A generalized nonlinear Picone identity for the p-biharmonic operator and its applications

Tingfu Feng ${ }^{1 *}$

*Correspondence
ftfml@mail.nwpu.edu.cn
${ }^{1}$ Department of Mathematics, Kunming University, Kunming, P.R. China

Abstract

A generalized nonlinear Picone identity for the p-biharmonic operator is established in this paper. As applications, a Sturmian comparison principle to the p-biharmonic equation with singular term, a Liouville's theorem to the p-biharmonic system, and a generalized Hardy-Rellich type inequality are obtained.

MSC: Primary 26D10; secondary 26D15 Keywords: p-biharmonic operator; Generalized nonlinear Picone identity; Sturmian comparison principle; Liouville's theorem; Hardy-Rellich type inequality

1 Introduction and results

In 1971, Dunninger [1] established a Picone identity

$$
\begin{align*}
\operatorname{div} & {\left[u \nabla(a \Delta u)-a \Delta u \nabla u-\frac{u^{2}}{v} \nabla(A \Delta v)+A \Delta v \nabla\left(\frac{u^{2}}{v}\right)\right] } \\
= & -\frac{u^{2}}{v} \Delta(A \Delta v)+u \Delta(a \Delta u)+(A-a)(\Delta u)^{2} \\
& -A\left(\Delta u-\frac{u}{v} \Delta v\right)^{2}+A \frac{2 \Delta v}{v}\left(\nabla u-\frac{u}{v} \nabla v\right)^{2}, \tag{1.1}
\end{align*}
$$

where $u, v, a \Delta u, A \Delta v$ are twice continuously differentiable functions with $v \neq 0$ and a and A are positive weights. In [1], the integral form of (1.1) was used to study qualitative results for the fourth order elliptic system

$$
\begin{aligned}
& \Delta(a(x) \Delta u)-c(x) u=0, \\
& \Delta(A(x) \Delta v)-C(x) v=0 .
\end{aligned}
$$

A Sturmian comparison principle, an integral inequality of Wirtinger type, and lower bound for eigenvalue were obtained. Jaroš [6] extended (1.1) to the case where $\Delta(a(x) \Delta u)$ and $\Delta(A(x) \Delta v)$ were replaced by the weighted p-biharmonic operators $\Delta\left(a(x)|\Delta u|^{p-2} \Delta u\right)$ and $\Delta\left(A(x)|\Delta v|^{p-2} \Delta v\right)$, respectively, and showed some results similar to [1] for the fourth
order elliptic system

$$
\begin{aligned}
& \Delta\left(a(x)|\Delta u|^{p-2} \Delta u\right)-c(x)|u|^{p-2} u=0, \\
& \Delta\left(A(x)|\Delta v|^{p-2} \Delta v\right)-C(x)|v|^{p-2} v=0 .
\end{aligned}
$$

With some simplifications in (1.1), recently, Dwivedi and Tyagi [3] have obtained the following linear Picone identity (see Theorem 1.1) for the biharmonic operator $\Delta^{2} u=\Delta(\Delta u)$ and gave several remarks on the qualitative questions such as Morse index and HardyRellich type inequality.

Theorem 1.1 ([3]) Let u and v be differentiable functions in $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ such that $u \geq 0, v>0$, and $-\Delta v>0$

$$
\begin{aligned}
& L(u, v)=\left(\Delta u-\frac{u}{v} \Delta v\right)^{2}-\frac{2 \Delta v}{v}\left(\nabla u-\frac{u}{v} \nabla v\right)^{2} \\
& R(u, v)=|\Delta u|^{2}-\Delta\left(\frac{u^{2}}{v}\right) \Delta v
\end{aligned}
$$

Then $R(u, v)=L(u, v)$. Moreover, $L(u, v) \geq 0$, and $L(u, v)=0$ if and only if $u=\alpha v$ for $\alpha \in \mathbb{R}$.

It is noteworthy that Dwivedi and Tyagi [4] established a Caccioppoli-type inequality by an application of Theorem 1.1. Moreover, Dwivedi and Tyagi [5] extended the result of Theorem 1.1 on Heisenberg group and obtained its applications.

Recently, Dwivedi [2] has extended the linear Picone identity in Theorem 1.1. He obtained the following linear Picone identity (see Theorem 1.2) for the p-biharmonic operator: $\Delta_{p}^{2} u=\Delta\left(|\Delta u|^{p-2} \Delta u\right), p>1$.

