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Abstract
Let ψn(x) = (–1)n–1ψ (n)(x), where ψ (n)(x) are the polygamma functions. We determine
necessary and sufficient conditions for the monotonicity and convexity of the
function

F(x;α,β) = ln(exp(αψ (x + β))ψn(x)) – ln(n – 1)!, x >max(0, –β),

for α and β ∈R, where ψ (x) is the psi function. Consequently, this yields not only
some new inequalities for the polygamma functions, but also new star-shaped and
superadditive functions involving them. In addition, we improve a well-known
mean-value inequality for the polygamma functions.
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1 Introduction
We recall that the logarithmic derivative of Γ (x) is called the psi or digamma function
denoted by

ψ(x) =
d

dx
lnΓ (x) =

Γ ′(x)
Γ (x)

(1.1)

for x > 0, that the derivatives ψ ′(x) and ψ ′′(x) are, respectively, called the tri-gamma and
tetra-gamma functions, and that the derivatives

ψ (n)(x) = (–1)n–1
∫ ∞

0
e–xt tn

1 – e–t dt = (–1)n–1n!
∞∑

k=0

1
(x + k)n+1 (1.2)

for n ∈ N are called the polygamma functions.
A world of the most fundamental properties involving the gamma, digamma, and

polygamma functions can be found in some books [1–4]. It is known that these functions
are all key parts of special functions. Moreover, they also play a vital role in other areas
like analysis, physics, inequality theory, and statistics. Due to their significance, they at-
tract many scholars to explore some their useful properties. In particular, some properties
such as monotonicity, convexity, and complete monotonicity yield numerous inequalities
related to these functions; see, for example, [5–28].
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The following recurrence and asymptotic formulas are often encountered in the litera-
ture:

ψ (n)(x + 1) = ψ (n)(x) + (–1)n n!
xn+1 (x > 0, n = 0, 1, . . .), (1.3)

ψ(x) ∼ ln x –
1

2x
–

1
12x2 +

1
120x4 – · · · (x → ∞), (1.4)

(–1)n–1ψn(x) ∼
(

(n – 1)!
xn +

n!
2xn+1 +

(n + 1)!
12xn+2 – · · ·

)
(x → ∞, n = 1, 2, . . .). (1.5)

For convenience, we define ψn(x) = (–1)n–1ψ (n)(x) for n ∈ N. It follows from (1.2) that
ψn(x) is strictly completely monotonic on (0,∞) (see [29, 30]). Moreover, from (1.3) and
(1.5) it follows that

lim
x→0+

xn+1ψn(x) = n!, (1.6)

lim
x→∞ xnψn(x) = (n – 1)!. (1.7)

which easily yields limx→0+ ψn(x) = ∞ and limx→∞ ψn(x) = 0.
It was shown in [31, Thm. 1.9] that ψn(x) is logarithmically convex on (0,∞). This and

Jensen’s theorem yield the following functional inequality:

1 ≤
∏n

m=1 ψ
pm
k (xm)

ψk(
∑n

m=1 xmpm)
(n, k ∈N) (1.8)

for all xm > 0 and weights pm (m = 1, 2, . . . , n), that is, pm > 0 with
∑n

m=1 pm = 1. Further,
Alzer [32, Thm. 1] provided a refinement of (1.8) with the inequality

(∑n
m=1 pmxm∏n

m=1 xpm
m

)α

≤
∏n

m=1 ψ
pm
k (xm)

ψk(
∑n

m=1 xmpm)
(α ∈R) (1.9)

for all xm > 0 and weights pm (m = 1, 2, . . . , n) if and only if α ≤ k. Then, inspired by these
results, we are devoted to look for α1, α2, β1, and β2 ∈ R such that, for all n, k ∈ N, the
double inequality

exp(α1An(xm, pm,β1))
exp(α1Gn(xm, pm,β1))

≤
∏n

m=1 ψ
pm
k (xm)

ψk(
∑n

m=1 xmpm)
≤ exp(α2An(xm, pm,β2))

exp(α2Gn(xm, pm,β2))

is valid for all xm > 0 and weights pm (m = 1, 2, . . . , n). Here and in what follows,

An(xm, pm,β) = ψ

( n∑
m=1

xmpm + β

)
and Gn(xm, pm,β) =

n∑
m=1

pmψ(xm + β).

