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Abstract
A generalized nonlinear Picone identity for the p-biharmonic operator is established
in this paper. As applications, a Sturmian comparison principle to the p-biharmonic
equation with singular term, a Liouville’s theorem to the p-biharmonic system, and a
generalized Hardy–Rellich type inequality are obtained.
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1 Introduction and results
In 1971, Dunninger [1] established a Picone identity
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[
u∇(a�u) – a�u∇u –

u2

v
∇(A�v) + A�v∇

(
u2

v

)]

= –
u2

v
�(A�v) + u�(a�u) + (A – a)(�u)2

– A
(

�u –
u
v
�v

)2

+ A
2�v

v

(
∇u –

u
v
∇v

)2

, (1.1)

where u, v, a�u, A�v are twice continuously differentiable functions with v �= 0 and a and
A are positive weights. In [1], the integral form of (1.1) was used to study qualitative results
for the fourth order elliptic system

�
(
a(x)�u

)
– c(x)u = 0,

�
(
A(x)�v

)
– C(x)v = 0.

A Sturmian comparison principle, an integral inequality of Wirtinger type, and lower
bound for eigenvalue were obtained. Jaroš [6] extended (1.1) to the case where �(a(x)�u)
and �(A(x)�v) were replaced by the weighted p-biharmonic operators �(a(x)|�u|p–2�u)
and �(A(x)|�v|p–2�v), respectively, and showed some results similar to [1] for the fourth
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order elliptic system

�
(
a(x)|�u|p–2�u

)
– c(x)|u|p–2u = 0,

�
(
A(x)|�v|p–2�v

)
– C(x)|v|p–2v = 0.

With some simplifications in (1.1), recently, Dwivedi and Tyagi [3] have obtained the fol-
lowing linear Picone identity (see Theorem 1.1) for the biharmonic operator �2u = �(�u)
and gave several remarks on the qualitative questions such as Morse index and Hardy–
Rellich type inequality.

Theorem 1.1 ([3]) Let u and v be differentiable functions in Ω ⊂ R
n (n ≥ 3) such that

u ≥ 0, v > 0, and –�v > 0

L(u, v) =
(

�u –
u
v
�v

)2

–
2�v

v

(
∇u –

u
v
∇v

)2

,

R(u, v) = |�u|2 – �

(
u2

v

)
�v.

Then R(u, v) = L(u, v). Moreover, L(u, v) ≥ 0, and L(u, v) = 0 if and only if u = αv for α ∈ R.

It is noteworthy that Dwivedi and Tyagi [4] established a Caccioppoli-type inequality
by an application of Theorem 1.1. Moreover, Dwivedi and Tyagi [5] extended the result of
Theorem 1.1 on Heisenberg group and obtained its applications.

Recently, Dwivedi [2] has extended the linear Picone identity in Theorem 1.1. He ob-
tained the following linear Picone identity (see Theorem 1.2) for the p-biharmonic oper-
ator: �2

pu = �(|�u|p–2�u), p > 1.

Theorem 1.2 ([2]) Let u and v be differentiable functions in Ω ⊂ R
n (n ≥ 3) such that

u ≥ 0, v > 0, and –�v > 0. Denote

L(u, v) = |�u|p +
(p – 1)up

vp |�v|p –
pup–1

vp–1 |�v|p–2�v�u

–
p(p – 1)up–2

vp–1 |�v|p–2�v
(

∇u –
u
v
∇v

)2

,

R(u, v) = |�u|p – �

(
up

vp–1

)
|�v|p–2�v.

Then R(u, v) = L(u, v). Moreover, L(u, v) ≥ 0, and L(u, v) = 0 if and only if u = αv for α ∈ R.

Dwivedi and Tyagi [3] established a nonlinear Picone identity (see Theorem 1.3) for the
biharmonic operator and also discussed some qualitative results for biharmonic equation
(system).