Theorem 1.2 ([2]) Let u and v be differentiable functions in $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ such that $u \geq 0, v>0$, and $-\Delta v>0$. Denote

$$
\begin{aligned}
L(u, v)= & |\Delta u|^{p}+\frac{(p-1) u^{p}}{v^{p}}|\Delta v|^{p}-\frac{p u^{p-1}}{v^{p-1}}|\Delta v|^{p-2} \Delta v \Delta u \\
& -\frac{p(p-1) u^{p-2}}{v^{p-1}}|\Delta v|^{p-2} \Delta v\left(\nabla u-\frac{u}{v} \nabla v\right)^{2}, \\
R(u, v)= & |\Delta u|^{p}-\Delta\left(\frac{u^{p}}{v^{p-1}}\right)|\Delta v|^{p-2} \Delta v .
\end{aligned}
$$

Then $R(u, v)=L(u, v)$. Moreover, $L(u, v) \geq 0$, and $L(u, v)=0$ if and only if $u=\alpha v$ for $\alpha \in \mathbb{R}$.

Dwivedi and Tyagi [3] established a nonlinear Picone identity (see Theorem 1.3) for the biharmonic operator and also discussed some qualitative results for biharmonic equation (system).

Theorem 1.3 ([3]) Let u and v be differentiable functions in $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ such that $u \geq 0, v>0$, and $-\Delta v>0$. Suppose that $f: \mathbb{R} \rightarrow(0, \infty)$ is a C^{2} function such that $f^{\prime}(y) \geq 1$
and $f^{\prime \prime}(y) \leq 0, \forall 0<y \in \mathbb{R}$. Denote

$$
\begin{aligned}
L(u, v)= & |\Delta u|^{2}-\frac{|\Delta u|^{2}}{f^{\prime}(v)}+\left(\frac{\Delta u}{\sqrt{f^{\prime}(v)}}-\frac{u}{f(v)} \sqrt{f^{\prime}(v)} \Delta v\right)^{2} \\
& -\frac{2 \Delta v}{f(v)}\left(\nabla u-\frac{u f^{\prime}(v)}{f(v)} \nabla v\right)^{2}+\frac{u^{2} f^{\prime \prime}(v)}{f(v)}|\nabla v|^{2} \Delta v, \\
R(u, v)= & |\Delta u|^{2}-\Delta\left(\frac{u^{2}}{f(v)}\right) \Delta v .
\end{aligned}
$$

Then $R(u, v)=L(u, v)$. Moreover, $L(u, v) \geq 0$, and $L(u, v)=0$ if and only if $u=c v+d$ for $c, d \in \mathbb{R}$.

From the biharmonic operator to the p-biharmonic operator, Dwivedi [2] developed a nonlinear Picone identity of Dwivedi and Tyagi [3] in the following Theorem 1.4 and obtained some qualitative results for p-biharmonic equation (system).

Theorem 1.4 ([2]) Let u and v be differentiable functions in $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ such that $u \geq 0, v>0$, and $-\Delta v>0$. Suppose that $f: \mathbb{R} \rightarrow(0, \infty)$ is a C^{2} function such that $f^{\prime}(y) \geq$ $(p-1)[f(y)]^{\frac{p-2}{p-1}}, p>1$, and $f^{\prime \prime}(y) \leq 0, \forall 0<y \in \mathbb{R}$. Denote

$$
\begin{aligned}
L(u, v)= & |\Delta u|^{p}+\frac{f^{\prime}(v) u^{p}}{[f(v)]^{2}}|\Delta v|^{p}-\frac{p u^{p-1}}{f(v)}|\Delta v|^{p-2} \Delta v \Delta u \\
& +\frac{u^{p} f^{\prime \prime}(v)|\nabla v|^{2}}{[f(v)]^{2}}|\Delta v|^{p-2} \Delta v+\frac{u^{p} f^{\prime \prime}(v)|\nabla v|^{2}}{[f(v)]^{2}}|\Delta v|^{p-2} \Delta v, \\
R(u, v)= & |\Delta u|^{p}-\Delta\left(\frac{u^{p}}{f(v)}\right)|\Delta v|^{p-2} \Delta v .
\end{aligned}
$$

Then $R(u, v)=L(u, v)$. Moreover, $L(u, v) \geq 0$, and $L(u, v)=0$ if and only if $u=c v+d$ for $c, d \in \mathbb{R}$.