It was proven in [32, Thm. 2] that

M[s]
n

(
ψk(xm), pm

) ≥ ψk
(
M[r]

n (xm, pm)
)

(n, k ∈N and r, s ∈ R) (1.10)

for all xm > 0 and weights pm > 0 (m = 1, 2, . . . , n) if and only if s ≥ 0 and r ≥ –sk, or s < 0
and r ≥ –s(k + 1).
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The power means M[t]
n are defined as (see [33])

M[t]
n (xm, pm) =

( n∑
m=1

pmxt
m

)1/t

(t 	= 0), M[0]
n (xm, pm) =

n∏
m=1

xpm
m ,

for parameter t ∈R and all xm > 0 and weights pm (m = 1, 2, . . . , n).
In view of (1.10), it is natural to raise a new question: under which conditions on r and s,

the reversed inequality of (1.10) is still valid for all xm > 0 and weights pm (m = 1, 2, . . . , n)?
The main aim of this paper is to settle the two questions posed thereinbefore. Our main

results are the following.

Theorem 1.1 Let α, β ∈ R and n ∈N. Define the function

F(x;α,β) = ln
(
exp

(
αψ(x + β)

)
ψn(x)

)
– ln(n – 1)!, x > max(0, –β).

Then F(x;α,β) is strictly increasing and concave for β ≤ 0 if and only if α ≥ n and strictly
decreasing and convex for β ≥ 1

2 if and only if α ≤ n.

Applying the asymptotic formulas (1.4) and (1.5) to the function F(x; n,β), we get
limx→∞ F(x; n,β) = 0. This in combination with Theorem 1.1 yields the following bounds
for ψn(x).

Corollary 1 Let n ∈N, α ≤ 0, and β ≥ 1
2 . Then we have the double inequality

(n – 1)! exp
(
–nψ(x + β)

)
< ψn(x) < (n – 1)! exp

(
–nψ(x + α)

)
(1.11)

for x > –α.

As a matter of fact, the double inequality (1.11) was first proved by Batir [34, Thm. 2.1].
In addition, using the concavity and convexity of F(x; n,β) and applying Jensen’s inequality
give the following double inequality.

Theorem 1.2 Let k ≥ 1 and n ≥ 2 be integers, and let α1, α2 ∈ R, β1 ≥ 1
2 , and β2 ≤ 0. Then

we have the double inequality

exp(α1An(xm, pm,β1))
exp(α1Gn(xm, pm,β1))

≤
∏n

m=1 ψ
pm
k (xm)

ψk(
∑n

m=1 xmpm)
≤ exp(α2An(xm, pm,β2))

exp(α2Gn(xm, pm,β2))
(1.12)

for all xm > –β2 and pm > 0 (m = 1, 2, . . . , n) with
∑n

m=1 pm = 1 if and only if α1 ≤ k and
α2 ≥ k.

Theorem 1.3 Let k ≥ 1 and n ≥ 2 be integers, and let r, s ∈R. Then

M[s]
n

(
ψk(xm), pm

) ≤ ψk
(
M[r]

n (xm, pm)
)

(1.13)

for all xm > 0 and pm > 0 (m = 1, 2, . . . , n) with
∑n

m=1 pm = 1 if and only if s ≥ 1 and r ≤
–s(k + 1), or s < 1 and r ≤ –sk – M(s), where

M(s) = sup
x>0

(
fk+1(x) – fk(x) + sfk(x)

)
and fk(x) = x

ψk+1(x)
ψk(x)

– k.
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Remark 1 In brief, Theorem 1.3 can be restated as follows: inequality (1.13) is valid for all
xm > 0 and weights pm (m = 1, 2, . . . , n) if and only if r ≤ –sk – M(s).

In the last section, we give some sharp inequalities and star-shaped functions, which are
consequences of Theorem 1.1.

2 Some lemmas
In this section, we establish monotonicity properties of some functions closely related to
the function ex.

According to Theorem 2.2 in [35], we obtain the following:

Lemma 1 ([35, Theorem 2.2]) Let z ∈R. Then the function

g(x) =
e–zx – e–(1–z)x

1 – e–x

is strictly increasing on (0,∞) if and only if z ∈ (–∞, 0) ∪ ( 1
2 , 1) and strictly decreasing on

the same interval if and only if z ∈ (0, 1
2 ) ∪ (1,∞).