Theorem 1.3 ([3]) Let u and v be differentiable functions in Ω ⊂ R
n (n ≥ 3) such that

u ≥ 0, v > 0, and –�v > 0. Suppose that f : R → (0,∞) is a C2 function such that f ′(y) ≥ 1
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and f ′′(y) ≤ 0, ∀0 < y ∈R. Denote

L(u, v) = |�u|2 –
|�u|2
f ′(v)

+
(

�u√
f ′(v)

–
u

f (v)
√

f ′(v)�v
)2

–
2�v
f (v)

(
∇u –

uf ′(v)
f (v)

∇v
)2

+
u2f ′′(v)

f (v)
|∇v|2�v,

R(u, v) = |�u|2 – �

(
u2

f (v)

)
�v.

Then R(u, v) = L(u, v). Moreover, L(u, v) ≥ 0, and L(u, v) = 0 if and only if u = cv + d for
c, d ∈ R.

From the biharmonic operator to the p-biharmonic operator, Dwivedi [2] developed
a nonlinear Picone identity of Dwivedi and Tyagi [3] in the following Theorem 1.4 and
obtained some qualitative results for p-biharmonic equation (system).

Theorem 1.4 ([2]) Let u and v be differentiable functions in Ω ⊂ R
n (n ≥ 3) such that

u ≥ 0, v > 0, and –�v > 0. Suppose that f : R → (0,∞) is a C2 function such that f ′(y) ≥
(p – 1)[f (y)]

p–2
p–1 , p > 1, and f ′′(y) ≤ 0, ∀0 < y ∈R. Denote

L(u, v) = |�u|p +
f ′(v)up

[f (v)]2 |�v|p –
pup–1

f (v)
|�v|p–2�v�u

+
upf ′′(v)|∇v|2

[f (v)]2 |�v|p–2�v +
upf ′′(v)|∇v|2

[f (v)]2 |�v|p–2�v,

R(u, v) = |�u|p – �

(
up

f (v)

)
|�v|p–2�v.

Then R(u, v) = L(u, v). Moreover, L(u, v) ≥ 0, and L(u, v) = 0 if and only if u = cv + d for
c, d ∈ R.

The purpose of this paper is to present a generalized nonlinear Picone identity for the
p-biharmonic operator, which extends the results of Dwivedi and Tyagi [3] and Dwivedi
[2]. As applications, a Sturmian comparison principle to the p-biharmonic equation with
singular term, a Liouville’s theorem to the p-biharmonic system, and a generalized Hardy–
Rellich type inequality are obtained. Our main result is described as follows.

Theorem 1.5 Let u and v be differentiable functions in Ω ⊂ R
n (n ≥ 3) such that u ≥ 0,

v > 0, and –�v > 0. Suppose that f : R → (0,∞) and g : R → (0,∞) are C2 functions with

⎧⎨
⎩

g(u) > 0, g ′(u) > 0, g ′′(u) > 0, u > 0, if x ∈ Ω ,

g(u) = 0, g ′(u) = 0, g ′′(u) = 0, u = 0, if x ∈ ∂Ω ,

and f (v) > 0, f ′(v) > 1, f ′′(v) ≤ 0 in Ω such that f and g satisfy

g(u)f ′(v)
[f (v)]2 |�v|p ≥ (p – 1)

[
g ′(u)|�v|p–1

pf (v)

] p
p–1

–
g(u)f ′′(v)|∇v|2

[f (v)]2 |�v|p–2�v (1.2)
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and

√
2g ′′(u)g(u) ≥ g ′(u), (1.3)

respectively. Denote

L(u, v) = |�u|p –
(

g ′′(u)|∇u|2
f (v)

+
g ′(u)�u

f (v)

–
2g ′(u)f ′(v)∇u · ∇v

[f (v)]2 –
g(u)f ′′(v)|∇v|2

[f (v)]2 –
g(u)f ′(v)�v

[f (v)]2

+
2g(u)[f ′(v)]2|∇v|2

[f (v)]3

)
|�v|p–2�v (1.4)

and

R(u, v) = |�u|p – �

(
g(u)
f (v)

