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1 Introduction
In this paper, we consider the following three-dimensional (3D) Bénard system:

∂tu + (u · ∇)u + ∇π = μ�u + θe3, (1.1)

∂tθ + (u · ∇)θ = κ�θ + u · e3, (1.2)

∇ · u = 0, in R
3 × (0,∞), (1.3)

u(0) = u0, θ (0) = θ0, in R
3, (1.4)

where u = u(x, t) ∈R
3, θ = θ (x, t) ∈R, and π = π (x, t) ∈R represent the unknown velocity

field, the temperature, and the pressure, respectively, the nonnegative constants μ and κ

are the coefficients of dissipation and thermal diffusivity, and e3 = (0, 0, 1)T denotes the
vertical unit vector; the forcing term θe3 in the momentum equation (1.1) describes the
action of the buoyancy force on fluid motion, and u · e3 models the Rayleigh–Bénard con-
vection in a heated inviscid fluid. We prescribe the initial data to satisfy the condition

∇ · u0 = 0. (1.5)

The Bénard system describes the Rayleigh–Bénard convective motion in a heated 3D
inviscid incompressible fluid under thermal effects (see, e.g., [1, 4, 8, 9, 21, 26]). We can
easily check that if we ignore the Rayleigh–Bénard convection term u · e3, then system
(1.1)–(1.4) becomes the corresponding Boussinesq system, which describes the evolution
of the velocity field u for a 3D incompressible fluid moving under the gravity and the earth
rotation, which come from atmospheric or oceanographic turbulence, where rotation and
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stratification play an important role (see, e.g., [3, 6, 7, 22, 25]). In fact, the Boussinesq
system is usually referred to as the Bénard convection problem.

Recently, the Bénard system has attracted considerable attention due to their physical
applications and mathematical significance. Let us say some words about system (1.1)–
(1.4). Nakamura [24] established the smoothness and the time analyticity of strong solu-
tions to the magnetic Bénard system in R

n, n = 2, 3. Ma and Zhang [17] considered the
global weak solution of the 2D Bénard system with partial dissipation and established
some regularity criteria for the corresponding Bénard system. Later, they generalized and
extended these results in [13]. It is currently unknown whether the solutions of the 3D
magnetic Bénard system is globally regular (in time). Ma [14] dealt with the Cauchy prob-
lem to the 3D system of incompressible magnetic Bénard fluids and proved that as the
initial data satisfy ‖u0‖2

H1(R3) + ‖θ0‖2
H1(R3) + ‖b0‖2

H1(R3) ≤ ε, where ε is a suitably small pos-
itive number, the 3D magnetic Bénard system with mixed partial dissipation, magnetic
diffusion, and thermal diffusivity admits a global smooth solution. Ma [15] investigated
the blow-up criteria of strong solutions and regularity criterion of weak solutions for the
magnetic Bénard system in R

3 in a sense of scaling invariant by employing a different de-
composition for nonlinear terms. More precisely, the strong solution (u, θ , b) of the mag-
netic Bénard system is proved to be smooth on (0, T], provided that the velocity field u
satisfies

u ∈ L
2

1–r
(
0, T ; Ẋr

(
R

3)) with 0 ≤ r < 1

or the gradient field of velocity ∇u satisfies

∇u ∈ L
2

2–β
(
0, T ; Ẋβ

(
R

3)) with 0 ≤ β ≤ 1.

Moreover, he proved that if

u ∈ L∞(
0, T ; Ẋ1

(
R

3)) and ‖u‖L∞(0,T ;Ẋ1(R3)) < ε,

where ε > 0 is a suitable small constant, then the strong solution (u, θ , b) of magnetic Bé-
nard system can also be extended beyond t = T . Finally, he showed that if some partial
derivatives of the velocity components, magnetic components, and temperature compo-
nents (i.e., ∇̃ũ, ∇̃θ , and ∇̃b̃) belong to the multiplier space, then the solution (u, θ , b) is
in fact smooth on (0, T). Very recently, Ma [16] studied the global regularity for the 2 1

2 D
magnetic Bénard system with mixed partial viscosity. More precisely, he showed not only
the global regularity for the 2 1

