& v_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T u_{n} \tag{5.10}\\
& x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \mu F\right) v_{n}
\end{align*}
$$

where $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ are two sequences in $(0,1)$. If the solution set Γ_{OF} is nonempty and the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(iii) $\lim \sup _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0$;
(iv) $\lambda \in\left(0, \frac{2}{R}\right)$, where $R=\|G\|^{2}$;
(v) for each $i=1,2, T_{i}$ is demiclosed;
(vi) $\mu \in\left(0, \frac{2 \eta}{L^{2}}\right)$ and $\theta \in(0, \tau)$, where $\tau=\mu\left(\eta-\frac{1}{2} \mu L^{2}\right)$.

Then the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, defined by (5.10), converges strongly to $p \in \Gamma_{\mathrm{OF}}$, which is the unique solution in $\Gamma_{\text {OF }}$ of the variational inequality (VI)

$$
\langle\mu F(p)-f(p), x-p\rangle \geq 0, \quad \forall x \in \Gamma_{\mathrm{OF}} .
$$

Funding

This work was supported by the Scientific Research Fund of SiChuan Provincial Education Department (No. 16ZA0333).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

${ }^{1}$ School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China. ${ }^{2}$ School of Mathematics, Southwest Jiaotong University, Chengdu, China. ${ }^{3}$ School of Mathematics, Yibin University, Yibin, China.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 5 June 2018 Accepted: 26 February 2019 Published online: 21 March 2019

References

1. Moudafi, A.: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46-55 (2000)
2. Maingé, P.E.: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput. Math. Appl. 59, 74-79 (2010)
3. Tian, M., Jin, X.: A general iterative method for quasi-nonexpansive mappings in Hilbert space. J. Inequal. Appl. 2012, 38 (2012)
4. Marino, G., Scardamaglia, B., Zaccone, R.: A general viscosity explicit midpoint rule for quasi-nonexpansive mappings. J. Nonlinear Convex Anal. 1, 137-148 (2017)
5. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221-239 (1994)
6. Moudafi, A.: A relaxed alternating CQ-algorithm for convex feasibility problems. Nonlinear Anal. 79, 117-121 (2013)
7. Moudafi, A., Al-Shemas, E.: Simultaneous iterative methods for split equality problem. Trans. Math. Program. Appl. 1, 1-11 (2013)
8. Cho, S.Y., Qin, X., Yao, J.-C., Yao, Y.: Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces. J. Nonlinear Convex Anal. 19, 251-264 (2018)
9. Yao, Y., Qin, X., Yao, J.-C.: Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 19, 407-415 (2018)
10. Yao, Y.-H., Liou, Y.-C., Yao, J.-C.: Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations. J. Nonlinear Sci. Appl. 10, 843-854 (2017)
11. Zhu, Z., Zhou, Z., Liou, Y.-C., Yao, Y., Xing, Y.: A globally convergent method for computing the fixed point of self-mapping on general nonconvex set. J. Nonlinear Convex Anal. 18, 1067-1078 (2017)
12. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)
13. Takahashi, W.: Nonlinear Functional Analysis—Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)
14. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)
15. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002)
16. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899-912 (2008)
17. Shi, L.Y., Chen, R., Wu, Y.: Strong convergence of iterative algorithms for the split equality problem. J. Inequal. Appl. 2014, 478 (2014)
18. Chuang, C.S.: Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point Theory Appl. 2013, 350 (2013)
19. Chang, S.S., Wang, L., Tang, Y.K., Wang, G.: Moudafi's open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problems. Fixed Point Theory Appl. 2014, 215 (2014)
20. Chang, S.S., Lee, H.W.J., Chan, C.K.: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. 70, 3307-3319 (2009)
21. Qin, X., Shang, M., Su, Y.: A general iterative method for equilibrium problem and fixed point problem in Hilbert spaces. Nonlinear Anal. 69, 3897-3909 (2008)
22. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145 (1994)
23. Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. Math. Stud. 147, 27-41 (2010)
24. Aoyama, K., Kimura, Y., Takahashi, W.: Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 15, 395-409 (2008)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