Lemma 2 Let a, x1, and x2 ∈R with x2 > x1 > 0.
(1) Let

Ha(x) =
eax1x – e(a–1)x1x

eax2x – e(a–1)x2x .

Then Ha(x) is strictly increasing on (0,∞) if and only if a ≤ 0 and strictly
decreasing on the same interval if and only if a ≥ 1

2 .
(2) The function

h(x) =
1 – e–x1(1–x)

1 – e–x2(1–x)
1 – e–x1x

1 – e–x2x
eax1x

eax2x

is strictly decreasing on (0,∞) for a ≥ 1
2 .

Proof (1) Differentiating Ha(x) with respect to x leads to

H ′
a(x)

=
[a(x1 – x2)e(x1+x2)x + (ax2 – ax1 – x2)ex1x + (x1 + ax2 – ax1)ex2x + (a – 1)(x1 – x2)]

e(x–ax)(x1+x2)(eax2x – e(a–1)x2x)2 ,

which implies

H ′
a(x) =

e(ax–x)(x1+x2)

(eax2x – e(a–1)x2x)2

∞∑
n=2

Pn(a)
xn

n!
,

where

Pn(a) = (x2 – x1)

[ n–1∑
k=1

xk
1xn–k

2

(
1 – a

n!
k!(n – k)!

)]
, n = 2, 3, . . . .
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It is not difficult to obtain that

Pn(a) > 0 for all n ≥ 2, a ≤ 0, (2.1)

and

Pn(a) < 0 for all n ≥ 2, a ≥ 1
2

. (2.2)

Hence the function Ha(x) is strictly increasing on (0,∞) for a ≤ 0 and strictly decreas-
ing on the same interval for a ≥ 1

2 . Now, we assume that the function Ha(x) is strictly
increasing on (0,∞). Firstly, we need to notice that

ρ(x) = ex1x + ex2x – e(x1+x2)x – 1 < 0 for x > 0. (2.3)

Then, for x > 0, we have:

a <
x2ex1x – x1ex2x + x1 – x2

(x2 – x1)(ex1x + ex2x – e(x1+x2)x – 1)
. (2.4)

Letting x tend to ∞, we obtain a ≤ 0.
If Ha(x) is strictly decreasing on (0,∞), then we have a ≥ 1

2 as x tends to 0 in the reversed
inequality of (2.4).

(2) We write

h(x) = H0(1 – x)Ha(x).

From part (1) of the lemma we conclude that, for a ≥ 1
2 , h(x) is the product of two posi-

tive decreasing functions on (0,∞). Therefore it is easy to get the desired result.
This completes the proof of Lemma 2. �

Lemma 3 Let α, β ∈ R and m, n ∈N. The function

f (x) =
ψm+n(x + β)

ψm(x + α)ψn(x + β)

is strictly increasing on (max(–α, –β),∞) for α – β ≤ 0 and strictly decreasing on
(max(–α, –β),∞) for α – β ≥ 1

2 .

Proof Let k = m + n, θ = α – β , and y = x + β . Then we have

f (x) = L(y) =
ψk(y)

ψm(y + θ )ψn(y)
, y > max(–θ , 0). (2.5)

If we determine conditions for θ such that the function L(y) is strictly increasing and
strictly decreasing on (max(–θ , 0),∞), then the desired result follows.

For convenience, we replace y by x in L(y). Using the well-known formula (1.2) and ap-
plying the convolution theorem for the Laplace transform, we get

L(x) =
ψk(x)

ψm(x + θ )ψn(x)
=

∫ ∞
0 q(t)e–xt dt∫ ∞
0 p(t)e–xt dt

,
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where

q(t) =
tk

1 – e–t and p(t) =
∫ t

0

sme–θs

1 – e–s
(t – s)n

1 – e–(t–s) ds.

