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1 Introduction
We assume that the reader is familiar with the usual notation and basic results of the
Nevanlinna theory [4, 10]. Let f (z) and g(z) be two nonconstant meromorphic functions,
and let a be a complex number. We say that f (z) and g(z) share a CM (IM) provided that
f (z) – a and g(z) – a have the same zeros counting multiplicity (ignoring multiplicity). In
addition, f and g sharing ∞ CM (IM) means that f and g have the same poles counting
multiplicity (ignoring multiplicity).

The uniqueness theory of meromorphic functions mainly studies conditions under
which there is a unique function satisfying the given hypothesis. A great deal of classi-
cal results in this field can be seen in [10], where Chap. 9 introduces many works dealing
with the relation between two meromorphic functions while their derivatives share val-
ues. Over past two decades, the research on the derivatives of polynomials of meromor-
phic functions sharing values has been ongoing. In 1996, Fang and Hua [3] investigated
the relation between two transcendental entire functions f and g when f nf ′ and gng ′ share
1 CM. Clearly, (f n+1)′ = (n + 1)f nf ′. Later, Yang and Hua [9] considered this problem for
meromorphic functions f and g , and they proved the following theorem.

Theorem A Let f and g be two nonconstant meromorphic functions, let n ≥ 11 be an
integer, and let a ∈C \ {0}. If f nf ′ and gng ′ share a CM, then f (z) ≡ dg(z) for some (n + 1)th
roots of unity d, or g(z) = c1ecz and f (z) = c2e–cz, where c, c1, c2 are constants satisfying
(c1c2)n+1c2 = –a2.

Without loss of generality, in Theorem A the complex number a can be replaced by 1.
Noting that ( 1

n+2 f n+2 – 1
n+1 f n+1)′ = f n(f – 1)f ′, Fang and Hong [2] obtained the following

result.
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Theorem B Let f and g be two transcendental entire functions, let n ≥ 11 be an integer. If
f n(f – 1)f ′ and gn(g – 1)g ′ share 1 CM, then f (z) ≡ g(z).

Three years later, Lin and Yi [6] improved their result to n ≥ 7 and also studied the case
that f and g are meromorphic functions. Moreover, they discussed the other polynomial

1
n+3 f n+3 – 2

n+2 f n+2 + 1
n+1 f n+1 of f with its derivative as f n(f – 1)2f ′. In fact, Lin and Yi proved

the following two theorems.

Theorem C Let f and g be two nonconstant meromorphic functions, and let n ≥ 12 be an
integer. If f n(f – 1)f ′ and gn(g – 1)g ′ share 1 CM, then

f =
(n + 2)h(1 – hn+1)
(n + 1)(1 – hn+2)

, g =
(n + 2)(1 – hn+1)
(n + 1)(1 – hn+2)

, (1.1)

where h is a nonconstant meromorphic function.

Theorem D Let f and g be two nonconstant meromorphic functions, and let n ≥ 13 be an
integer. If f n(f – 1)2f ′ and gn(g – 1)2g ′ share 1 CM, then f (z) ≡ g(z).

Recently, by introducing the notion of multiplicity, Dyavanal [1] deeply investigated such
a uniqueness problem and improved Theorems A, C, and D as follows.

Theorem E Let f and g be two nonconstant meromorphic functions with zeros and poles
of multiplicities at least s, where s is a positive integer. Let n ≥ 2 be an integer satisfying
(n + 1)s ≥ 12. If f nf ′ and gng ′ share 1 CM, then f (z) ≡ dg(z) for some (n + 1)th roots of unity
d, or g(z) = c1ecz and f (z) = c2e–cz , where c, c1, c2 are constants satisfying (c1c2)n+1c2 = –1.

Theorem F Let f and g be two nonconstant meromorphic functions with zeros and poles of
multiplicities at least s, where s is a positive integer. Let n be an integer satisfying (n – 2)s ≥
10. If f n(f – 1)f ′ and gn(g – 1)g ′ share 1 CM, then (1.1) holds.

Theorem G Let f and g be two nonconstant meromorphic functions with zeros and poles of
multiplicities at least s, where s is a positive integer. Let n be an integer satisfying (n – 3)s ≥
10. If f n(f – 1)2f ′ and gn(g – 1)2g ′ share 1 CM, then f (z) ≡ g(z).