2 D magnetic Bénard system with zero thermal diffusivity by
a well-known property of the Hardy space and BMO, but also obtained the global regu-
larity for the 2 1

2 D magnetic Bénard system with zero thermal diffusivity and horizontal
magnetic diffusion as well as vertical magnetic diffusion resorting to the method of the
local-in-time analysis. Ma and Zhang [18] obtained a blow-up criterion of smooth solu-
tions to the magnetic Bénard system without zero magnetic diffusion and thermal dif-
fusivity in R

2, derived a blow-up criterion of smooth solutions to the magnetic Bénard
system without dissipation in R

n (n = 2, 3), and in what follows, they improved this result.
In [19], they studied the Cauchy problem for the 2 1

2 D incompressible magnetic system
with partial viscosity and derived some blow-up criteria of smooth solutions. In [20], the
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authors concentrated on the global regularity of classical solution to the 2 1
2 D magnetic

Bénard system with partial dissipation, magnetic diffusion, and thermal diffusivity (i.e.,
horizontal dissipation, horizontal magnetic diffusion, and horziontal thermal diffusivity;
vertical dissipation, vertical magnetic diffusion, and vertical thermal diffusivity).

Here it is worth particularly mentioning some regularity criteria for the fluid dynamic
systems. Lin and Du [12] gave some global regularity criteria for 3D incompressible mag-
netohydrodynamics (MHD) equations. Mechdene et al. [23] established a sufficient con-
dition for the regularity criterion of the Boussinesq equation in terms of the derivative of
the pressure in one direction. Zhang [28] considered the 3D Hall-magnetohydrodynamic
system, and showed that if the velocity and the magnetic fields belong to some critical
Besov spaces on (0, T), then the solution can be extended smoothly beyond T . Xu [27]
considered the 3D magneto-micropolar fluid equations in Besov spaces.

Motivated by these results on the regularity criteria of fluid dynamics system, our aim
in this study is to investigate the regularity criteria for the 3D Bénard system. To aid the
introduction of our main results, let us first recall the definition of the first-time blow-up
time (see [28]).

Definition 1.1 A number T∗ is called the first-time blow-up time if it satisfies the follow-
ing conditions:

‖(u, θ )‖Hr (t) < ∞ for all t < T∗,

and

lim sup
t↗T∗

∥
∥(u, θ )

∥
∥

Hr (t) = ∞,

where r ≥ 3 is an integer, and (u, θ ) is a solution to (1.1)–(1.4).

With the use of the notations described in Sect. 2, our main results now read as follows.

Theorem 1.1 Let (u0, θ0) ∈ H3(R3) with ∇ · u0 = 0. If the velocity field u and the gradient
of the temperature ∇θ satisfy

‖u‖
L

2
1–s (0,T∗ ;Ḃ–s∞,∞)

+ ‖∇θ‖
L

2
2–γ (0,T∗ ;Ḃ–γ∞,∞)

= ∞, –1 < s < 1, 0 < γ < 2,

then for the first-time blow-up time T∗ < ∞ of the solution (u, θ ) to (1.1)–(1.4), we have that

lim sup
t↗T∗

∥∥(u, θ )
∥∥2

H3 (t) = ∞.

Using the Bernstein inequality (see Lemma 2.1), we easily obtain that ∇ : Ḃr
p,q → Ḃr–1

p,q is
an isometry, and we can deduce from Theorem 1.1 the following:

Corollary 1.2 Let (u0, θ0) ∈ H3(R3) with ∇ · u0 = 0. If the gradient field of the velocity ∇u
and the gradient of the temperature ∇θ satisfy

‖∇u‖
L

2
2–s (0,T∗ ;Ḃ–s∞,∞)

+ ‖∇θ‖
L

2
2–γ (0,T∗ ;Ḃ–γ∞,∞)

= ∞, 0 < s < 2, 0 < γ < 2,
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then for the first-time blow-up time T∗ < ∞ of the solution (u, θ ) to (1.1)–(1.4), we have that

lim sup
t↗T∗

∥
∥(u, θ )

∥
∥2

H3 (t) = ∞.

Because of the boundedness of the Riesz transformation in Ḃr
p,q(R3), we may further

replace ∇u in Corollary 1.2 by the vorticity ω = ∇ × u and obtain the following result.