Differentiating L(x), we get

L′(x) =
∫ ∞

0 tp(t)e–xt dt
∫ ∞

0 q(t)e–xt dt –
∫ ∞

0 tq(t)e–xt dt
∫ ∞

0 p(t)e–xt dt
(
∫ ∞

0 p(t)e–xt dt)2
, (2.6)

so that using the convolution theorem for the Laplace transform again in (2.6) yields

L′(x)
(∫ ∞

0
p(t)e–xt dt

)2

=
∫ ∞

0
u(t)e–xt dt, (2.7)

where

u(t) =
∫ t

0
p(s)q(t – s)(2s – t) ds.

We will prove that

u(t) > 0 for θ ≤ 0, t > 0, (2.8)

and

u(t) < 0 for θ ≥ 1
2

, t > 0. (2.9)

Making the substitution s = t
2 (1 + y), we obtain

u(t) =
t2

2

∫ 1

–1
yp

(
t
2

(1 + y)
)

q
(

t
2

(1 – y)
)

dy. (2.10)

For δ > 0 and y ∈ (0, 1), we define

v(y) = yp
(
δ(1 + y)

)
q
(
δ(1 – y)

)
and w(y) = v(y) + v(–y). (2.11)

Combining (2.10) with (2.11), we see that

u(2δ) = 2δ2
∫ 1

–1
v(y) dy = 2δ2

∫ 1

0
w(y) dy. (2.12)

Hence, to prove (2.8) and (2.9), it suffices to show that

w(y) > 0 for θ ≤ 0, δ > 0, y ∈ (0, 1), (2.13)

and

w(y) < 0 for θ ≥ 1
2

, δ > 0, y ∈ (0, 1). (2.14)
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From (2.11) a direct computation immediately gives

w(y) = yδk (1 – y)k

1 – e–δ(1–y)

∫ δ(1+y)

0

sme–θs

1 – e–s
(δ(1 + y) – s)n

1 – e–(δ(1+y)–s) ds

– yδk (1 + y)k

1 – e–δ(1+y)

∫ δ(1–y)

0

sme–θs

1 – e–s
(δ(1 – y) – s)n

1 – e–(δ(1–y)–s) ds. (2.15)

Substituting s = δ(1 + y)x into the first integral and s = δ(1 – y)x into the second, we obtain

w(y)
yδ2k+1(1 – y2)k =

∫ 1

0
xm(1 – x)nϕ(x; θ ) dx, (2.16)

where

ϕ(x; θ ) =
1 + y

1 – e–δ(1–y)
1

1 – e–δ(1+y)x
e–θδ(1+y)x

1 – e–δ(1+y)(1–x)

–
1 – y

1 – e–δ(1+y)
1

1 – e–δ(1–y)x
e–θδ(1–y)x

1 – e–δ(1–y)(1–x) . (2.17)

It is sufficient to show that

ϕ(x; θ ) > 0 for θ ≤ 0, δ > 0, x, y ∈ (0, 1), (2.18)

and

ϕ(x; θ ) < 0 for θ ≥ 1
2

, δ > 0, x, y ∈ (0, 1), (2.19)

which imply that (2.13) and (2.14) are valid.
Firstly, we assume that θ = 0. Clearly, (2.18) is equivalent to

φ(x) > 0 for δ > 0, x, y ∈ (0, 1), (2.20)

where

φ(x) =
(1 – e–δ(1–y)(1–x))(1 – e–δ(1–y)x)

(1 – e–δ(1–y))(1 – y)
–

(1 – e–δ(1+y)(1–x))(1 – e–δ(1+y)x)
(1 – e–δ(1+y))(1 + y)

.

Differentiating φ(x) with respect to x gives

φ′(x) = δ

(
e–δ(1–y)x – e–δ(1–y)(1–x)

1 – e–δ(1–y) –
e–δ(1+y)x – e–δ(1+y)(1–x)

1 – e–δ(1+y)

)
.

Using Lemma 1, we get φ′(x) > 0 for x ∈ (0, 1
2 ). Since φ(0) = 0, we conclude that φ(x) > 0

for x ∈ (0, 1
2 ). In combination with the fact that φ(x) is symmetric about x = 1

2 on (0, 1), this
establishes (2.20).

