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1 Introduction
Let p be a prime number, and let x ∈ Q. Then the non-Archimedean p-adic norm |x|p
is defined as follows: if x = 0, then |0|p = 0; if x �= 0 is an arbitrary rational number with
unique representation x = pγ m

n , where m, n are not divisible by p, and γ = γ (x) ∈ Z, then
|x|p = p–γ . This norm has the following properties: |xy|p = |x|p|y|p, |x+y|p ≤ max{|x|p, |y|p},
and |x|p = 0 if and only if x = 0. Moreover, when |x|p �= |y|p, we have |x+y|p = max{|x|p, |y|p}.
Let Qp be the field of p-adic numbers defined as the completion of the field of rational
numbers Q with respect to the non-Archimedean p-adic norm | · |p. For γ ∈ Z, we denote
the ball Bγ (a) with center at a ∈Qp and radius pγ and its boundary Sγ (a) by

Bγ (a) =
{

x ∈Qp : |x – a|p ≤ pγ
}

, Sγ (a) =
{

x ∈Qp : |x – a|p = pγ
}

,

respectively. It is easy to see that

Bγ (a) =
⋃

k≤γ

Sk(a).

For n ∈ N, the space Qn
p = Qp × · · · × Qp consists of all points x = (x1, . . . , xn) where

xi ∈Qp, i = 1, . . . , n, n ≥ 1. The p-adic norm of Qn
p is defined by

|x|p = max
1≤i≤n

|xi|p, x ∈Qn
p.
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Thus it is easy to see that |x|p is a non-Archimedean norm on Qn
p . The balls Bγ (a) and the

sphere Sγ (a) in Qn
p for γ ∈ Z are defined similarly to the case n = 1.

Since Qn
p is a locally compact commutative group under addition, by the standard anal-

ysis there exists the Haar measure dx on the additive group Qn
p normalized by

∫
B0

dx =
|B0|H = 1, where |E|H denotes the Haar measure of a measurable set E ⊂ Qn

p . Then by a
simple calculation the Haar measures of any balls and spheres can be obtained. From the
integral theory it is easy to see that |Bγ (a)|H = pnγ and |Sγ (a)|H = pnγ (1 – p–n) for any
a ∈Qn

p . For a more complete introduction to the p-adic analysis, we refer to [1–8] and the
references therein.

The p-adic numbers have been applied in the string theory, turbulence theory, statistical
mechanics, quantum mechanics, and so forth (see [1, 9, 10] for detail). In the past few
years, there is an increasing interest in the study of harmonic analysis on p-adic field (see
[5–8] for detail).

Let Ω ∈ L∞(Qn
p) be such that Ω(pjx) = Ω(x) for all j ∈ Z and

∫
|x|p=1 Ω(x) dx = 0. Then

the p-adic singular integral operators defined by Taibleson [5] are as follows:

Tk(f )(x) =
∫

|y|p>pk
f (x – y)

Ω(y)
|y|np

dz for k ∈ Z.

The p-adic singular integral operator T is defined as the limit of Tk as k goes to –∞.

Moreover, let
−→
b = (b1, b2, . . . , bm), where bi ∈ Lloc(Qn

p) for 1 ≤ i ≤ m. Then the higher
commutator generated by 	b and Tk can be defined as

T 	b
k f (x) =

∫

|y|p>pk

m∏

i=1

(
bi(x) – bi(x – y)

)
f (x – y)

Ω(y)
|y|np

dz for k ∈ Z,

and the commutator generated by
−→
b = (b1, b2, . . . , bm) and the p-adic singular integral

operator T is defined as the limit of T 	b
k as k goes to –∞.

Under some conditions, the authors in [5, 11] showed that Tk were of type (q, q) for
1 < q < ∞ and of weak type (1, 1) on local fields. Wu et al. [12] established the boundedness
of Tk on p-adic central Morrey spaces. Furthermore, the λ-central BMO estimates for
commutators of these singular integral operators on p-adic central Morrey spaces were
obtained in [12]. Moreover, in the p-adic linear space Qn

p , Volosivets [13] gave sufficient
conditions for the boundedness of the maximal function and Riesz potential in p-adic
generalized Morrey spaces. Mo et al. [14] established the boundedness of the commutators
generated by the p-adic Riesz potential and p-adic generalized Campanato functions in p-
adic generalized Morrey spaces.