In Theorem F, if f (z) �≡ g(z), then f , g must satisfy (1.1), so that

f =
(n + 2)h(h – β1)(h – β2) · · · (h – βn)
(n + 1)(h – α1)(h – α2) · · · (h – αn+1)

, (1.2)

where αi ( �= 1) (i = 1, 2, . . . , n + 1) and βj ( �= 1) (j = 1, 2, . . . , n) are distinct roots of wn+2 = 1
and wn+1 = 1, respectively. Thus by Valiron–Mokhon’ko theorem (see [10, Thm. 1.13])
T(r, f ) = (n + 1)T(r, h) + S(r, h). From (1.2) it follows that the poles of h are not poles of f
and

N(r, f ) =
n+1∑

i=1

N
(

r,
1

h – αi

)
, N

(
r,

1
f

)
=

n∑

j=1

N
(

r,
1

h – βj

)
+ N

(
r,

1
h

)
.
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By the second main theorem we have

2nT(r, h) ≤
n+1∑

i=1

N
(

r,
1

h – αi

)
+

n∑

j=1

N
(

r,
1

h – βj

)
+ N

(
r,

1
h

)
+ S(r, h)

≤ N(r, f ) + N
(

r,
1
f

)
+ S(r, h)

≤ 1
s

N(r, f ) +
1
s

N
(

r,
1
f

)
+ S(r, h)

≤ 2
s

T(r, f ) + S(r, h),

which leads to n ≤ (n + 1)/s. From (n – 2)s ≥ 10 we have n ≥ 3. According to the above
argument, we can deduce a contradiction for s ≥ 2. Therefore, in Theorem F, if s ≥ 2, then
we must have f ≡ g .

In the end of his paper, Dyavanal posed four open problems. Two of them, which we are
interested in, are as follows.

Problem 1 Can a CM shared value be replaced by an IM shared value in Theorems E–G?

Problem 2 Are the conditions (n + 1)s ≥ 12 in Theorem E, (n – 2)s ≥ 10 in Theorem F,
and (n – 3)s ≥ 10 in Theorem G sharp?

In this paper, we try to answer these two questions. We obtain five theorems, which
replace CM by IM in Theorems E–G and reduce n for s ≥ 7 in Theorems F–G in Sect. 3.

2 Preliminary lemmas
We denote by N (k(r, 1

f –a ) the reduced counting function for zeros of f – a with multiplicity
no less than k. Define

Nk

(
r,

1
f – a

)
= N

(
r,

1
f – a

)
+ N (2

(
r,

1
f – a

)
+ · · · + N (k

(
r,

1
f – a

)
.

Lemma 2.1 (see [12, Lemma 2.1]) Let f (z) be a nonconstant meromorphic function, and
let p and k be positive integers. Then

Np

(
r,

1
f (k)

)
≤ Np+k

(
r,

1
f

)
+ kN(r, f ) + S(r, f ). (2.1)

This lemma can be proved in the same way as [5, Lemma 2.3] in the particular case p = 2.

Lemma 2.2 (see [9, 11]) Let f and g be two nonconstant meromorphic functions sharing 1
CM. Then we have one of the following three cases:

(i) T(r, f ) ≤ N2(r, 1/f ) + N2(r, 1/g) + N2(r, f ) + N2(r, g) + S(r, f ) + S(r, g);
(ii) f (z) ≡ g(z);

(iii) f (z)g(z) ≡ 1.

Lemma 2.3 Let f and g be two nonconstant meromorphic functions. If f and g share 1 IM,
then we have one of the following three cases:
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(i) T(r, f ) ≤ N2(r, 1/f ) + N2(r, 1/g) + N2(r, f ) + N2(r, g) + 2N(r, f ) + N(r, g) + 2N(r, 1/f ) +
N(r, 1/g) + S(r, f ) + S(r, g);

(ii) f (z) ≡ g(z);
(iii) f (z)g(z) ≡ 1.

Proof We first introduce some new notation. Let z0 be a zero of f – 1 with multiplicity
p and a zero of g – 1 with multiplicity q. We denote by N1)

E (r, 1
f –1 ) the counting function

of the zeros of f – 1 with p = q = 1, by N (2
E (r, 1

f –1 ) the counting function of the zeros of
f – 1 satisfying p = q ≥ 2, and by NL(r, 1

f –1 ) the counting function of the zeros of f – 1 with
p > q ≥ 1, where each point in these counting functions is counted only once.

We set

H(z) =
(

f ′′

f ′ – 2
f ′

f – 1

)
–

(
g ′′

g ′ – 2
g ′

g – 1

)
. (2.2)

Suppose that H(z) �≡ 0. Clearly, m(r, H) = S(r, f ) + S(r, g). If z0 is a common simple zero of
f – 1 and g – 1, then a simple computation on local expansions shows that H(z0) = 0, and
then

N1)
E

(
r,

1
f – 1

)
≤ N

(
r,

1
H

)
≤ N(r, H) + S(r, f ) + S(r, g). (2.3)

The poles of H(z) only come from the zeros of f ′ and g ′, the multiple poles of f and g , and
the zeros of f – 1 and g – 1 with different multiplicity. By analysis we can deduce that

N(r, H) ≤ N (2(r, f ) + N (2(r, g) + N (2

(
r,

1
f

)
+ N (2

(
r,

1
g

)

+ NL

(
r,

1
f – 1

)
+ NL

(
r,

1
g – 1

)

+ N0

(
r,

1
f ′

)
+ N0

(
r,

1
g ′

)
+ S(r, f ) + S(r, g), (2.4)

where N0(r, 1
f ′ ) denotes the counting function of the zeros of f ′ but not that of f (f – 1),

N0(r, 1
f ′ ) denotes the corresponding reduced counting function, and N0(r, 1

g′ ) and N0(r, 1
g′ )

are defined similarly. At the same time, obviously,

N
(

r,
1

f – 1

)
= N1)

E

(
r,

1
f – 1

)
+ N (2

E

(
r,

1
f – 1

)
+ NL

(
r,

1
f – 1

)
+ NL

(
r,

1
g – 1

)
.