)
|�v|p–2�v, (1.5)

respectively. Then R(u, v) = L(u, v). Moreover, L(u, v) ≥ 0, and L(u, v) = 0 if and only if

u = cv, c ∈ R, (1.6)

|�u|p =
[

g ′(u)|�v|p–1

pf (v)

] p
p–1

, (1.7)

g(u)f ′(v)
[f (v)]2 |�v|p = (p – 1)

[
g ′(u)|∇v|p–1

pf (v)

] p
p–1

–
g(u)f ′′(v)|∇v|2

[f (v)]2 |�v|p–2�v, (1.8)

√
g ′′(u)∇u =

√
2g(u)f ′(v)∇v

f (v)
and

√
2g ′′(u)g(u) = g ′(u). (1.9)

Remark 1.6 If p = 2, g(u) = u2 and f (v) = v in (1.4) and (1.5), which is the result of Dwivedi
and Tyagi [3] (see Theorem 1.1).

Remark 1.7 If p = 2, g(u) = u2 and f ′(v) ≥ 1 and f ′′(v) ≤ 0, ∀0 < v ∈ R in (1.4) and (1.5),
which is the result of Dwivedi and Tyagi [3] (see Theorem 1.3).

Remark 1.8 If p > 2, g(u) = up and f (v) = vp–1 in (1.4) and (1.5), which is the result of
Dwivedi [2] (see Theorem 1.2).

Remark 1.9 If p > 2, g(u) = up and f ′(v) ≥ (p – 1)[f (v)]
p–2
p–1 , p > 1 and f ′′(v) ≤ 0, ∀0 < v ∈ R

in (1.4) and (1.5), which is the result of Dwivedi [2] (see Theorem 1.4).

We give the proof of Theorem 1.5 in the following.

Proof We first prove that R(u, v) = L(u, v) by expanding R(u, v):

R(u, v) = |�u|p – �

(
g(u)
f (v)

)
|�v|p–2�v

= |�u|p –
(

g ′′(u)|∇u|2
f (v)

+
g ′(u)�u

f (v)
–

2g ′(u)f ′(v)∇u · ∇v
[f (v)]2 –

g(u)f ′′(v)|∇v|2
[f (v)]2
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–
g(u)f ′(v)�v

[f (v)]2 +
2g(u)[f ′(v)]2|∇v|2

[f (v)]3

)
|�v|p–2�v

= |�u|p –
g ′(u)�u

f (v)
|�v|p–2�v +

g(u)f ′(v)
[f (v)]2 |�v|p

–
|�v|p–2�v

f (v)

(
g ′′(u)|∇u|2 –

2g ′(u)f ′(v)∇u · ∇v
f (v)

+
2g(u)[f ′(v)]2|∇v|2

[f (v)]2

)

+
g(u)f ′′(v)|∇v|2

[f (v)]2 |�v|p–2�v

= L(u, v).

Next we verify L(u, v) ≥ 0, we can rewrite L(u, v) as

L(u, v) = p
(

1
p
|�u|p +

p – 1
p

[
g ′(u)|�v|p–1

pf (v)

] p
p–1 )

–
g ′(u)|�u|

f (v)
|�v|p–1

+
g(u)f ′(v)
[f (v)]2 |�v|p – (p – 1)

[
g ′(u)|�v|p–1

pf (v)

] p
p–1

+
g(u)f ′′(v)|∇v|2

[f (v)]2 |�v|p–2�v

+
g ′(u)|�v|p–2

f (v)
(|�u||�v| – �u�v

)

–
|�v|p–2�v

f (v)
(
(√

g ′′(u)∇u –
√

2g(u)f ′(v)∇v
f (v)

)2

+
2(

√
2g ′′(u)g(u) – g ′(u))f ′(v)∇u · ∇v

f (v)
:= F1 + F2 + F3 + F4, (1.10)

where

F1 = p
(

1
p
|�u|p +

p – 1
p

[
g ′(u)|�v|p–1

pf (v)