Motivated by the works of [12–14], we consider the boundedness of Tk on the p-adic
generalized Morrey type spaces, as well as the boundedness of the commutators generated
by Tk and p-adic generalized Campanato functions.

Throughout this paper, the letter C will be used to denote constants varying from line to
line. The relation A � B means that A ≤ CB with some positive constant C independent
of appropriate quantities.

2 Some notation and lemmas
Definition 2.1 ([13]) Let 1 ≤ q < ∞, and let ω(x) be a nonnegative measurable function in
Qn

p . A function f ∈ Lq
loc(Qn

p) is said to belong to the generalized Morrey space GMq,ω(Qn
p)
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if

‖f ‖GMq,ω = sup
a∈Qn

p ,γ∈Z

1
ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣f (y)
∣∣q dy

)1/q

< ∞,

where ω(Bγ (a)) =
∫

Bγ (a) ω(x) dx.

Let λ ∈R. If ω(Bγ (a)) = |Bγ (a)|λ, then GMq,ω(Qn
p) is the classical Morrey space Mq,λ(Qn

p).
About the generalized Morrey space, see [15], and for the classical Morrey spaces, see [16]
and so on.

Moreover, let λ ∈ R and 1 ≤ q < ∞. The p-adic central Morrey space CMq,λ(Qn
p) (see

[8]) is defined by

‖f ‖CMq,λ = sup
γ∈Z

(
1

|Bγ (0)|1+λq
H

∫

Bγ (0)

∣∣f (y)
∣∣q dy

)1/q

< ∞.

Definition 2.2 ([17]) For 0 < β < 1, the the p-adic Lipschitz space Λβ (Qn
p) is defined as

the set of all functions f : Qn
p �→C such that

‖f ‖Λβ (Qn
p) = sup

x,h∈Qn
p ,h�=0

|f (x + h) – f (x)|
|h|βp

< ∞.

Definition 2.3 ([13]) Let B be a ball in Qn
p , 1 ≤ q < ∞, and let ω(x) be a nonnegative

measurable function in Qn
p . A function f ∈ Lq

loc(Qn
p) is said to belong to the generalized

Campanato space GCq,ω(Qn
p) if

‖f ‖GCq,ω = sup
a∈Qn

p ,γ∈Z

1
ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣f (y) – fBγ (a)
∣∣q dy

)1/q

< ∞,

where fBγ (a) = 1
|Bγ (a)|H

∫
Bγ (a) f (x) dx and ω(Bγ (a)) =

∫
Bγ (a) ω(x) dx.

The classical Campanato spaces can be found in [18, 19], and so on. The important
particular case of GCq,ω(Qn

p) is BMOq,λ(Qn
p), where 1 < q < ∞ and 0 < λ < 1/n. The central

BMO space CBMOq,λ(Qn
p) is defined by

‖f ‖CBMOq,λ(Qn
p) = sup

γ∈Z
1

|Bγ (0)|λH

(
1

|Bγ (0)|H
∫

Bγ (0)

∣∣f (y) – fBγ (0)
∣∣q dy

)1/q

< ∞. (2.1)

Lemma 2.1 ([14]) Let 1 ≤ q < ∞, and let ω be a nonnegative measurable function. Let
b ∈ GCq,ω(Qn

p). Then

|bBk (a) – bBj(a)| ≤ ‖b‖GCq,ω |j – k|max
{
ω

(
Bk(a)

)
,ω

(
Bj(a)

)}

for j, k ∈ Z and any fixed a ∈Qn
p .