Combining this with (2.3) and (2.4) yields

N
(

r,
1

f – 1

)
≤ N (2(r, f ) + N (2(r, g) + N (2

(
r,

1
f

)
+ N (2

(
r,

1
g

)

+ 2NL

(
r,

1
f – 1

)
+ 2NL

(
r,

1
g – 1

)
+ N0

(
r,

1
f ′

)

+ N0

(
r,

1
g ′

)
+ N (2

E

(
r,

1
f – 1

)
+ S(r, f ) + S(r, g). (2.5)
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Since

N
(

r,
1

g – 1

)
+ NL

(
r,

1
g – 1

)
+ N (2

E

(
r,

1
f – 1

)
≤ N

(
r,

1
g – 1

)
≤ T(r, g) + S(r, g),

combining this with (2.5), we have

N
(

r,
1

f – 1

)
+ N

(
r,

1
g – 1

)

≤ N (2(r, f ) + N (2(r, g) + N (2

(
r,

1
f

)
+ N (2

(
r,

1
g

)
+ 2NL

(
r,

1
f – 1

)

+ NL

(
r,

1
g – 1

)
+ N0

(
r,

1
f ′

)
+ N0

(
r,

1
g ′

)
+ T(r, g) + S(r, f ) + S(r, g).

We apply the second fundamental theorem to f and g and consider the above inequality.
Then

T(r, f ) + T(r, g) ≤ N(r, f ) + N(r, g) + N
(

r,
1
f

)
+ N

(
r,

1
g

)
+ N

(
r,

1
f – 1

)

+ N
(

r,
1

g – 1

)
– N0

(
r,

1
f ′

)
– N0

(
r,

1
g ′

)
+ S(r, f ) + S(r, g)

≤ N2(r, f ) + N2(r, g) + N2

(
r,

1
f

)
+ N2

(
r,

1
g

)
+ 2NL

(
r,

1
f – 1

)

+ T(r, g) + NL

(
r,

1
g – 1

)
+ S(r, f ) + S(r, g).

Clearly, this leads to

T(r, f ) ≤ N2(r, f ) + N2(r, g) + N2

(
r,

1
f

)
+ N2

(
r,

1
g

)
+ 2NL

(
r,

1
f – 1

)

+ NL

(
r,

1
g – 1

)
+ S(r, f ) + S(r, g). (2.6)

By Lemma 2.1 we have

NL

(
r,

1
f – 1

)
+ N (2

(
r,

1
f

)
≤ N

(
r,

1
f ′

)
≤ N2

(
r,

1
f

)
+ N(r, f ) + S(r, f ).

Then, using this inequality, we get

2NL

(
r,

1
f – 1

)
+ N2

(
r,

1
f

)
≤ 2N2

(
r,

1
f

)
+ N1)

(
r,

1
f

)
+ 2N(r, f ) + S(r, f )

≤ N2

(
r,

1
f

)
+ 2N

(
r,

1
f

)
+ 2N(r, f ) + S(r, f ), (2.7)

where N1)(r, 1
f ) denotes the counting function of simple zeros of f . Similarly, we obtain

NL

(
r,

1
g – 1

)
+ N2

(
r,

1
g

)
≤ N2

(
r,

1
g

)
+ N

(
r,

1
g

)
+ N(r, g) + S(r, g). (2.8)

Substituting (2.7) and (2.8) into (2.6), this yields Case (i).
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It remains to treat the case H(z) ≡ 0. Integrating twice results in

1
f – 1

= A
1

g – 1
+ B, (2.9)

where A �= 0 and B are two constants. If now B �= 0, –1, then we rewrite (2.9) as

A
1

g – 1
= –

B(f – 1+B
B )

f – 1
,

and then

N
(

r,
1

f – 1+B
B

)
= N(r, g).