Corollary 1.3 Let (u0, θ0) ∈ H3(R3) with ∇ · u0 = 0. If the vorticity ω = ∇ × u and the
gradient of the temperature ∇θ satisfy

‖ω‖
L

2
2–s (0,T∗ ;Ḃ–s∞,∞)

+ ‖∇θ‖
L

2
2–γ (0,T∗ ;Ḃ–γ∞,∞)

= ∞, 0 < s < 2, 0 < γ < 2,

then for the first-time blow-up time T∗ < ∞ of the solution (u, θ ) to (1.1)–(1.4), we have that

lim sup
t↗T∗

∥
∥(u, θ )

∥
∥2

H3 (t) = ∞.

Theorem 1.4 Let (u0, θ0) ∈ H3(R3) with ∇ · u0 = 0. If the velocity field u and the tempera-
ture θ satisfy

‖u‖
L

2
1–s (0,T∗ ;Ḃ–s∞,∞)

+ ‖θ‖
L

2
1–γ (0,T∗ ;Ḃ–γ∞,∞)

= ∞, –1 < s < 1, –1 < γ < 1,

then for the first-time blow-up time T∗ < ∞ of the solution (u, θ ) to (1.1)–(1.4), we have that

lim sup
t↗T∗

∥∥(u, θ )
∥∥2

H3 (t) = ∞.

As an application of these results, we can easily deduce the following results.

Corollary 1.5 Let (u0, θ0) ∈ H3(R3) with ∇ · u0 = 0. If the gradient of the velocity field ∇u
and the temperature θ satisfy

‖∇u‖
L

2
2–s (0,T∗ ;Ḃ–s∞,∞)

+ ‖θ‖
L

2
1–γ (0,T∗ ;Ḃ–γ∞,∞)

= ∞, 0 < s < 2, –1 < γ < 1,

then for the first-time blow-up time T∗ < ∞ of the solution (u, θ ) to (1.1)–(1.4), we have that

lim sup
t↗T∗

∥
∥(u, θ )

∥
∥2

H3 (t) = ∞.

Corollary 1.6 Let (u0, θ0) ∈ H3(R3) with ∇ · u0 = 0. If the vorticity ω = ∇ × u and the
temperature θ satisfy

‖ω‖
L

2
2–s (0,T∗ ;Ḃ–s∞,∞)

+ ‖θ‖
L

2
1–γ (0,T∗ ;Ḃ–γ∞,∞)

= ∞, 0 < s < 2, –1 < γ < 1,

then for the first-time blow-up time T∗ < ∞ of the solution (u, θ ) to (1.1)–(1.4), wehave that

lim sup
t↗T∗

∥
∥(u, θ )

∥
∥2

H3 (t) = ∞.



Ma and Zhang Journal of Inequalities and Applications         (2019) 2019:63 Page 5 of 11

2 Preliminaries
Throughout this paper, the letter C denotes various positive and finite constants that may
vary from line to line. We will use the notation A � B to denote the relation A ≤ CB and
the notation A ≈ B to denote the relations A � B and B � A. For reader’s convenience, we
first recall some basic facts on Littlewood–Paley theory; we refer to [5] for more detail.

Let S(R3) be the Schwartz class of rapidly decreasing functions. The Fourier transform
F f = f̂ of f ∈ S(R3) is defined by

F f (ξ ) = f̂ (ξ ) = (2π )– 3
2

∫

R3
e–ix·ξ f (x) dx.

Choose two nonnegative radial functions χ , ϕ ∈ S(R3) supported in B = {ξ ∈ R
3 : |ξ | ≤

4
3 } and C = {ξ ∈R

3 : 3
4 ≤ |ξ | ≤ 8

3 }, respectively, such that

χ (ξ ) +
∑

j≥0

ϕ
(
2–jξ

)
= 1, ξ ∈R

3.

Set ϕj(ξ ) = ϕ(2–jξ ) and let h = F–1ϕ and h̃ = F–1χ . Then we define the frequency local-
ization operators as follows:

�jf = ϕ
(
2–jD

)
f = 23j

∫

R3
h
(
2jy

)
f (x – y) dy for j ≥ 0,

Sjf = χ
(
2–jD

)
f =

∑

–1≤k≤j–1

�kf = 23j
∫

R3
h̃
(
2jy

)
f (x – y) dy,

�–1f = S0f , �jf = 0 for j ≤ 2.