Thus, for j > k, from Lemma 2.1 we deduce that

(∫

Bj(a)

∣∣b(y) – bBk (a)
∣∣q dy

)1/q

≤ (j + 1 – k)
∣∣Bj(a)

∣∣1/q
H ω

(
Bj(a)

)‖b‖GCq,ω . (2.2)
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Lemma 2.2 ([5]) Let Ω ∈ L∞(Qn
p) be such that Ω(pjx) = Ω(x) for all j ∈ Z and

∫
|x|p=1 Ω(x) dx = 0. If

sup
|y|p=1

∞∑

j=1

∫

|x|p=1

∣∣Ω
(
x + pjy

)
– Ω(x)

∣∣dx < ∞,

then for 1 < p < ∞, there is a constant C > 0 such that

∥∥Tk(f )
∥∥

Lp(Qn
p) ≤ C‖f ‖Lp(Qn

p)

for k ∈ Z, where C is independent of f and k ∈ Z.

Furthermore, T(f ) = limk→–∞ Tk(f ) exists in the Lp norm, and

∥∥T(f )
∥∥

Lp(Qn
p) ≤ C‖f ‖Lp(Qn

p).

Moreover, on the p-adic field, the Riesz potential Ip
α is defined by

Iα
p f (x) =

1
Γn(α)

∫

Qn
p

f (y)
|x – y|n–α

p
dy,

where Γn(α) = (1 – pα–n)/(1 – p–α) for α ∈C, α �= 0.

Lemma 2.3 ([14]) Let α be a complex number with 0 < Reα < n, and let 1 < r < ∞, 1 < q <
n/ Reα, and 0 < 1/r = 1/q – Reα/n. Suppose that both ω and ν are nonnegative measurable
functions such that

∞∑

j=γ

pj Reα
ν(Bj(a))
ω(Bγ (a))

= C < ∞

for any a ∈Qn
p and γ ∈ Z. Then the Riesz potential Iα

p is bounded from GMq,ν to GMr,ω .

3 Main results
In this section, we state the main results of the paper.

Theorem 3.1 Let 1 < q < ∞, and let Ω(pjx) = Ω(x) for all j ∈ Z,
∫
|x|p=1 Ω(x) dx = 0, and

sup
|y|p=1

∞∑

j=1

∫

|x|p=1

∣∣Ω
(
x + pjy

)
– Ω(x)

∣∣dx < ∞.

Suppose that both ω and ν are nonnegative measurable functions such that

∞∑

j=γ

ν
(
Bj(a)

)
/ω

(
Bγ (a)

)
= C < ∞ (3.1)

for any γ ∈ Z and a ∈Qn
p . Then the singular integral operators Tk are bounded from GMq,ν

to GMq,ω for all k ∈ Z. Moreover, T(f ) = limk→–∞ Tk(f ) exists in GMq,ω , and the operator
T is bounded from GMq,ν to GMq,ω .
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Corollary 3.1 Let 1 < q < ∞, λ < 0, and let Ω ∈ L∞(Qn
p) be such that Ω(pjx) = Ω(x) for all

j ∈ Z,
∫
|x|p=1 Ω(x) dx = 0, and

sup
|y|p=1

∞∑

j=1

∫

|x|p=1

∣∣Ω
(
x + pjy

)
– Ω(x)

∣∣dx < ∞.

Then the operators Tk and T are bounded on the space Mq,λ for all k ∈ Z.

In fact, for λ < 0, taking ω(B) = ν(B) = |B|λH in Theorem 3.1, we obtain Corollary 3.1. If the
Morrey space Mq,λ(Qn

p) is replaced by the central Morrey space CMq,λ(Qn
p) in Corollary 3.1,

then the conclusion is that of Theorem 4.1 in [12].

Theorem 3.2 Let Ω ∈ L∞(Qn
p) be such that Ω(pjx) = Ω(x) for all j ∈ Z,

∫
|x|p=1 Ω(x) dx = 0,

and

sup
|y|p=1

∞∑

j=1

∫

|x|p=1

∣∣Ω
(
x + pjy

)
– Ω(x)

∣∣dx < ∞.