By the second fundamental theorem we obtain

T(r, f ) ≤ N(r, f ) + N
(

r,
1
f

)
+ N

(
r,

1
f – 1+B

B

)
+ S(r, f )

= N(r, f ) + N
(

r,
1
f

)
+ N(r, g) + S(r, f ),

which leads to Case (i). A similar reasoning results in Case (i) again, unless either A = 1
and B = 0 or A = –1 and B = –1. Hence, if A = 1 and B = 0, then f ≡ g , that is, Case (ii). If
A = –1 and B = –1, then f · g ≡ 1, which is Case (iii). �

When meromorphic functions f1 and f2 share 1 IM, Sun and Xu [8] once obtained a
result, whose proof can be also found in [7]. They proved that f1 ≡ f2 or f1f2 ≡ 1 if

lim sup
r→∞,r /∈E

N(r, fj) + N(r, 1
fj

)

T(r, fj)
<

1
7

, j = 1, 2,

where E is a set of finite linear measure. By Lemma 2.3, when

lim sup
r→∞,r /∈E

2N2(r, fj) + 3N(r, fj) + 2N2(r, 1
fj

) + 3N(r, 1
fj

)

T(r, fj)
< 1, j = 1, 2,

Case (i) cannot happen, and thus f1 ≡ f2 or f1f2 ≡ 1. Since N2(r, f ) ≤ 2N(r, f ) and
N2(r, 1/f ) ≤ 2N(r, 1/f ), Lemma 2.3 is an improvement of Sun and Xu’s result.

3 Main results
Based on Problems 1 and 2 in Sect. 1, we introduce our main results.

Theorem 3.1 Let f and g be two nonconstant meromorphic functions with multiplicities of
zeros and poles no less than s, where s is a positive integer. Let n ≥ 2 be an integer satisfying
(n – 4)s ≥ 19 for s = 1, 2 and ns ≥ 28 for s ≥ 3. If f nf ′ and gng ′ share 1 IM, then f (z) ≡ dg(z)
for some (n+1)th root d of unity, or g(z) = c1ecz and f (z) = c2e–cz , where c, c1, c2 are constants
satisfying (c1c2)n+1c2 = –1.
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Proof Let F = 1
n+1 f n+1 and G = 1

n+1 gn+1. Then T(r, F) = (n + 1)T(r, f ), T(r, G) = (n +
1)T(r, g), and F ′, G′ share 1 IM. Suppose first that Case (i) of Lemma 2.3 holds. From
this we have

T
(
r, F ′) ≤ N2

(
r,

1
F ′

)
+ N2

(
r,

1
G′

)
+ N2

(
r, F ′) + N2

(
r, G′) + 2N

(
r, F ′) + N

(
r, G′)

+ 2N
(

r,
1
F ′

)
+ N

(
r,

1
G′

)
+ S(r, f ) + S(r, g)

≤ 4N
(

r,
1
f

)
+ N2

(
r,

1
f ′

)
+ 3N

(
r,

1
g

)
+ N2

(
r,

1
g ′

)
+ 4N(r, f ) + 3N(r, g)

+ 2N
(

r,
1
f ′

)
+ N

(
r,

1
g ′

)
+ S(r, f ) + S(r, g). (3.1)

At the same time, we have

T(r, F) ≤ T
(
r, F ′) + N

(
r,

1
F

)
– N

(
r,

1
F ′

)
+ S(r, f )

≤ T
(
r, F ′) + N

(
r,

1
f

)
– N

(
r,

1
f ′

)
+ S(r, f ).

Then from this inequality and (3.1) it follows that

T(r, F) ≤ 4N
(

r,
1
f

)
+ 3N

(
r,

1
g

)
+ N2

(
r,

1
g ′

)
+ 4N(r, f ) + 3N(r, g)

+ 2N
(

r,
1
f ′

)
+ N

(
r,

1
g ′

)
+ N

(
r,

1
f

)
+ S(r, f ) + S(r, g). (3.2)

Using Lemma 2.1, we get

N2

(
r,

1
g ′

)
+ N

(
r,

1
g ′

)
≤ 2N

(
r,

1
g

)
+ 2N(r, g) + S(r, g)

≤ 2
(

1 +
1
s

)
T(r, g) + S(r, g), (3.3)

2N
(

r,
1
f ′

)
≤ 2N

(
r,

1
f

)
+ 2N(r, f ) + S(r, f ) ≤ 2

(
1 +

1
s

)
T(r, f ) + S(r, f ). (3.4)

Then substituting (3.3) and (3.4) into (3.2) yields

T(r, F) ≤
(

3 +
10
s

)
T(r, f ) +

(
2 +

8
s

)
T(r, g) + S(r, f ) + S(r, g). (3.5)

A similar inequality for G also holds. Therefore we can conclude that

(n + 1)
{

T(r, f ) + T(r, g)
}

= T(r, F) + T(r, G)

≤
(

5 +
18
s

){
T(r, f ) + T(r, g)

}
+ S(r, f ) + S(r, g),

which contradicts the condition (n – 4)s ≥ 19 for s = 1, 2.
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Again using Lemma 2.1, we have

N2

(
r,

1
g ′

)
+ N

(
r,

1
g ′

)
≤ N3

(
r,

1
g

)
+ N2

(
r,

1
g

)
+ 2N(r, g) + S(r, g)

≤ 7
s

T(r, g) + S(r, g), (3.6)