] p
p–1 )

–
g ′(u)|�u|

f (v)
|�v|p–1,

F2 =
g(u)f ′(v)
[f (v)]2 |�v|p – (p – 1)

[
g ′(u)|�v|p–1

pf (v)

] p
p–1

+
g(u)f ′′(v)|∇v|2

[f (v)]2 |�v|p–2�v,

F3 =
g ′(u)|�v|p–2

f (v)
(|�u||�v| – �u�v

)
,

F4 = –
|�v|p–2�v

f (v)

((√
g ′′(u)∇u –

√
2g(u)f ′(v)∇v

f (v)

)2

+
2(

√
2g ′′(u)g(u) – g ′(u))f ′(v)∇u · ∇v

f (v)

)
.

We now recall Young’s inequality

a0b0 ≥ a0
p

p
+

b0
q

q
, (1.11)
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where a0 ≥ 0, b0 ≥ 0, p > 1, q > 1, and 1
p + 1

q = 1, the equality holds if and only if a0
p = b0

q =

b0
p

p–1 . Setting a0 = |�u|, b0 = g′(u)|�v|p–1

pf (v) in (1.11), we obtain

g ′(u)|�u|
f (v)

|�v|p–1 ≤ p
(

1
p
|�u|p –

p – 1
p

[
g ′(u)|�v|p–1

pf (v)

] p
p–1 )

,

which implies F1 ≥ 0. Clearly F2 ≥ 0 by (1.2). Since |�u||�v| – �u�v ≥ 0, the equality
holds if and only if u = cv, c ∈ R, and combining with g′(u)|�v|p–2

f (v) ≥ 0, we obtain F3 ≥ 0. By
–�v > 0, f (v) > 0, and (1.3), we have F4 ≥ 0. Hence L(u, v) ≥ 0 from (1.10).

We now verify L(u, v) = 0 by (1.6)–(1.9). It follows from (1.6) that there exists a positive
constant c such that u = cv, namely we have

|�v||�u| – �v · �u = c|�v||�v| – c�v · �v = c|�v|2 – c|�v|2 = 0,

which implies F3 = 0. By |�u|p = [ g′(u)|�v|p–1

pf (v) ]
p

p–1 in (1.7), we obtain

g ′(u)|�v|p–1

f (v)
= p|�u|p–1. (1.12)

It follows from (1.12) that

I = p
(

1
p
|�u|p +

p – 1
p

[
g ′(u)|�v|p–1

pf (v)

] p
p–1 )

–
g(u)|�u||�v|p–1

f (v)

= p
(

1
p
|�u|p +

p – 1
p

|�u|p
)

– |�u|p|�u|p–1

= |�u|p + (p – 1)|�u|p – p|�u|p

= 0.

We can prove F2 = 0 by (1.8). A direct calculation shows

(√
g ′′(u)∇u –

√
2g(u)f ′(v)∇v

f (v)

)2

= 0

by
√

g ′′(u)∇u =
√

2g(u)f ′(v)∇v
f (v) in (1.9), we can also show

2(
√

2g ′′(u)g(u) – g ′(u))f ′(v)∇u · ∇v
f (v)

= 0

by
√

2g ′′(u)g(u) = g ′(u) in (1.9), hence F4 = 0 by (1.9). Summing up these, it follows L(u, v) =
F1 + F2 + F3 + F4 = 0. Hence we can conclude that L(u, v) = 0 if and only if (1.6)–(1.9) hold.
In fact, if u = 0, it clearly follows. If u �= 0, the conclusion holds from the above process of
proof. �

2 Applications
Throughout this section, we always assume that f and g are C2(Ω) functions and satisfy
the conditions in Theorem 1.5, unless otherwise stated, and give applications for the gen-
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eralized nonlinear Picone identity. We first show a Sturmian comparison principle to the
p-biharmonic equation with singular term by Theorem 1.5 as follows.