Let 0 < βi < 1 for i = 1, 2, . . . , m be such that 0 < β =
∑m

i=1 βi < n, and let 1 < r < ∞ and
1 < q < n/β be such that 1/r = 1/q – β/n. Suppose that bi ∈ Λβi , i = 1, 2, . . . , m, and both ω

and ν are nonnegative measurable functions such that

∞∑

j=γ

pjβν
(
Bj(a)

)
/ω

(
Bγ (a)

)
= C < ∞ (3.2)

for any γ ∈ Z and a ∈Qn
p . Then the commutators T 	b

k are bounded from GMq,ν to GMr,ω for
all k ∈ Z. Moreover, the commutator T 	b(f ) = limk→–∞ T 	b

k (f ) exists in the space of GMq,ω ,
and T 	b is bounded from GMq,ν to GMq,ω .

Theorem 3.3 Let Ω ∈ L∞(Qn
p) be such that Ω(pjx) = Ω(x) for all j ∈ Z,

∫
|x|p=1 Ω(x) dx = 0,

and

sup
|y|p=1

∞∑

j=1

∫

|x|p=1

∣∣Ω
(
x + pjy

)
– Ω(x)

∣∣dx < ∞.

Let 1 < q, r, q1, . . . , qm < ∞ be such that 1/r = 1/q+1/q1 +1/q2 + · · ·+1/qm. Suppose that ω, ν ,
and νi (i = 1, 2, . . . , m) are nonnegative measurable functions. Suppose that bi ∈ GCqi ,νi (Qn

p),
i = 1, 2, . . . , m, and the functions ω, ν , and νi (i = 1, 2, . . . , m) satisfy the following conditions:

(i)
∏m

i=1 νi(Bγ (a))ν(Bγ (a))/ω(Bγ (a)) = C < ∞,
(ii)

∑∞
j=γ +1

∏m
i=1 νi(Bj(a))(j + 1 – γ )mν(Bj(a))/ω(Bγ (a)) = C < ∞

for any γ ∈ Z and a ∈ Qn
p . Then the commutators T 	b

k are bounded from GMq,ν to GMr,ω

for all k ∈ Z. The commutator T 	b = limk→–∞ T 	b
k exists in the space of GMq,ω , and T 	b is

bounded from GMq,ν to GMq,ω .
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Corollary 3.2 Let Ω ∈ L∞(Qn
p) be such that Ω(pjx) = Ω(x) for all j ∈ Z,

∫
|x|p=1 Ω(x) dx = 0,

and

sup
|y|p=1

∞∑

j=1

∫

|x|p=1

∣∣Ω
(
x + pjy

)
– Ω(x)

∣∣dx < ∞.

Let 1 < q, r, q1, . . . , qm < ∞ be such that 1/r = 1/q + 1/q1 + 1/q2 + · · · + 1/qm. Let 0 ≤
λ1, . . . ,λm < 1/n, λ < –

∑m
i=1 λi, and λ̃ =

∑m
i=1 λi + λ. If bi ∈ BMOqi ,λi (Qn

p), then the com-
mutators T 	b

k and T 	b are bounded from Mq,λ to Mr,λ̃ for all k ∈ Z.

Moreover, let 1 < r, q, q1 < ∞ be such that 1/r = 1/q + 1/q1. Let 0 ≤ λ1 < 1/n, λ < –λ1, and
λ̃ = λ1 + λ. If b ∈ CBMOq1,λ1 (Qn

p), then from Corollary 3.1 it follows that the commutators
Tb

k = [Tk , b] and Tb = [T , b] are bounded from CMq,λ to CMr,λ̃ for all k ∈ Z. These results
are those of Theorem 4.2 in [12].

4 Proof of Theorems 3.1–3.3
Let us first give the proof of Theorem 3.1.

For any fixed γ ∈ Z and a ∈Qn
p , it is easy to see that

1
ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣Tk(f )(x)
∣∣q dx

)1/q

≤ 1
ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣Tk(f )(f χBγ (a))(x)
∣∣q dx

)1/q

+
1

ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣Tk(f χBc
γ (a))(x)

∣∣q dx
)1/q

:= I + II, (4.1)

where Bc
γ (a) is the complement to Bγ (a) in Qn

p .
Using Lemma 2.2 and (3.1), it follows that

I � 1
ω(Bγ (a))

1
|Bγ (a)|1/q

H

(∫

Bγ (a)

∣∣f (x)
∣∣q dx

)1/q

=
ν(Bγ (a))
ω(Bγ (a))

1
ν(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣f (x)
∣∣q dx

)1/q

� ‖f ‖GMq,ν . (4.2)

For II , let us first estimate |Tk(f χBc
γ (a))(x)|.