Formally, �j = Sj+1 – Sj is a frequency projection into the annulus {|ξ | ≈ 2j}, whereas Sj

is a frequency projection into the ball {|ξ | � 2j} for j ∈ Z. We can easily verify that, with
the our choice of ϕ,

�j�kf ≡ 0 if |j – k| ≥ 2,

and

�j(Sk–1f �kf ) ≡ 0 if |j – k| ≥ 5.

We now introduce the following definition of a homogeneous Besov space by means of
Littlewood–Paley projection �j and Sj.

Definition 2.1 Let r ∈ R and 1 ≤ p, q ≤ ∞. The homogeneous Besov space Ḃr
p,q(R3) is

defined by the full dyadic decomposition

Ḃr
p,q =

{
f ∈Z ′(

R
3);‖f ‖Ḃr

p,q < ∞}
,

where

‖f ‖Ḃr
p,q =

∥
∥{

2jr‖�jf ‖Lp
}∞

j=–∞
∥
∥

�q .
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Let us point out that Z ′(R3) is the dual space of

Z
(
R

3) =
{

f ∈ S
(
R

3); Dα̂f (0) = 0 ∀α ∈N
3}.

The following Bernstein inequality is due to [5, 11].

Lemma 2.1 For all k ∈N∪ {0}, j ∈ Z, and 1 ≤ p ≤ q ≤ ∞, we have, for all f ∈ S(R3),

(i) sup
|α|=k

∥∥∇α�jf
∥∥

Lq ≤ C12jk+3j( 1
p – 1

q )‖�jf ‖Lp ,

(ii) ‖�jf ‖Lp ≤ C22–jk sup
|α|=k

∥∥∇α�jf
∥∥

Lp ,

with positive constants C1 and C2 independent of f and j.

We conclude this section by recalling the refined interpolation inequality relating the
Lebesgue and Besov spaces (see [2]), which will be frequently used in the proof of Theo-
rem 1.1.

Lemma 2.2 Let 1 ≤ q < p < ∞, and let α be a positive real number. There exists a constant
C such that

‖f ‖Lp ≤ C‖f ‖1–γ

Ḃ–α∞,∞
‖f ‖γ

Ḃβ
q,q

with β = α

(
p
q

– 1
)

and γ =
q
p

.

3 Proof of Theorem 1.1
In this section, we prove Theorem 1.1. We will complete the proof through three steps.
First, we will get the basic energy inequality. Second, we will establish lower-order es-
timates of u and θ . Finally, we will obtain higher-order estimates of u and θ . To prove
Theorem 1.1, we will apply a contradiction argument method. More explicitly, we need to
show that if

‖u‖
L

2
1–s (0,T∗ ;Ḃ–s∞,∞)

+ ‖∇θ‖
L

2
2–γ (0,T∗ ;Ḃ–γ∞,∞)

< ∞

for some –1 < s < 1 and 0 < γ < 2, then we could conduct uniform bounds for ‖(u, θ )‖Hm (t)
for 0 ≤ t < T∗, m ≥ 3. Then we give a proof of Theorem 1.1. First, we will establish the
following basic energy estimate for system (1.1)–(1.4).

Lemma 3.1 Let (u0, θ0) satisfy the conditions of Theorem 1.1. Then for any corresponding
solution (u, θ ) of system (1.1)–(1.4), there exists a constant C such that, for almost every
t ≥ 0,

∥
∥u(t)

∥
∥2

L2 +
∥
∥θ (t)

∥
∥2

L2 + μ

∫ t

0

∥
∥∇u(τ )

∥
∥2

L2 dτ + κ

∫ t

0

∥
∥∇θ (τ )

∥
∥2

L2 dτ ≤ C, (3.1)

where C is a constant depending on time t and the initial data.
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Proof Multiplying (1.1) and (1.2) by u and θ , respectively, integrating them over R3 with
respect to x, and then adding the resulting equations, we get

1
2

d
dt

(∥∥u(t)
∥
∥2

L2 +
∥
∥θ (t)

∥
∥2

L2
)

+ μ‖∇u‖2
L2 + κ‖∇θ‖2

L2 ≤ C
(‖u‖2

L2 + ‖θ‖2
L2

)
. (3.2)

Integration of (3.1) with respect to time variable over (0, t) directly implies the desired
estimate (3.1). �

Next, we will establish the global H1-estimation, which plays an essential role in proving
our main theorem.