The purpose of this paper is to present a generalized nonlinear Picone identity for the p-biharmonic operator, which extends the results of Dwivedi and Tyagi [3] and Dwivedi [2]. As applications, a Sturmian comparison principle to the p-biharmonic equation with singular term, a Liouville's theorem to the p-biharmonic system, and a generalized HardyRellich type inequality are obtained. Our main result is described as follows.

Theorem 1.5 Let u and v be differentiable functions in $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ such that $u \geq 0$, $v>0$, and $-\Delta v>0$. Suppose that $f: \mathbb{R} \rightarrow(0, \infty)$ and $g: \mathbb{R} \rightarrow(0, \infty)$ are C^{2} functions with

$$
\left\{\begin{array}{llll}
g(u)>0, & g^{\prime}(u)>0, & g^{\prime \prime}(u)>0, & u>0, \\
\text { if } x \in \Omega \\
g(u)=0, & g^{\prime}(u)=0, & g^{\prime \prime}(u)=0, & u=0,
\end{array} \quad \text { if } x \in \partial \Omega, ~ \$\right.
$$

and $f(v)>0, f^{\prime}(v)>1, f^{\prime \prime}(v) \leq 0$ in Ω such that f and g satisfy

$$
\begin{equation*}
\frac{g(u) f^{\prime}(v)}{[f(v)]^{2}}|\Delta v|^{p} \geq(p-1)\left[\frac{g^{\prime}(u)|\Delta v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}-\frac{g(u) f^{\prime \prime}(v)|\nabla v|^{2}}{[f(v)]^{2}}|\Delta v|^{p-2} \Delta v \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{2 g^{\prime \prime}(u) g(u)} \geq g^{\prime}(u) \tag{1.3}
\end{equation*}
$$

respectively. Denote

$$
\begin{align*}
L(u, v)= & |\Delta u|^{p}-\left(\frac{g^{\prime \prime}(u)|\nabla u|^{2}}{f(v)}+\frac{g^{\prime}(u) \Delta u}{f(v)}\right. \\
& -\frac{2 g^{\prime}(u) f^{\prime}(v) \nabla u \cdot \nabla v}{[f(v)]^{2}}-\frac{g(u) f^{\prime \prime}(v)|\nabla v|^{2}}{[f(v)]^{2}}-\frac{g(u) f^{\prime}(v) \Delta v}{[f(v)]^{2}} \\
& \left.+\frac{2 g(u)\left[f^{\prime}(v)\right]^{2}|\nabla v|^{2}}{[f(v)]^{3}}\right)|\Delta v|^{p-2} \Delta v \tag{1.4}
\end{align*}
$$

and

$$
\begin{equation*}
R(u, v)=|\Delta u|^{p}-\Delta\left(\frac{g(u)}{f(v)}\right)|\Delta v|^{p-2} \Delta v \tag{1.5}
\end{equation*}
$$

respectively. Then $R(u, v)=L(u, v)$. Moreover, $L(u, v) \geq 0$, and $L(u, v)=0$ if and only if

$$
\begin{align*}
& u=c v, \quad c \in \mathbb{R}, \tag{1.6}\\
& |\Delta u|^{p}=\left[\frac{g^{\prime}(u)|\Delta v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}, \tag{1.7}\\
& \frac{g(u) f^{\prime}(v)}{[f(v)]^{2}}|\Delta v|^{p}=(p-1)\left[\frac{g^{\prime}(u)|\nabla v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}-\frac{g(u) f^{\prime \prime}(v)|\nabla v|^{2}}{[f(v)]^{2}}|\Delta v|^{p-2} \Delta v, \tag{1.8}\\
& \sqrt{g^{\prime \prime}(u)} \nabla u=\frac{\sqrt{2 g(u) f^{\prime}(v) \nabla v}}{f(v)} \text { and } \sqrt{2 g^{\prime \prime}(u) g(u)}=g^{\prime}(u) . \tag{1.9}
\end{align*}
$$

Remark 1.6 If $p=2, g(u)=u^{2}$ and $f(v)=v$ in (1.4) and (1.5), which is the result of Dwivedi and Tyagi [3] (see Theorem 1.1).