2N
(

r,
1
f ′

)
≤ 2N2

(
r,

1
f

)
+ 2N(r, f ) + S(r, f ) ≤ 6

s
T(r, f ) + S(r, f ). (3.7)

Then substituting the two inequalities into (3.2) leads to

T(r, F) ≤
(

1 +
14
s

)
T(r, f ) +

13
s

T(r, g) + S(r, f ) + S(r, g). (3.8)

Similarly, we can get

(n + 1)
{

T(r, f ) + T(r, g)
} ≤

(
1 +

27
s

){
T(r, f ) + T(r, g)

}
+ S(r, f ) + S(r, g),

which contradicts the condition ns ≥ 28 for s ≥ 3.
Thus by Lemma 2.3 there we must have F ′G′ ≡ 1 or F ′ ≡ G′. Consider case F ′G′ ≡ 1, that

is f nf ′gng ′ ≡ 1. Suppose that f has a pole z0 with multiplicity p. Then z0 must be a zero of
g of order q satisfying nq + q – 1 = np + p + 1. We rewrite it as (q – p)(n + 1) = 2, which is a
contradiction since n ≥ 2. Similarly to [9], we get g = c1ecz , f = c2e–cz . For the case F ′ ≡ G′,
it is easy to see that F ≡ G + c, where c is a constant, so that T(r, f ) = T(r, g) + S(r, g). If
c �= 0, then

N
(

r,
1

G – c

)
= N

(
r,

1
F

)
=

1
s

T(r, f ) + S(r, f ) =
1
s

T(r, g) + S(r, g).

Applying the second main theorem to G, we have

T(r, G) ≤ N(r, G) + N
(

r,
1
G

)
+ N

(
r,

1
G – c

)
+ S(r, g) ≤ 3

s
T(r, g) + S(r, g),

which leads to (n + 1)s ≤ 3. This contradicts the condition on n and s. Therefore, c = 0, and
thus F ≡ G, that is, f n+1 = gn+1. Hence f ≡ dg for some (n + 1)th root d of unity. �

Theorem 3.2 Let f and g be two nonconstant meromorphic functions with multiplicities
of zeros and poles no less than s. Suppose that f n(f – 1)f ′ and gn(g – 1)g ′ share 1 IM, where
s and n are positive integers. Then we have one of the following two cases:

(i) if s = 1 and n ≥ 27, then f (z) ≡ g(z), or we have (1.1);
(ii) if (n – 8)s ≥ 19 for s = 2 and (n – 4)s ≥ 28 for s ≥ 5, then f (z) ≡ g(z).

Proof Let F = 1
n+2 f n+2 – 1

n+1 f n+1 and G = 1
n+2 gn+2 – 1

n+1 gn+1. Then F ′ and G′ share 1 IM, and
by the Valiron–Mokhon’ko theorem we have

T(r, F) = (n + 2)T(r, f ) + S(r, f ), T(r, G) = (n + 2)T(r, g) + S(r, g). (3.9)
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Suppose now that Case (i) of Lemma 2.3 holds. Then we have

T
(
r, F ′) ≤ 4N

(
r,

1
f

)
+ N2

(
r,

1
f – 1

)
+ N2

(
r,

1
f ′

)
+ 3N

(
r,

1
g

)
+ N2

(
r,

1
g – 1

)

+ N2

(
r,

1
g ′

)
+ 2N

(
r,

1
f – 1

)
+ 2N

(
r,

1
f ′

)
+ N

(
r,

1
g – 1

)
+ N

(
r,

1
g ′

)

+ 4N(r, f ) + 3N(r, g) + S(r, f ) + S(r, g). (3.10)

Since T(r, F) ≤ T(r, F ′) + N(r, 1/F) – N(r, 1/F ′) + S(r, f ), we get

T(r, F) ≤ T
(
r, F ′) + N

(
r,

1
f

)
+ N

(
r,

1
f – (n + 2)/(n + 1)

)

– N
(

r,
1

f – 1

)
– N

(
r,

1
f ′

)
+ S(r, f ).

Combining this inequality with (3.10) leads to

T(r, F) ≤ 4N
(

r,
1
f

)
+ 3N

(
r,

1
g

)
+ N2

(
r,

1
g – 1

)
+ N2

(
r,

1
g ′

)
+ 2N

(
r,

1
f – 1

)

+ 2N
(

r,
1
f ′

)
+ N

(
r,

1
g – 1

)
+ N

(
r,

1
g ′

)
+ 4N(r, f ) + 3N(r, g) + N

(
r,

1
f

)

+ N
(

r,
1

f – (n + 2)/(n + 1)

)
+ S(r, f ) + S(r, g). (3.11)

If we use (3.3) and (3.4), then (3.11) means

T(r, F) ≤
(

6 +
10
s

)
T(r, f ) +

(
4 +

8
s

)
T(r, g) + S(r, f ) + S(r, g).