Lemma 3.2 Let (u0, θ0) satisfy the conditions of Theorem 1.1. Then for any corresponding
solution (u, θ ) of the system (1.1)–(1.4), there exists a constant C such that, for any 0 ≤ t <
T∗,

∥∥∇u(t)
∥∥2

L2 +
∥∥∇θ (t)

∥∥2
L2 + μ

∫ t

0

∥∥�u(τ )
∥∥2

L2 dτ + κ

∫ t

0

∥∥�θ (τ )
∥∥2

L2 dτ ≤ C < ∞, (3.3)

where C is a constant depending on time t and the initial data.

Proof Taking the L2 inner product to Eqs. (1.1) and (1.2) with –�u and –�θ , respectively,
and summing up the resultants, we obtain

1
2

d
dt

(∥∥∇u(t)
∥∥2

L2 +
∥∥∇θ (t)

∥∥2
L2

)
+ μ‖�u‖2

L2 + κ‖�θ‖2
L2

=
∫

R3

[
(u · ∇)u

] · �u dx –
∫

R3
θe3 · �u dx

+
∫

R3

[
(u · ∇)θ

] · �θdx –
∫

R3
(u · e3) · �θdx

:= I + II + III + IV . (3.4)

Using the incompressible condition, the Hölder inequality, the interpolation inequality,
and Lemma 2.2, we estimate I and III as follows:

I = –
3∑

i=1

∫

R3

[
(∂iu · ∇)u

] · ∂iu dx ≤ C‖∇u‖3
L3

≤ C‖∇u‖Ḃ–1–s∞,∞‖∇u‖2

Ḣ
s+1

2
≤ C‖u‖Ḃ–s∞,∞‖∇u‖1–s

L2 ‖∇u‖1+s
Ḣ1

≤ μ

4
‖�u‖2

L2 + C‖u‖ 2
1–s
Ḃ–s∞,∞

‖∇u‖2
L2 , (3.5)

III = –
3∑

i=1

∫

R3

[
(∂iu · ∇)θ

] · ∂iθdx ≤ C
∫

R3
|∇u| · |∇θ |2 dx

≤ C‖∇u‖L3‖∇θ‖2
L3 ≤ C‖∇u‖3

L3 + C‖∇θ‖3
L3

≤ C‖∇u‖Ḃ–1–s∞,∞‖∇u‖2

Ḣ
s+1

2
+ C‖∇θ‖Ḃ–γ∞,∞‖∇θ‖2

Ḣ
γ
2
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≤ C‖u‖Ḃ–s∞,∞‖∇u‖1–s
L2 ‖∇u‖1+s

Ḣ1 + C‖∇θ‖Ḃ–γ∞,∞‖∇θ‖2–γ

L2 ‖∇θ‖γ

Ḣ1

≤ μ

4
‖�u‖2

L2 +
κ

2
‖�θ‖2

L2 + C
(‖u‖ 2

1–s
Ḃ–s∞,∞

+ ‖∇θ‖
2

2–γ

Ḃ–γ∞,∞

)(‖∇u‖2
L2 + ‖∇θ‖2

L2
)
. (3.6)

By the integration-by-parts formula and Hölder inequality we easily observe that

II + IV ≤ C
(‖∇u‖2

L2 + ‖∇θ‖2
L2

)
. (3.7)

Putting estimates I–IV into (3.4) and absorbing the diffusive terms ensure that

d
dt

(∥∥∇u(t)
∥
∥2

L2 +
∥
∥∇θ (t)

∥
∥2

L2
)

+ μ‖�u‖2
L2 + κ‖�θ‖2

L2

≤ C
(
1 + ‖u‖ 2

1–s
Ḃ–s∞,∞

+ ‖∇θ‖
2

2–γ

Ḃ–γ∞,∞

) · (‖∇u‖2
L2 + ‖∇θ‖2

L2
)
. (3.8)