Remark 1.7 If $p=2, g(u)=u^{2}$ and $f^{\prime}(v) \geq 1$ and $f^{\prime \prime}(v) \leq 0, \forall 0<v \in \mathbb{R}$ in (1.4) and (1.5), which is the result of Dwivedi and Tyagi [3] (see Theorem 1.3).

Remark 1.8 If $p>2, g(u)=u^{p}$ and $f(v)=v^{p-1}$ in (1.4) and (1.5), which is the result of Dwivedi [2] (see Theorem 1.2).

Remark 1.9 If $p>2, g(u)=u^{p}$ and $f^{\prime}(v) \geq(p-1)[f(v)]^{\frac{p-2}{p-1}}, p>1$ and $f^{\prime \prime}(v) \leq 0, \forall 0<v \in \mathbb{R}$ in (1.4) and (1.5), which is the result of Dwivedi [2] (see Theorem 1.4).

We give the proof of Theorem 1.5 in the following.

Proof We first prove that $R(u, v)=L(u, v)$ by expanding $R(u, v)$:

$$
\begin{aligned}
R(u, v) & =|\Delta u|^{p}-\Delta\left(\frac{g(u)}{f(v)}\right)|\Delta v|^{p-2} \Delta v \\
& =|\Delta u|^{p}-\left(\frac{g^{\prime \prime}(u)|\nabla u|^{2}}{f(v)}+\frac{g^{\prime}(u) \Delta u}{f(v)}-\frac{2 g^{\prime}(u) f^{\prime}(v) \nabla u \cdot \nabla v}{[f(v)]^{2}}-\frac{g(u) f^{\prime \prime}(v)|\nabla v|^{2}}{[f(v)]^{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{g(u) f^{\prime}(v) \Delta v}{[f(v)]^{2}}+\frac{2 g(u)\left[f^{\prime}(v)\right]^{2}|\nabla v|^{2}}{[f(v)]^{3}}\right)|\Delta v|^{p-2} \Delta v \\
= & |\Delta u|^{p}-\frac{g^{\prime}(u) \Delta u}{f(v)}|\Delta v|^{p-2} \Delta v+\frac{g(u) f^{\prime}(v)}{[f(v)]^{2}}|\Delta v|^{p} \\
& -\frac{|\Delta v|^{p-2} \Delta v}{f(v)}\left(g^{\prime \prime}(u)|\nabla u|^{2}-\frac{2 g^{\prime}(u) f^{\prime}(v) \nabla u \cdot \nabla v}{f(v)}+\frac{2 g(u)\left[f^{\prime}(v)\right]^{2}|\nabla v|^{2}}{[f(v)]^{2}}\right) \\
& +\frac{g(u) f^{\prime \prime}(v)|\nabla v|^{2}}{[f(v)]^{2}}|\Delta v|^{p-2} \Delta v \\
= & L(u, v) .
\end{aligned}
$$

Next we verify $L(u, v) \geq 0$, we can rewrite $L(u, v)$ as

$$
\begin{align*}
L(u, v)= & p\left(\frac{1}{p}|\Delta u|^{p}+\frac{p-1}{p}\left[\frac{g^{\prime}(u)|\Delta v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}\right)-\frac{g^{\prime}(u)|\Delta u|}{f(v)}|\Delta v|^{p-1} \\
& +\frac{g(u) f^{\prime}(v)}{[f(v)]^{2}}|\Delta v|^{p}-(p-1)\left[\frac{g^{\prime}(u)|\Delta v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}+\frac{g(u) f^{\prime \prime}(v)|\nabla v|^{2}}{[f(v)]^{2}}|\Delta v|^{p-2} \Delta v \\
& +\frac{g^{\prime}(u)|\Delta v|^{p-2}}{f(v)}(|\Delta u||\Delta v|-\Delta u \Delta v) \\
& -\frac{|\Delta v|^{p-2} \Delta v}{f(v)}\left(\left(\sqrt{g^{\prime \prime}(u)} \nabla u-\frac{\sqrt{2 g(u)} f^{\prime}(v) \nabla v}{f(v)}\right)^{2}\right. \\
& +\frac{2\left(\sqrt{2 g^{\prime \prime}(u) g(u)}-g^{\prime}(u)\right) f^{\prime}(v) \nabla u \cdot \nabla v}{f(v)} \\
:= & F_{1}+F_{2}+F_{3}+F_{4}, \tag{1.10}
\end{align*}
$$