We suppose that θ < 0. It is obvious that

e–θδ(1+y)x > e–θδ(1–y)x for δ > 0, x, y ∈ (0, 1). (2.21)
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From (2.20) we see that

1 + y
1 – e–δ(1–y)

1
1 – e–δ(1+y)x

1
1 – e–δ(1+y)(1–x)

>
1 – y

1 – e–δ(1+y)
1

1 – e–δ(1–y)x
1

1 – e–δ(1–y)(1–x) . (2.22)

Hence, taking into consideration (2.21) and (2.22), we complete the proof of (2.18).
Next, we consider the case θ ≥ 1

2 . Then (2.19) can be equivalently written as

ω(x) < ω(0), (2.23)

where

ω(x) =
1 – e–δ(1–y)(1–x)

1 – e–δ(1+y)(1–x)
1 – e–δ(1–y)x

1 – e–δ(1+y)x
eθδ(1–y)x

eθδ(1+y)x .

From part (2) of Lemma 2 it is easy to prove (2.23). Therefore the proof of (2.19) is com-
plete.

The proof of Lemma 3 is complete. �

Using Lemma 3 and limit relations (1.6) and (1.7), we have the following:

Corollary 2 Let m, n ∈N, α ≥ 0 and β ≥ 1
2 . Then, for all x > 0, we have:

0 <
ψm+n(x + α)

ψm(x)ψn(x + α)
< (m + n – 1)(m + n – 2)n–1 <

ψm+n(x)
ψm(x + β)ψn(x)

< +∞,

where (m + n – 2)n–1 = (m+n–2)!
(n–1)!(m–1)! . All bounds are optimal.

Remark 2 Setting m = n = 1 in Corollary 2, we get the well-known inequality

ψ2
1 (x) – ψ2(x) > 0

with the optimal lower bound. This inequality was proved in many papers by different
methods (see [8, 12, 15, 16, 34]) and used to establish many significant results related to
the gamma and polygamma functions in [12, 13].

3 Proofs of the main results
We give a proof of Theorem 1.1.

Proof Differentiation yields

F ′(x;α,β) = ψ1(x + β)
(

α –
ψn+1(x)

ψ1(x + β)ψn(x)

)
= ψ1(x + β)Fα,β (x), (3.1)

and therefore

F ′′(x;α,β) = F ′
α,β (x)ψ1(x + β) – Fα,β (x)ψ2(x + β). (3.2)
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From Lemma 3 we conclude that F ′
α,β(x) > 0 for β ≥ 1

2 and F ′
α,β(x) < 0 for β ≤ 0. In view

of Corollary 2, it follows that Fα,β(x) < 0 for β ≥ 1
2 and α ≤ n and Fα,β(x) > 0 for β ≤ 0 and

α ≥ n. By relations (3.1) and (3.2) it is easy to see that F ′(x;α,β) < 0 and F ′′(x;α,β) > 0 for
β ≥ 1

2 and α ≤ n and that F ′(x;α,β) > 0 and F ′′(x;α,β) < 0 for β ≤ 0 and α ≥ n.
Next, we assume that F(x;α,β) is strictly increasing and concave for β ≤ 0. From (3.1)

we obtain Fα,β(x) > 0, so that Lemma 3 and limx→∞ Fα,β(x) = α – n imply α ≥ n.
Besides, from (3.2) it follows that

α –
ψn+2(x)ψn(x) – ψ2

n+1(x)
ψ2

n (x)ψ2(x + β)
> 0. (3.3)

Letting x tend to ∞ and utilizing (1.7), we get α ≥ n.
By similar arguments the necessary condition of the case where F(x;α,β) is strictly de-

creasing and convex for β ≥ 1
2 can be proved.

The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2 Using the concavity and convexity in Theorem 1.1 and Jensen’s in-
equality, we can easily prove the sufficiency of the theorem. Assume that the left-hand side
of (1.12) is valid and xm are not all equal. Setting x2 = · · · = xn = y, from (1.12) we get

α1 ≤ p1 lnψk(x1) + (1 – p1) lnψk(y) – lnψk(p1x1 + (1 – p1)y)
ψ(p1x1 + (1 – p1)y + β1) – p1ψ(x1 + β1) – (1 – p1)ψ(y + β1)

. (3.4)

Letting x1 tend to y and applying L’Hospital’s rule, we obtain

α1 ≤ (p1 – 1)ψ2
k+1(y) – (p1 – 1)ψk(y)ψk+2(y)

(1 – p1)ψ2(y + β1)ψ2
k (y)

, (3.5)

so that (1.7) and (3.5) lead to α1 ≤ k as y tends to ∞. If the right-hand side of (1.12) is valid,
then by letting y tend to ∞ in the reversed inequality of (3.5), we have α2 ≥ k.