Then this yields

(n + 2)
{

T(r, f ) + T(r, g)
} ≤

(
10 +

18
s

){
T(r, f ) + T(r, g)

}
+ S(r, f ) + S(r, g),

which contradicts to (n – 8)s ≥ 19 for s = 1, 2. If we use (3.6) and (3.7), then (3.11) implies

T(r, F) ≤
(

4 +
14
s

)
T(r, f ) +

(
2 +

13
s

)
T(r, g) + S(r, f ) + S(r, g).

Similarly as before, we conclude that

(n + 2)
{

T(r, f ) + T(r, g)
} ≤

(
6 +

28
s

){
T(r, f ) + T(r, g)

}
+ S(r, f ) + S(r, g),

which contradicts with (n – 4)s ≥ 28 when s ≥ 3.
Thus, by Lemma 2.3, F ′G′ ≡ 1 or F ′ ≡ G′. Consider the case F ′G′ ≡ 1, that is,

f n(f – 1)f ′gn(g – 1)g ′ ≡ 1. (3.12)
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Let z0 be a zero of f with multiplicity p0. Then z0 must be a pole of g of order q0 satisfying

np0 + p0 – 1 = nq0 + 2q0 + 1.

We rewrite it as (n + 1)(p0 – q0) = q0 + 2, which implies p0 ≥ q0 + 1 and q0 + 2 ≥ n + 1, so
that p0 ≥ t = max{n, s + 1}. Let z1 be a zero of f – 1 with multiplicity p1. Then by (3.12) z1

must be a pole of g of order q1 satisfying

2p1 – 1 = nq1 + 2q1 + 1.

Rewrite it as p1 = 1 + (n + 2)q1/2, so that p1 ≥ 1 + (n + 2)s/2. Again from (3.12) we have

N(r, f ) = N
(

r,
1
g

)
+ N

(
r,

1
g – 1

)
+ N0

(
r,

1
g ′

)

≤ 1
t

N
(

r,
1
g

)
+

2
(n + 2)s + 2

N
(

r,
1

g – 1

)
+ N0

(
r,

1
g ′

)
.

By the second main theorem we obtain

T(r, f ) ≤ N(r, f ) + N
(

r,
1
f

)
+ N

(
r,

1
f – 1

)
– N0

(
r,

1
f ′

)
+ S(r, f )

≤ 1
t

N
(

r,
1
f

)
+

1
t

N
(

r,
1
g

)
+

2
(n + 2)s + 2

N
(

r,
1

f – 1

)
+ S(r, f )

+
2

(n + 2)s + 2
N

(
r,

1
g – 1

)
+ N0

(
r,

1
g ′

)
– N0

(
r,

1
f ′

)
(3.13)

and a similar inequality for T(r, g). Combining the two inequalities, we get

T(r, f ) + T(r, g) ≤
(

2
t

+
4

(n + 2)s + 2

){
T(r, f ) + T(r, g)

}
+ S(r, f ) + S(r, g). (3.14)

Since (n – 8)s ≥ 19 for s = 1, 2 and (n – 4)s ≥ 28 for s ≥ 3, we have

1
t

≤ 1
4

,
1

(n + 2)s + 2
≤ 1

21 + 6s
≤ 1

27
.

Thus (3.14) leads to a contradiction. Similarly as in the proof of Theorem 3.1, F ′ ≡ G′

means that F ≡ G. Let h ≡ f /g . If h �≡ 1, then F ≡ G implies (1.1). As we pointed out in
Sect. 1, (1.1) leads to a contradiction for s ≥ 2. Hence, when s ≥ 2, we must have f (z) ≡ g(z).
For s = 1, f (z) ≡ g(z), or (1.1) holds. �

Theorem 3.3 Let f and g be two nonconstant meromorphic functions with multiplicities
of zeros and poles no less than s. Suppose that f n(f – 1)2f ′ and gn(g – 1)2g ′ share 1 IM, where
s and n are positive integers. If (n – 9)s ≥ 19 for s = 1, 2 and (n – 5)s ≥ 28 for s ≥ 3, then
f (z) ≡ g(z).

Proof Let F = 1
n+3 f n+3 – 2

n+2 f n+2 + 1
n+1 f n+1 and G = 1

n+3 gn+3 – 2
n+1 gn+2 + 1

n+1 gn+1. Then F ′ and
G′ share 1 IM, and

T(r, F) = (n + 3)T(r, f ) + S(r, f ), T(r, G) = (n + 3)T(r, g) + S(r, g). (3.15)
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Suppose now that Case (i) of Lemma 2.3 holds. Then we have

T
(
r, F ′) ≤ 4N

(
r,

1
f

)
+ 4N

(
r,

1
f – 1

)
+ N2

(
r,

1
f ′

)

+ 3N
(

r,
1
g

)
+ 3N

(
r,

1
g – 1

)
+ N2

(
r,

1
g ′

)

+ 4N(r, f ) + 3N(r, g) + 2N
(

r,
1
f ′

)
+ N

(
r,

1
g ′

)

+ S(r, f ) + S(r, g). (3.16)