Thanks to the Gronwall inequality, we show that, for any 0 ≤ t < T∗,

∥
∥∇u(t)

∥
∥2

L2 +
∥
∥∇θ (t)

∥
∥2

L2 + μ

∫ t

0

∥
∥�u(τ )

∥
∥2

L2 dτ + κ

∫ t

0

∥
∥�θ (τ )

∥
∥2

L2 dτ

≤ (‖∇u0‖2
L2 + ‖∇θ0‖2

L2
)

exp

{
CT∗ +

∫ T∗

0

(∥∥u(τ )
∥
∥

2
1–s
Ḃ–s∞,∞

+
∥
∥∇θ (τ )

∥
∥

2
2–γ

Ḃ–γ∞,∞

)
dτ

}

≤ C < ∞. (3.9)

Therefore we finally conclude the proof of Lemma 3.2. �

With the help of Lemma 3.2, we establish the global H3-estimation.

Lemma 3.3 Let (u0, θ0) satisfies the conditions of Theorem 1.1. Then for any corresponding
solution (u, θ ) of system (1.1)–(1.4), there exists a constant C such that, for any 0 ≤ t < T∗,

∥
∥u(t)

∥
∥2

Ḣ3 +
∥
∥θ (t)

∥
∥2

Ḣ3 + μ

∫ t

0

∥
∥∇u(τ )

∥
∥2

Ḣ3 dτ + κ

∫ t

0

∥
∥∇θ (τ )

∥
∥2

Ḣ3 dτ ≤ C < ∞, (3.10)

where C is a constant depending on time t and the initial data.

Proof Let α = (α1,α2,α3) be a multiindex with |α| = α1 +α2 +α3 = 3. Applying the operator
Dα = ∂ |α|

∂xα1
1 ∂xα2

2 ∂xα3
3

, where 0 ≤ α ≤ 3, to equations (1.1) and (1.2) and then taking the L2

inner product of the resulting equations with Dαu and Dαθ , after adding them, we obtain
that

1
2

d
dt

(∥∥u(t)
∥
∥2

Ḣ3 +
∥
∥θ (t)

∥
∥2

Ḣ3
)

+ μ‖∇u‖2
Ḣ3 + κ‖∇θ‖2

Ḣ3

= –
∑

|α|=3

∫

R3
Dα

[
(u · ∇)u

] · Dαu dx +
∑

|α|=3

∫

R3
Dα(θe3) · Dαu dx

–
∑

|α|=3

∫

R3
Dα

[
(u · ∇)θ

] · Dαθdx +
∑

|α|=3

∫

R3
Dα(u · e3) · Dαθdx. (3.11)
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Due to the divergence-free condition ∇ · u = 0, we can rewrite (3.11) as

1
2

d
dt

(∥∥u(t)
∥∥2

Ḣ3 +
∥∥θ (t)

∥∥2
Ḣ3

)
+ μ‖∇u‖2

Ḣ3 + κ‖∇θ‖2
Ḣ3

=
3∑

i=1

∑

|α|=3

∫

R3
Dα(uiu) · Dα∂iu dx +

∑

|α|=3

∫

R3
Dα(θe3) · Dαu dx

+
3∑

i=1

∑

|α|=3

∫

R3
Dα(uiθ ) · Dα∂iθdx +

∑

|α|=3

∫

R3
Dα(u · e3) · Dαθdx

:= I1 + II1 + III1 + IV 1. (3.12)

Before bounding terms in (3.12), we first recalling the following useful lemma (see [10]).

Lemma 3.4 If r > 0 and 1 < p < ∞, then W r,p ∩ L∞ is an algebra. Moreover,

‖fg‖W r,p ≤ C
(‖f ‖L∞‖g‖Lp + ‖f ‖Lp‖g‖L∞

)
.