The proof of Theorem 1.2 is complete. �

Next we give a proof of Theorem 1.3.

Proof of Theorem 1.3 Firstly, we need to show that M(s) for s < 1 is well defined. It
follows from (1.6) and (1.7) that limx→∞ fk+1(x) – fk(x) + sfk(x) = 0 and limx→0 fk+1(x) –
fk(x) + sfk(x) = s. According to [32, Lemma 2], it is obvious that 0 ≤ M(s) < 1 for s < 0 and
s ≤ M(s) < 1 for 0 ≤ s < 1.

Since the power mean is increasing with respect to its order (see [33, p. 159]) and ψk(x)
is decreasing, it suffices to show that (1.13) holds for s ≥ 1 and r = –s(k + 1) and for s < 1
and r = –sk – M(s).

In fact, it is still necessary to make use of the techniques of the proof of [32, Thm. 2],
and we cannot present it in detail. In view of the proof of [32, Thm. 2], we will prove that
Φ(x) is increasing on (0,∞) for s ≥ 1 and r = –s(k + 1) and for 0 	= s < 1 and r = –sk – M(s),
where

Φ(x) = x1–rψ s–1
k (x)ψk+1(x).
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Furthermore, we get

Φ ′(x) =
Φ(x)

x
Ψ (x), (3.6)

where

Ψ (x) = 1 – r – x
ψk+2(x)
ψk+1(x)

+ (1 – s)x
ψk+1(x)
ψk(x)

.

Case 1. s ≥ 1 and r = –s(k + 1). From [32, Lemma 2] we conclude that Ψ (x) is strictly
increasing on (0,∞), so that Ψ (x) > limx→0+ Ψ (x) = 0. Hence Φ(x) is increasing on (0,∞).

Case 2. 0 	= s < 1 and r = –sk – M(s). Then Ψ (x) ≥ 0 is equivalent to

M(s) ≥ fk+1(x) + sfk(x) – fk(x), (3.7)

and therefore Φ(x) is increasing on (0,∞).
We consider the case s = 0. From Theorem 2 of [32] it follows that r < 0. Let x1 ≥ x2 ≥

· · · ≥ xn > 0. Then we define

Fm(x) = F(x, . . . , x, xm+1, . . . , xn), m = 1, 2 . . . , n – 1,

where

F(x1, . . . , xn) =
n∑

m=1

pm lnψk(xm) – lnψk

(( n∑
m=1

pmxr
m

)1/r)
.

Differentiating Fm(x) gives

x1–rF ′
m(x) =

( m∑
v=1

pv

)(
(xz)1–r ψk+1(xz)

ψk(xz)
– x1–r ψk+1(x)

ψk(x)

)
, (3.8)

where

0 < z =

( m∑
v=1

pv +
n∑

v=m+1

pv

(
xv

x

)r
)1/r

≤ 1.

If r = –M(0), then we conclude that

(
x1–r ψk+1(x)

ψk(x)

)′
≥ 0,

which, together with (3.8), implies F ′
m(x) ≤ 0. By the techniques of the proof in [32, Thm. 2]

we have F(x1, . . . , xn) ≤ 0.
We assume that (1.13) is valid for all xm > 0 and weights pm (m = 1, 2, . . . , n). We set

x2 = · · · = xn = y and x1 = x in (1.13). Then, for s 	= 0, we obtain

f (x, y) = ψk
((

p1xr + (1 – p1)yr)1/r) –
(
p1ψ

s
k(y) + (1 – p1)ψ s

k(y)
)1/s ≥ 0
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with f (y, y) = 0. In fact, a direct computation of the partial derivative of f (x, y) gives

∂f (x, y)
∂x

∣∣∣∣
x=y

= 0.