Since x ∈ Bγ (a) and Ω ∈ L∞(Qn
p), we have

∣∣Tk(f χBc
γ (a))(x)

∣∣ =
∣∣∣∣

∫

|y|p>pk
(f χBc

γ (a))(x – y)
Ω(y)
|y|np

dy
∣∣∣∣

=
∣∣∣∣

∫

|x–z|p>pk
(f χBc

γ (a))(z)
Ω(x – z)
|x – z|np

dz
∣∣∣∣

�
∫

Bc
γ (a)

|f (z)|
|x – z|np

dz
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�
∞∑

j=γ +1

∫

Sj(a)
p–jn∣∣f (y)

∣∣dy

≤
∞∑

j=γ +1

p–jn
(∫

Bj(a)

∣∣f (y)
∣∣q dy

)1/q∣∣Bj(a)
∣∣1–1/q
H

= ‖f ‖GMq,ν

∞∑

j=γ +1

ν
(
Bj(a)

)
. (4.3)

Thus from (3.1) and (4.3) it follows that

II =
1

ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣Tk(f χBc
γ (a))(x)

∣∣q dx
)1/q

� ‖f ‖GMq,ν

∞∑

j=γ +1

ν
(
Bj(a)

)
/ω

(
Bγ (a)

)

� ‖f ‖GMq,ν . (4.4)

Combining the estimates of (4.1), (4.2), and (4.4), we have

1
ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣Tk(f )(x)
∣∣q dx

)1/q

� ‖f ‖GMq,ν ,

which means that Tk is bounded from GMq,ν to GMq,ω for all k ∈ Z.
Moreover, from Lemma 2.2 and the definition of GMq,ω(Qn

p) it is obvious that T(f ) =
limk→–∞ Tk(f ) exists in GMq,ω and the operator T is bounded from GMq,ν to GMq,ω .

Proof of Theorem 3.2 For any x ∈ Qn
p , since Ω ∈ L∞(Qn

p) and bi ∈ Λβi , i = 1, 2, . . . , m, it is
easy to see that

∣∣T 	b
k f (x)

∣∣

≤
∫

|y|p>pk

m∏

i=1

∣∣bi(x) – bi(x – y)
∣∣∣∣f (x – y)

∣∣ |Ω(y)|
|y|np

dy

�
∫

Qn
p

|f (z)|
|x – z|n–β

p
dz

� Iβ
p
(|f |)(x).

Thus from Lemma 2.3 it is obvious that the commutators T 	b
k are bounded from GMq,ν

to GMr,ω for all k ∈ Z.
Moreover, from the definition of GMq,ω(Qn

p) it is obvious that T 	b(f ) = limk→–∞ T 	b
k (f )

exists in the space of GMq,ω , and the commutator T 	b is bounded from GMq,ν to
GMq,ω . �

Proof of Theorem 3.3 Without loss of generality, we need only to show that the conclusion
holds for m = 2.
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For any fixed γ ∈ Z and a ∈Qn
p , we write f 0 = f χBγ (a) and f ∞ = f χBc

γ (a). Then

1
ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣T (b1,b2)
k (f )(x)

∣∣r dx
)1/r

≤ 1
ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣(b1(x) – (b1)Bγ (a)
)(

b2(x) – (b2)Bγ (a)
)
Tk

(
f 0)(x)

∣∣r dx
)1/r

+
1

ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣(b1(x) – (b1)Bγ (a)
)
Tk

((
b2 – (b2)Bγ (a)

)
f 0)(x)

∣∣r dx
)1/r

+
1

ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣(b2(x) – (b2)Bγ (a)
)
Tk

((
b1 – (b1)Bγ (a)

)
f 0)(x)

∣∣r dx
)1/r

+
1

ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣Tk
((

b1 – (b1)Bγ (a)
)(

b2 – (b2)Bγ (a)
)
f 0)(x)