where

$$
\begin{aligned}
F_{1}= & p\left(\frac{1}{p}|\Delta u|^{p}+\frac{p-1}{p}\left[\frac{g^{\prime}(u)|\Delta v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}\right)-\frac{g^{\prime}(u)|\Delta u|}{f(v)}|\Delta v|^{p-1}, \\
F_{2}= & \frac{g(u) f^{\prime}(v)}{[f(v)]^{2}}|\Delta v|^{p}-(p-1)\left[\frac{g^{\prime}(u)|\Delta v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}+\frac{g(u) f^{\prime \prime}(v)|\nabla v|^{2}}{[f(v)]^{2}}|\Delta v|^{p-2} \Delta v, \\
F_{3}= & \frac{g^{\prime}(u)|\Delta v|^{p-2}}{f(v)}(|\Delta u||\Delta v|-\Delta u \Delta v), \\
F_{4}= & -\frac{|\Delta v|^{p-2} \Delta v}{f(v)}\left(\left(\sqrt{g^{\prime \prime}(u)} \nabla u-\frac{\sqrt{2 g(u)} f^{\prime}(v) \nabla v}{f(v)}\right)^{2}\right. \\
& \left.+\frac{2\left(\sqrt{2 g^{\prime \prime}(u) g(u)}-g^{\prime}(u)\right) f^{\prime}(v) \nabla u \cdot \nabla v}{f(v)}\right) .
\end{aligned}
$$

We now recall Young's inequality

$$
\begin{equation*}
a_{0} b_{0} \geq \frac{a_{0}{ }^{p}}{p}+\frac{b_{0}{ }^{q}}{q} \tag{1.11}
\end{equation*}
$$

where $a_{0} \geq 0, b_{0} \geq 0, p>1, q>1$, and $\frac{1}{p}+\frac{1}{q}=1$, the equality holds if and only if $a_{0}{ }^{p}=b_{0}{ }^{q}=$ $b_{0}{ }^{\frac{p}{p-1}}$. Setting $a_{0}=|\Delta u|, b_{0}=\frac{g^{\prime}(u) \mid \Delta v p^{p-1}}{p f(v)}$ in (1.11), we obtain

$$
\frac{g^{\prime}(u)|\Delta u|}{f(v)}|\Delta v|^{p-1} \leq p\left(\frac{1}{p}|\Delta u|^{p}-\frac{p-1}{p}\left[\frac{g^{\prime}(u)|\Delta v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}\right)
$$

which implies $F_{1} \geq 0$. Clearly $F_{2} \geq 0$ by (1.2). Since $|\Delta u||\Delta v|-\Delta u \Delta v \geq 0$, the equality holds if and only if $u=c v, c \in \mathbb{R}$, and combining with $\frac{g^{\prime}(u)|\Delta v|^{p-2}}{f(v)} \geq 0$, we obtain $F_{3} \geq 0$. By $-\Delta v>0, f(v)>0$, and (1.3), we have $F_{4} \geq 0$. Hence $L(u, v) \geq 0$ from (1.10).

We now verify $L(u, v)=0$ by (1.6)-(1.9). It follows from (1.6) that there exists a positive constant c such that $u=c v$, namely we have

$$
|\Delta v||\Delta u|-\Delta v \cdot \Delta u=c|\Delta v||\Delta v|-c \Delta v \cdot \Delta v=c|\Delta v|^{2}-c|\Delta v|^{2}=0
$$

which implies $F_{3}=0$. By $|\Delta u|^{p}=\left[\frac{g^{\prime}(u)|\Delta v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}$ in (1.7), we obtain

$$
\begin{equation*}
\frac{g^{\prime}(u)|\Delta v|^{p-1}}{f(v)}=p|\Delta u|^{p-1} . \tag{1.12}
\end{equation*}
$$