Proposition 2.1 Let k1(x) and k2(x) be two continuous weighted functions with k1(x) <
k2(x). Assume that there exists a positive solution satisfying

⎧⎪⎪⎨
⎪⎪⎩

�2
pu = k1(x)g(u)

u , x ∈ Ω ,

g(u) > 0, u > 0, x ∈ Ω ,

g(u) = 0, u = 0, x ∈ ∂Ω .

(2.1)

Then any nontrivial solution v of the following p-biharmonic equation

�2
pv = k2(x)f (v), x ∈ Ω , (2.2)

must change sign.

Proof Suppose that v of (2.2) does not change sign. Without loss of generality, we assume
that v > 0 in Ω . By (2.1), (2.2), and Theorem 1.5, we have

0 ≤
∫

Ω

L(u, v) dx =
∫

Ω

R(u, v) dx

=
∫

Ω

|�u|p dx –
∫

Ω

�

(
g(u)
f (v)

)
|�v|p–2�v dx

=
∫

Ω

|�u|p dx –
∫

Ω

g(u)
f (v)

�2
pv dx

=
∫

Ω

k1(x)g(u) dx –
∫

Ω

k2(x)g(u) dx

=
∫

Ω

(
k1(x) – k2(x)

)
g(u) dx

< 0,

which is a contradiction. This accomplishes the proof. �

We next show a Liouville’s theorem for the p-biharmonic system by Theorem 1.5 as
follows.

Proposition 2.2 Let (u, v) ∈ [W 2,p(Ω) ∩ W 1,p
0 (Ω)] × [W 2,p(Ω) ∩ W 1,p

0 (Ω)] be a pair of
weak solutions to the p-biharmonic system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�2
pu = f (v), x ∈ Ω ,

�2
pv = [f (v)]2u

g(u) , x ∈ Ω ,

g(u) > 0, f (v) > 0, u > 0, v > 0, x ∈ Ω ,

g(u) = 0, f (v) = 0, u = 0, v = 0, x ∈ ∂Ω .

(2.3)

Then u = cv in Ω , where c is a constant.
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Proof For any test functions φ1,φ2 ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω), it follows from (2.3) that

∫
Ω

|�u|p–2�u�φ1 dx =
∫

Ω

f (v)φ1 dx, (2.4)

∫
Ω

|�v|p–2�v�φ2 dx =
∫

Ω

[f (v)]2u
g(u)

φ2 dx. (2.5)

Taking φ1 = u and φ2 = g(u)
f (v) in (2.4) and (2.5), respectively, we obtain

∫
Ω

|�u|p dx =
∫

Ω

f (v)u dx =
∫

Ω

�

(
g(u)
f (v)

)
|�v|p–2�v dx,

which implies

∫
Ω

L(u, v) dx =
∫

Ω

R(u, v) dx =
∫

Ω

|�u|p dx –
∫

Ω

�

(
g(u)
f (v)

)
|�v|p–2�v dx = 0,

hence the conclusion follows by an application of Theorem 1.5. �

Finally, we obtain a generalized Hardy–Rellich type inequality by Theorem 1.5.

Proposition 2.3 Suppose that a function 0 < v ∈ C2(Ω) with –�v > 0 in Ω , and it satisfies

�2
pv ≥ λk(x)f (v), x ∈ Ω , (2.6)

where λ > 0 is a constant, k(x) is a positive continuous function. Then there holds

∫
Ω

|�u|p dx ≥ λ

∫
Ω

k(x)g(u) dx (2.7)

for any 0 ≤ u ∈ C2
0(Ω).

Proof It follows from (2.6) and Theorem 1.5 that

0 ≤
∫

Ω

L(u, v) dx =
∫

Ω

R(u, v) dx

=
∫

Ω

|�u|p dx –
∫

Ω

�

(
g(u)
f (v)

)
|�v|p–2�v dx

=
∫

Ω

|�u|p dx –
∫

Ω

g(u)
f (v)

�2
pv dx

≤
∫

Ω

|�u|p dx –
∫

Ω

λk(x)g(u) dx,

which implies (2.7). �
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