∣∣r dx
)1/r

+
1

ω(Bγ (a))

×
(

1
|Bγ (a)|H

∫

Bγ (a)

∣∣(b1(x) – (b1)Bγ (a)
)(

b2(x) – (b2)Bγ (a)
)
Tk

(
f ∞)

(x)
∣∣r dx

)1/r

+
1

ω(Bγ (a))

×
(

1
|Bγ (a)|H

∫

Bγ (a)

∣∣(b1(x) – (b1)Bγ (a)
)
Tk

((
b2 – (b2)Bγ (a)

)
f ∞)

(x)
∣∣r dx

)1/r

+
1

ω(Bγ (a))

×
(

1
|Bγ (a)|H

∫

Bγ (a)

∣∣(b2(x) – (b2)Bγ (a)
)
Tk

((
b1 – (b1)Bγ (a)

)
f ∞)

(x)
∣∣r dx

)1/r

+
1

ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣Tk
((

b1 – (b1)Bγ (a)
)(

b2 – (b2)Bγ (a)
)
f ∞)

(x)
∣∣r dx

)1/r

=: E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8. (4.5)

We further estimate every part.
Since 1/r = 1/q + 1/q1 + 1/q2, from Hölder’s inequality, Lemma 2.2, and (i) it follows that

E1 =
1

ω(Bγ (a))

×
(

1
|Bγ (a)|H

∫

Bγ (a)

∣∣(b1(x) – (b1)Bγ (a)
)(

b2(x) – (b2)Bγ (a)
)
Tk

(
f 0)(x)

∣∣r dx
)1/r

≤ 1
ω(Bγ (a))|Bγ (a)|1/r

H

2∏

i=1

(∫

Bγ (a)

∣
∣bi(x) – (bi)Bγ (a)

∣
∣qi dx

)1/qi

×
(∫

Bγ (a)

∣∣Tk
(
f 0)(x)

∣∣q dx
)1/q
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� ν1(Bγ (a))ν2(Bγ (a))
ω(Bγ (a))|Bγ (a)|1/q

H

2∏

i=1

‖bi‖GCqi ,νi

(∫

Bγ (a)

∣∣f (x)
∣∣q dx

)1/q

≤ ν(Bγ (a))ν1(Bγ (a))ν2(Bγ (a))
ω(Bγ (a))

2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν

�
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν .

Let 1/q̄ = 1/q + 1/q2. Then 1/r = 1/q1 + 1/q̄. Thus, from Hölder’s inequality, Lemma 2.2,
and (i) we obtain

E2 =
1

ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣(b1(x) – (b1)Bγ (a)
)
Tk

((
b2 – (b2)Bγ (a)

)
f 0)(x)

∣∣r dx
)1/r

≤ 1
ω(Bγ (a))|Bγ (a)|1/r

H

(∫

Bγ (a)

∣∣b1(x) – (b1)Bγ (a)
∣∣q1 dx

)1/q1

×
(∫

Bγ (a)

∣∣Tk
((

b2 – (b2)Bγ (a)
)
f 0)(x)

∣∣q̄ dx
)1/q̄

� 1
ω(Bγ (a))|Bγ (a)|1/r

H

(∫

Bγ (a)

∣∣b1(x) – (b1)Bγ (a)
∣∣q1 dx

)1/q1

×
(∫

Bγ (a)

∣∣(b2(x) – (b2)Bγ (a)
)
f (x)

∣∣q̄ dx
)1/q̄

≤ 1
ω(Bγ (a))|Bγ (a)|1/r

H

2∏

i=1

(∫

Bγ (a)

∣∣bi(x) – (bi)Bγ (a)
∣∣qi dx

)1/qi(∫

Bγ (a)

∣∣f (x)
∣∣q dx

)1/q

≤ ν(Bγ (a))ν1(Bγ (a))ν2(Bγ (a))
ω(Bγ (a))

2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν

�
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν .

Similarly,

E3 �
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν .

For E4, from Lemma 2.2, Hölder’s inequality, and (i) we obtain

E4 =
1

ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣Tk
(
b1 – (b1)Bγ (a)

)(
b2 – (b2)Bγ (a)

)
f 0)(x)

∣∣r dx
)1/r

� 1
ω(Bγ (a))|Bγ (a)|1/r

H

(∫

Bγ (a)

∣∣(b1(x) – (b1)Bγ (a)
)(

b2(x) – (b2)Bγ (a)
)
f (x)

∣∣r dx
)1/r

≤ 1
ω(Bγ (a))|Bγ (a)|1/r

H

2∏

i=1

(∫

Bγ (a)

∣∣bi(x) – (bi)Bγ (a)
∣∣qi dx

)1/qi(∫

Bγ (a)

∣∣f (x)
∣∣q dx

)1/q
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≤ ν(Bγ (a))ν1(Bγ (a))ν2(Bγ (a))
ω(Bγ (a))

2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν

�
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν .

To estimate E5, we first need to consider |Tk(f ∞)(x)|. In fact, by (4.3) it is easy to see that

∣∣Tk
(
f ∞)

(x)
∣∣� ‖f ‖GMq,ν

∞∑

j=γ +1

ν
(
Bj(a)

)
. (4.6)

Therefore from Hölder’s inequality, (4.6), and (ii) we get

E5 =
1

ω(Bγ (a))

×
(

1
|Bγ (a)|H

∫

Bγ (a)

∣∣(b1(x) – (b1)Bγ (a)
)(

b2(x) – (b2)Bγ (a)
)
Tk

(
f ∞)

(x)
∣∣r dx

)1/r

≤ 1
ω(Bγ (a))|Bγ (a)|1/r

H

2∏

i=1

(∫

Bγ (a)

∣∣bi(x) – (bi)Bγ (a)
∣∣qi dx

)1/qi

×
(∫

Bγ (a)

∣∣Tk
(
f ∞)

(x)f (x)
∣∣q dx

)1/q

�
∞∑

j=γ +1

ν(Bj(a))ν1(Bγ (a))ν2(Bγ (a))
ω(Bγ (a))

2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν

�
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν .

It is similar to estimate (4.3) for x ∈ Bγ (a). By Ω ∈ L∞(Qn
p) and (2.2) we can deduce that

∣∣Tk
(
b2 – (b2)Bγ (a)

)
f ∞)(x)

∣∣

=
∣∣∣∣

∫

|y|p>pk

(
b2(x – y) – (b2)Bγ (a)

)
f χBc

γ (a)(x – y)
Ω(y)
|y|np

dy
∣∣∣∣

≤
∫

Bc
γ

∣∣b2(z) – (b2)Bγ (a)
∣∣∣∣f (z)

∣∣ |Ω(x – z)|
|x – z|np

dz

�
∫

Bc
γ

|b2(z) – (b2)Bγ (a)||f (z)|
|x – z|np

dz

�
∞∑

j=γ +1

∫

Sj(a)
p–jn∣∣b2(z) – (b2)Bγ (a)

∣∣∣∣f (y)
∣∣dy

=
∞∑

j=γ +1

p–jn∣∣Bj(a)
∣∣1–1/q–1/q2
H

(∫

Sj(a)

∣∣f (y)
∣∣q dy

)1/q(∫

Sj(a)

∣∣b2(y) – (b2)Bγ (a)
∣∣q2 dy

)1/q2
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≤ ‖f ‖GMq,ν

∞∑

j=γ +1

p–jn∣∣Bj(a)
∣∣1–1/q2
H ν

(
Bj(a)

)(∫

Bj(a)

∣∣b2(y) – (b2)Bγ (a)
∣∣q2 dy

)1/q2

� ‖b2‖GCq2,ν2
‖f ‖GMq,ν

∞∑

j=γ +1

(j + 1 – γ )ν
(
Bj(a)

)
ν2

(
Bj(a)

)
. (4.7)

Let 1/q̄ = 1/q + 1/q2. Then 1/r = 1/q1 + 1/q̄. Thus from Hölder’s inequality, (4.7), and (ii)
it follows that

E6 =
1

ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣(b1(x) – (b1)Bγ (a)
)
Tk

((
b2 – (b2)Bγ (a)