Consider T(r, F) ≤ T(r, F ′) + N(r, 1/F) – N(r, 1/F ′) + S(r, f ). Then we obtain

T(r, F) ≤ T
(
r, F ′) + N

(
r,

1
f

)
+ N

(
r,

1
f – a1

)
+ N

(
r,

1
f – a2

)

– 2N
(

r,
1

f – 1

)
– N

(
r,

1
f ′

)
+ S(r, f ),

where a1 and a2 are distinct solutions of the equation 1
n+3 w2 – 2

n+2 w + 1
n+1 = 0. Combining

this with (3.16), we get

T(r, F) ≤ 4N
(

r,
1
f

)
+ 2N

(
r,

1
f – 1

)
+ 3N

(
r,

1
g

)
+ 3N

(
r,

1
g – 1

)

+ N2

(
r,

1
g ′

)
+ 4N(r, f ) + 3N(r, g)

+ 2N
(

r,
1
f ′

)
+ N

(
r,

1
g ′

)
+ N

(
r,

1
f

)
+ N

(
r,

1
f – a1

)

+ N
(

r,
1

f – a2

)
+ S(r, f ) + S(r, g). (3.17)

By (3.3) and (3.4) from (3.17) it follows that

T(r, F) ≤
(

7 +
10
s

)
T(r, f ) +

(
5 +

8
s

)
T(r, g) + S(r, f ) + S(r, g).

This implies

(n + 3)
{

T(r, f ) + T(r, g)
} ≤

(
12 +

18
s

){
T(r, f ) + T(r, g)

}
+ S(r, f ) + S(r, g),

which is a contradiction unless (n – 9)s ≥ 19. For s ≥ 3, we use (3.6) and (3.7), and (3.17)
leads to

T(r, F) ≤
(

5 +
15
s

)
T(r, f ) +

(
3 +

12
s

)
T(r, g) + S(r, f ) + S(r, g).

Similarly as before, we can conclude that

(n + 3)
{

T(r, f ) + T(r, g)
} ≤

(
8 +

27
s

){
T(r, f ) + T(r, g)

}
+ S(r, f ) + S(r, g),
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which contradicts to (n – 5)s ≥ 28. Thus, by Lemma 2.3, F ′G′ ≡ 1 or F ′ ≡ G′. As in the
proof Theorem 3.2, the case F ′G′ ≡ 1 leads to a contradiction, so we obtain that F ≡ G.
Let h ≡ f /g . Then, similarly as in the proof of Theorem G, we only get h ≡ 1. Hence f (z) ≡
g(z). �

Given specific values of s in Theorems 3.1–3.3, we can compare n in the two conditions
of n and s and see that the second condition is always better than the first one for s ≥ 3.
For example, we consider (n – 4)s ≥ 19: if s = 3, then n ≥ 11; if s = 4, then n ≥ 9; if s = 5, 6,
then n ≥ 8; if s = 7, 8, 9, then n ≥ 7; if 10 ≤ s ≤ 18, then n ≥ 6; and if s ≥ 19, then n ≥ 5.
For the condition ns ≥ 28, if s = 3, then n ≥ 10; if s = 4, then n ≥ 7; if s = 5, 6, then n ≥ 5; if
s = 7, 8, then n ≥ 4; if s = 9, 10, then n ≥ 3; and if 11 ≤ s ≤ 18, then n ≥ 2.

Theorem 3.4 Let f and g be two nonconstant meromorphic functions with multiplicities
of zeros and poles no less than s, where s (≥ 7) is a positive integer. Let n be an integer
satisfying (n – 1)s ≥ 13. If f n(f – 1)f ′ and gn(g – 1)g ′ share 1 CM, then f (z) ≡ g(z).

Proof Let F = 1
n+2 f n+2 – 1

n+1 f n+1 and G = 1
n+2 gn+2 – 1

n+1 gn+1. Then F ′ and G′ share 1 CM,
and (3.9) holds. Suppose now that Case (i) of Lemma 2.2 holds. Then

T
(
r, F ′) ≤ N2

(
r,

1
F ′

)
+ N2

(
r,

1
G′

)
+ N2

(
r, F ′) + N2

(
r, G′)) + S(r, f ) + S(r, g)

≤ 2N
(

r,
1
f

)
+ N2

(
r,

1
f – 1

)
+ N2

(
r,

1
f ′

)
+ 2N

(
r,

1
g

)
+ N2

(
r,

1
g – 1

)

+ N2

(
r,

1
g ′

)
+ 2N(r, f ) + 2N(r, g) + S(r, f ) + S(r, g). (3.18)

From (3.18) we get

T(r, F) ≤ T
(
r, F ′) + N

(
r,

1
f

)
+ N

(
r,

1
f – (n + 2)/(n + 1)

)

– N
(

r,
1

f – 1

)
– N

(
r,

1
f ′

)
+ S(r, f )