It follows from (1.12) that

$$
\begin{aligned}
I & =p\left(\frac{1}{p}|\Delta u|^{p}+\frac{p-1}{p}\left[\frac{g^{\prime}(u)|\Delta v|^{p-1}}{p f(v)}\right]^{\frac{p}{p-1}}\right)-\frac{g(u)|\Delta u||\Delta v|^{p-1}}{f(v)} \\
& =p\left(\frac{1}{p}|\Delta u|^{p}+\frac{p-1}{p}|\Delta u|^{p}\right)-|\Delta u| p|\Delta u|^{p-1} \\
& =|\Delta u|^{p}+(p-1)|\Delta u|^{p}-p|\Delta u|^{p} \\
& =0 .
\end{aligned}
$$

We can prove $F_{2}=0$ by (1.8). A direct calculation shows

$$
\left(\sqrt{g^{\prime \prime}(u)} \nabla u-\frac{\sqrt{2 g(u)} f^{\prime}(v) \nabla v}{f(v)}\right)^{2}=0
$$

by $\sqrt{g^{\prime \prime}(u)} \nabla u=\frac{\sqrt{2 g(u)} f^{\prime}(v) \nabla v}{f(v)}$ in (1.9), we can also show

$$
\frac{2\left(\sqrt{2 g^{\prime \prime}(u) g(u)}-g^{\prime}(u)\right) f^{\prime}(v) \nabla u \cdot \nabla v}{f(v)}=0
$$

by $\sqrt{2 g^{\prime \prime}(u) g(u)}=g^{\prime}(u)$ in (1.9), hence $F_{4}=0$ by (1.9). Summing up these, it follows $L(u, v)=$ $F_{1}+F_{2}+F_{3}+F_{4}=0$. Hence we can conclude that $L(u, v)=0$ if and only if (1.6)-(1.9) hold. In fact, if $u=0$, it clearly follows. If $u \neq 0$, the conclusion holds from the above process of proof.

2 Applications

Throughout this section, we always assume that f and g are $C^{2}(\Omega)$ functions and satisfy the conditions in Theorem 1.5, unless otherwise stated, and give applications for the gen-
eralized nonlinear Picone identity. We first show a Sturmian comparison principle to the p-biharmonic equation with singular term by Theorem 1.5 as follows.

Proposition 2.1 Let $k_{1}(x)$ and $k_{2}(x)$ be two continuous weighted functions with $k_{1}(x)<$ $k_{2}(x)$. Assume that there exists a positive solution satisfying

$$
\begin{cases}\Delta_{p}^{2} u=\frac{k_{1}(x) g(u)}{u}, & x \in \Omega \tag{2.1}\\ g(u)>0, & u>0, \\ g \in \Omega \\ g(u)=0, & u=0, \\ x \in \partial \Omega\end{cases}
$$

Then any nontrivial solution v of the following p-biharmonic equation

$$
\begin{equation*}
\Delta_{p}^{2} v=k_{2}(x) f(v), \quad x \in \Omega \tag{2.2}
\end{equation*}
$$

must change sign.

Proof Suppose that v of (2.2) does not change sign. Without loss of generality, we assume that $v>0$ in Ω. By (2.1), (2.2), and Theorem 1.5, we have

$$
\begin{aligned}
0 & \leq \int_{\Omega} L(u, v) d x=\int_{\Omega} R(u, v) d x \\
& =\int_{\Omega}|\Delta u|^{p} d x-\int_{\Omega} \Delta\left(\frac{g(u)}{f(v)}\right)|\Delta v|^{p-2} \Delta v d x \\
& =\int_{\Omega}|\Delta u|^{p} d x-\int_{\Omega} \frac{g(u)}{f(v)} \Delta_{p}^{2} v d x \\
& =\int_{\Omega} k_{1}(x) g(u) d x-\int_{\Omega} k_{2}(x) g(u) d x \\
& =\int_{\Omega}\left(k_{1}(x)-k_{2}(x)\right) g(u) d x \\
& <0
\end{aligned}
$$

which is a contradiction. This accomplishes the proof.

We next show a Liouville's theorem for the p-biharmonic system by Theorem 1.5 as follows.

Proposition 2.2 Let $(u, v) \in\left[W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right] \times\left[W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right]$ be a pair of weak solutions to the p-biharmonic system

$$
\left\{\begin{array}{llll}
\Delta_{p}^{2} u=f(v), & & x \in \Omega \tag{2.3}\\
\Delta_{p}^{2} v=\frac{[f(v)]^{2} u}{g(u)}, & & x \in \Omega \\
g(u)>0, & f(v)>0, & u>0, & v>0, \\
\text { 保 } & x \in \Omega \\
g(u)=0, & f(v)=0, & u=0, & v=0, \\
x \in \partial \Omega
\end{array}\right.
$$

Then $u=c v$ in Ω, where c is a constant.