)
f ∞)

(x)
∣∣r dx

)1/r

≤ 1
ω(Bγ (a))|Bγ (a)|1/r

H

(∫

Bγ (a)

∣∣b1(x) – (b1)Bγ (a)
∣∣q1 dx

)1/q1

×
(∫

Bγ (a)

∣∣Tk
((

b2 – (b2)Bγ (a)
)
f ∞)

(x)
∣∣q̄ dx

)1/q̄

≤
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν

1
ω(Bγ (a))

∞∑

j=γ +1

(j + 1 – γ )ν
(
Bj(a)

)
ν2

(
Bj(a)

)
ν1

(
Bγ (a)

)

�
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν .

Similarly estimating E6, we obtain

E7 �
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν .

Moreover, since Ω ∈ L∞(Qn
p), by (2.2) it is easy to see that

∣∣Tk
((

b1 – (b1)Bγ (a)
)(

b2 – (b2)Bγ (a)
)
f ∞)

(x)
∣∣

=
∣∣∣∣

∫

|x–z|p>pk

(
b1(z) – (b1)Bγ (a)

)(
b2(z) – (b2)Bγ (a)

)
f χBc

γ (a)(z)
Ω(x – z)
|x – z|np

dz
∣∣∣∣

≤
∫

Bc
γ

∣∣b1(z) – (b1)Bγ (a)
∣∣∣∣b2(z) – (b2)Bγ (a)

∣∣∣∣f (z)
∣∣ |Ω(x – z)|

|x – z|np
dz

�
∞∑

j=γ +1

∫

Sj(a)
p–jn∣∣b1(z) – (b1)Bγ (a)

∣∣∣∣b2(z) – (b2)Bγ (a)
∣∣∣∣f (y)

∣∣dy

=
∞∑

j=γ +1

p–jn∣∣Bj(a)
∣∣1–1/q–1/q1–1/q2
H

(∫

Sj(a)

∣∣f (y)
∣∣q dy

)1/q

×
(∫

Sj(a)

∣∣b1(y) – (b1)Bγ (a)
∣∣q1 dy

)1/q1

×
(∫

Sj(a)

∣∣b2(y) – (b2)Bγ (a)
∣∣q2 dy

)1/q2

�
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν

∞∑

j=γ +1

(j + 1 – γ )2ν
(
Bj(a)

)
ν1

(
Bj(a)

)
ν2

(
Bj(a)

)
. (4.8)
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Therefore from (4.8) and (ii) we get that

E8 =
1

ω(Bγ (a))

(
1

Bγ (a)|H
∫

B

∣∣Tk
((

b1 – (b1)Bγ (a)
)(

b2 – (b2)Bγ (a)
)
f ∞)

(x)
∣∣r dx

)1/r

≤
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν

1
ω(Bγ (a))

∞∑

j=γ +1

(j + 1 – γ )2ν
(
Bj(a)

)
ν1

(
Bj(a)

)
ν2

(
Bj(a)

)

�
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν .

Combining (4.5) and the estimates of E1, E2, . . . , E8, we have

1
ω(Bγ (a))

(
1

|Bγ (a)|H
∫

Bγ (a)

∣∣T (b1,b2)
k (f )(x)

∣∣r dx
)1/r

≤
2∏

i=1

‖bi‖GCqi ,νi
‖f ‖GMq,ν ,

which means that the commutator T (b1,b2)
k is bounded from GMq,ν to GMr,ω .

Moreover, by Lemma 2.2 and the definition of GMq,ω(Qn
p) it is obvious that the commu-

tator T 	b(f ) = limk→–∞ T 	b
k (f ) exists in the space of GMq,ω , and T 	b is bounded from GMq,ν

to GMq,ω .
Therefore the proof of Theorem 3.3 is complete. �

5 Conclusion
In this paper, we established the boundedness of a class of p-adic singular integral op-
erators on the p-adic generalized Morrey spaces. We also considered the corresponding
boundedness for the commutators generalized by the p-adic singular integral operators
and p-adic Lipschitz functions or p-adic generalized Campanato functions.
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