≤ 2N
(

r,
1
f

)
+ 2N

(
r,

1
g

)
+ N2

(
r,

1
g – 1

)
+ N2

(
r,

1
g ′

)

+ 2N(r, f ) + 2N(r, g) + N
(

r,
1
f

)

+ N
(

r,
1

f – (n + 2)/(n + 1)

)
+ S(r, f ) + S(r, g)

≤
(

4
s

+ 2
)

T(r, f ) +
(

8
s

+ 1
)

T(r, g) + S(r, f ) + S(r, g), (3.19)

where by Lemma 2.1 for N2(r, 1/g ′), we use

N2

(
r,

1
g ′

)
≤ N3

(
r,

1
g

)
+ N(r, g) + S(r, g) ≤ 4

s
T(r, g) + S(r, g).



Zhang and Wu Journal of Inequalities and Applications         (2019) 2019:66 Page 13 of 14

There also exists a similar inequality for T(r, G). Therefore we have

(n + 2)
{

T(r, f ) + T(r, g)
} ≤

(
12
s

+ 3
){

T(r, f ) + T(r, g)
}

+ S(r, f ) + S(r, g),

which contradicts to (n – 1)s ≥ 13. Thus, by Lemma 2.2, F ′G′ ≡ 1 or F ′ ≡ G′. Then, as in
the proof of Theorem 3.2, we can deduce f (z) ≡ g(z). �

Theorem 3.5 Let f and g be two nonconstant meromorphic functions with multiplicities
of zeros and poles no less than s, where s (≥ 7) is a positive integer. Let n be an integer
satisfying (n – 2)s ≥ 13. If f n(f – 1)2f ′ and gn(g – 1)2g ′ share 1 CM, then f (z) ≡ g(z).

Proof Let F = 1
n+3 f n+3 – 2

n+2 f n+2 + 1
n+1 f n+1 and G = 1

n+3 gn+3 – 2
n+1 gn+2 + 1

n+1 gn+1. Then F ′

and G′ share 1 CM, and (3.15) holds. Suppose now that Case (i) of Lemma 2.2 holds.
Proceeding as in the proof of Theorem 3.4, we have

T
(
r, F ′) ≤ 2N

(
r,

1
f

)
+ 2N

(
r,

1
f – 1

)
+ N2

(
r,

1
f ′

)
+ 2N

(
r,

1
g

)
+ 2N

(
r,

1
g – 1

)

+ N2

(
r,

1
g ′

)
+ 2N(r, f ) + 2N(r, g) + S(r, f ) + S(r, g). (3.20)

Then we obtain

T(r, F) ≤ T
(
r, F ′) + N

(
r,

1
f

)
+ N

(
r,

1
f – a1

)
+ N

(
r,

1
f – a2

)

– 2N
(

r,
1

f – 1

)
– N

(
r,

1
f ′

)
+ S(r, f )

≤ 2N
(

r,
1
f

)
+ 2N

(
r,

1
g

)
+ 2N

(
r,

1
g – 1

)
+ N2

(
r,

1
g ′

)

+ 2N(r, f ) + 2N(r, g) + N
(

r,
1
f

)

+ N
(

r,
1

f – a1

)
+ N

(
r,

1
f – a1

)
+ S(r, f ) + S(r, g)

≤
(

4
s

+ 3
)

T(r, f ) +
(

8
s

+ 2
)

T(r, g) + S(r, f ) + S(r, g), (3.21)

where we use the inequality N2(r, 1/g ′) ≤ (4/s)T(r, g) + S(r, g). Similarly as before, we get

(n + 3)
{

T(r, f ) + T(r, g)
} ≤

(
12
s

+ 5
){

T(r, f ) + T(r, g)
}

+ S(r, f ) + S(r, g),

which contradicts to (n – 2)s ≥ 13. Thus by Lemma 2.2, F ′G′ ≡ 1 or F ′ ≡ G′. As in the
proof Theorem 3.3, we must have f (z) ≡ g(z). �

By giving specific values for s ≥ 7 it is easy to see that the condition (n – 1)s ≥ 13 in
Theorem 3.4 and (n – 2)s ≥ 13 in Theorem 3.5 are sharper than the condition (n – 2)s ≥ 10
in Theorem F and (n – 3)s ≥ 10 in Theorem G, respectively.

For further study of related problems, we would like to pose the following question.
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Open question Let n, k be positive integers, and let m be a nonnegative integer. Suppose
that f n(f – 1)mf (k) and gn(g – 1)mg(k) share a CM (or IM), where a ( �≡ 0,∞) is a small
function of f and g . Under what conditions can we get f ≡ g?

4 Conclusions
Using the notion of multiplicity, in this paper, we provide five results, which extend the
main results that were derived in the paper [1] and answer two open problems posed by
Dyavanal in the same paper. Obtaining our results from more general hypotheses without
complicated calculations is probably the most interesting feature of this paper. Finally, in
this paper, we pose one more general open question for further studies.
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