With Lemma 3.4 at our disposal, we are now ready to bound terms in (3.12) as follows:

I1 ≤ C‖u‖L∞‖u‖H3‖∇u‖Ḣ3 ≤ C‖u‖L∞
(‖u‖L2 + ‖u‖Ḣ3

)‖∇u‖Ḣ3

≤ μ

4
‖∇u‖2

Ḣ3 + C‖u‖2
L∞

(
1 + ‖u‖2

Ḣ3
)
, (3.13)

III1 ≤ C
∥
∥(u, θ )

∥
∥

L∞
∥
∥(u, θ )

∥
∥

H3

∥
∥(∇u,∇θ )

∥
∥

Ḣ3

≤ C
∥
∥(u, θ )

∥
∥

L∞
(∥∥(u, θ )

∥
∥

L2 +
∥
∥(u, θ )

∥
∥

Ḣ3
)∥∥(∇u,∇θ )

∥
∥

Ḣ3

≤ μ

4
‖∇u‖2

Ḣ3 +
κ

2
‖∇θ‖2

Ḣ3 + C
∥
∥(u, θ )

∥
∥2

L∞
(
1 +

∥
∥(u, θ )

∥
∥2

Ḣ3
)
, (3.14)

II1 + IV 1 ≤ C
(‖u‖2

Ḣ3 + ‖θ‖2
Ḣ3

)
. (3.15)

Substituting all the preceding estimates into (3.12) directly gives

d
dt

(∥∥u(t)
∥
∥2

Ḣ3 +
∥
∥θ (t)

∥
∥2

Ḣ3
)

+ μ‖∇u‖2
Ḣ3 + κ‖∇θ‖2

Ḣ3

≤ C
(
1 +

∥∥(u, θ )
∥∥2

L∞
)(

1 +
∥∥(u, θ )

∥∥2
Ḣ3

)
. (3.16)

A combination of this fact with the Gronwall inequality leads to the desired global bound
in Lemma 3.3. We can also obtain

∥∥(u, θ )
∥∥

Hm (t) ≤ C, t ∈ [0, T∗), m ≥ 3.

This completes the proof of Theorem 1.1. �
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4 The proof of Theorem 1.4
Due to the similarity to the proof in the previous section, the proof of Theorem 1.4 is much
simpler. In fact, it is sufficient to change estimate (3.6) as follows:

III ≤ C‖∇u‖3
L3 + C‖∇θ‖3

L3

≤ C‖∇u‖Ḃ–1–s∞,∞‖∇u‖2

Ḣ
s+1

2
+ C‖∇θ‖Ḃ–1–γ∞,∞ ‖∇θ‖2

Ḣ
γ +1

2

≤ C‖u‖Ḃ–s∞,∞‖∇u‖1–s
L2 ‖∇u‖1+s

Ḣ1 + C‖θ‖Ḃ–γ∞,∞‖∇θ‖1–γ

L2 ‖∇θ‖1+γ

Ḣ1

≤ μ

4
‖�u‖2

L2 +
κ

2
‖�θ‖2

L2 + C
(‖u‖ 2

1–s
Ḃ–s∞,∞

+ ‖θ‖
2

1–γ

Ḃ–γ∞,∞

)(‖∇u‖2
L2 + ‖∇θ‖2

L2
)
. (4.1)

5 Results and discussion
In this paper, we consider the 3D Bénard system and investigate the regularity criteria for
it. We prove that if the velocity field u and the temperature θ belong to some critical Besov
space, then the solution (u, θ ) can be extended smoothly beyond T .

6 Conclusions
In this paper, we show that if the velocity field u and the gradient of the temperature ∇θ

satisfy

‖u‖
L

2
1–s (0,T∗ ;Ḃ–s∞,∞)

+ ‖∇θ‖
L

2
2–γ (0,T∗ ;Ḃ–γ∞,∞)

= ∞, –1 < s < 1, 0 < γ < 2,

or the velocity field u and the temperature θ satisfy

‖u‖
L

2
1–s (0,T∗ ;Ḃ–s∞,∞)

+ ‖θ‖
L

2
1–γ (0,T∗ ;Ḃ–γ∞,∞)

= ∞, –1 < s < 1, –1 < γ < 1,

then for the first-time blow-up time T∗ < ∞ of the solution (u, θ ), we have that

lim sup
t↗T∗

∥∥(u, θ )
∥∥2

H3 (t) = ∞.
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