Proof For any test functions $\phi_{1}, \phi_{2} \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$, it follows from (2.3) that

$$
\begin{align*}
& \int_{\Omega}|\Delta u|^{p-2} \Delta u \Delta \phi_{1} d x=\int_{\Omega} f(v) \phi_{1} d x, \tag{2.4}\\
& \int_{\Omega}|\Delta v|^{p-2} \Delta v \Delta \phi_{2} d x=\int_{\Omega} \frac{[f(v)]^{2} u}{g(u)} \phi_{2} d x . \tag{2.5}
\end{align*}
$$

Taking $\phi_{1}=u$ and $\phi_{2}=\frac{g(u)}{f(v)}$ in (2.4) and (2.5), respectively, we obtain

$$
\int_{\Omega}|\Delta u|^{p} d x=\int_{\Omega} f(v) u d x=\int_{\Omega} \Delta\left(\frac{g(u)}{f(v)}\right)|\Delta v|^{p-2} \Delta v d x
$$

which implies

$$
\int_{\Omega} L(u, v) d x=\int_{\Omega} R(u, v) d x=\int_{\Omega}|\Delta u|^{p} d x-\int_{\Omega} \Delta\left(\frac{g(u)}{f(v)}\right)|\Delta v|^{p-2} \Delta v d x=0,
$$

hence the conclusion follows by an application of Theorem 1.5.

Finally, we obtain a generalized Hardy-Rellich type inequality by Theorem 1.5.
Proposition 2.3 Suppose that a function $0<v \in C^{2}(\Omega)$ with $-\Delta v>0$ in Ω, and it satisfies

$$
\begin{equation*}
\Delta_{p}^{2} v \geq \lambda k(x) f(v), \quad x \in \Omega \tag{2.6}
\end{equation*}
$$

where $\lambda>0$ is a constant, $k(x)$ is a positive continuous function. Then there holds

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{p} d x \geq \lambda \int_{\Omega} k(x) g(u) d x \tag{2.7}
\end{equation*}
$$

for any $0 \leq u \in C_{0}^{2}(\Omega)$.

Proof It follows from (2.6) and Theorem 1.5 that

$$
\begin{aligned}
0 & \leq \int_{\Omega} L(u, v) d x=\int_{\Omega} R(u, v) d x \\
& =\int_{\Omega}|\Delta u|^{p} d x-\int_{\Omega} \Delta\left(\frac{g(u)}{f(v)}\right)|\Delta v|^{p-2} \Delta v d x \\
& =\int_{\Omega}|\Delta u|^{p} d x-\int_{\Omega} \frac{g(u)}{f(v)} \Delta_{p}^{2} v d x \\
& \leq \int_{\Omega}|\Delta u|^{p} d x-\int_{\Omega} \lambda k(x) g(u) d x,
\end{aligned}
$$

which implies (2.7).

Funding

This work is supported by the National Natural Science Foundation of China (11701453, 11701322).

Competing interests

The author declares that they have no competing interests.

Authors' contributions

The author read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 August 2018 Accepted: 22 February 2019 Published online: 04 March 2019

References

1. Dunninger, D.R.: A Picone integral identity for a class of fourth order elliptic differential inequalities. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 50, 630-641 (1971)
2. Dwivedi, G.: Picone's Identity for p-biharmonic operator and Its Applications. arXiv:1503.05535
3. Dwivedi, G., Tyagi, J:: Remarks on the qualitative questions for biharmonic operators. Taiwan. J. Math. 19(6), 1743-1758 (2015)
4. Dwivedi, G., Tyagi, J.: A note on the Caccioppoli inequality for biharmonic operators. Mediterr. J. Math. 13(4), 1823-1828 (2016)
5. Dwivedi, G., Tyagi, J.: Picone's identity for biharmonic operators on Heisenberg group and its applications. Nonlinear Differ. Equ. Appl. 23(2), 1-26 (2016)
6. Jaroš, J.: Picone's identity for the p-biharmonic operator with applications. Electron. J. Differ. Equ. 2011, 122 (2011)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