In combination with f (y, y) = 0, this establishes

∂2f (x, y)
∂x2

∣∣∣∣
x=y

≥ 0,

which implies that Ψ (y) ≥ 0 is equivalent to

–r ≥ fk+1(y) – fk(y) + sy
ψk+1(y)
ψk(y)

. (3.9)

If s ≥ 1, then letting y tend to 0 in (3.9) yields r ≤ –s(k +1). For 0 	= s < 1, from the definition
of M(s) and (3.9) it follows that r ≤ –sk – M(s). Finally, we prove the case s = 0. In the same
way, from (1.13) we obtain

f (x, y) = ψ
p1
k (x)ψ1–p1

k (y) – ψk
((

p1xr + (1 – p1)yr)1/r) ≤ 0.

Since f (y, y) = 0 together with

∂f (x, y)
∂x

∣∣∣∣
x=y

= 0,

we obtain

∂2f (x, y)
∂x2

∣∣∣∣
x=y

= –r – fk+1(y) + fk(y) ≥ 0. (3.10)

Hence (3.10), together with the definition of M(s), leads to r ≤ –M(0).
The proof of Theorem 1.3 is complete. �

Remark 3 Define

m(s) = inf
x>0

(
fk+1(x) – fk(x) + sfk(x)

)
,

where fk(x) is defined in Theorem 1.3. From [32, Lemma 2] we get

(
ln

(
x
ψk+1(x)
ψk(x)

))′
< 0,

which implies fk+1(x) – fk(x) > 0. For s ≥ 0, it is easy to see that

(
fk+1(x) – fk(x) + sfk(x)

)
> 0.

Since limx→∞ fk+1(x) – fk(x) + sfk(x) = 0, we conclude that m(s) = 0. For s < 0, from [32,
Lemma 2] and (1.6) it follows that

fk+1(x) – fk(x) + sfk(x) > s,
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which, together with limx→0 fk+1(x) – fk(x) + sfk(x) = s, implies m(s) = s. As a consequence,
the reversed inequality of (1.13) is valid for all xm > 0 and weights pm (m = 1, 2, . . . , n) if and
only if r ≥ –sk – m(s).

4 Inequalities
In this section, we use Theorem 1.1 to yield some new inequalities for the polygamma
functions.

We recall that a function f is said to be superadditive on an interval I if

f (x) + f (y) ≤ f (x + y) for all x, y ∈ I with x + y ∈ I.

If –f is superadditive, then f is called subadditive on I (see [36]). A function f is said to be
star-shaped on (0,∞) if

f (ax) ≤ af (x)

is valid for all x > 0 and a ∈ (0, 1). There is a close relation between the above two notions
that star-shaped functions are superadditive (see [37–39]). Particularly, Trimble et al. [39]
show that a function f (x) is star-shaped on (0,∞) if and only if f (x)/x is nondecreasing on
(0,∞).

Theorem 4.1 For n ∈ N and β ∈R, let G(x) = enψ(x+β)ψn(x).
(1) For β ≤ 0, we have the inequality

1
(n – 1)!

<
G(x + y)
G(x)G(y)

< +∞ (4.1)

for x, y > –β .
(2) For β ≥ 1

2 , we have the inequality

0 <
G(x + y)
G(x)G(y)

<
1

(n – 1)!
(4.2)

for x, y > 0. All bounds are optimal.

Proof Since the proof of (4.1) is similar to that of (4.2), we provide the proof of (4.1). We
define

g(x, y) =
G(x + y)

G(x)
.

Partial differentiation yields

∂g(x, y)
∂x

=
G(x + y)

G(x)
(
g1(x + y) – g1(x)

)
,

where g1(x) = G′(x)/G(x). For β ≤ 0, due to Theorem 1.1, we conclude that g1(x) is decreas-
ing on (–β ,∞), so that ∂g(x, y)/∂x < 0. By the double inequality

ln x –
1
x

< ψ(x) < ln x –
1

2x
,
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which can be derived from [40], we get limx→∞ G(x) = (n – 1)! for all β ∈R, limx→0 G(x) =
∞ for β > 0, and limx→–β G(x) = 0 for β ≤ 0. Together with ∂g(x, y)/∂x < 0 and Theo-
rem 1.1, this establishes

G(x)
(n – 1)!

< 1 < g(x, y) < +∞,

from which inequality (4.1) easily follows. Finally, we check that the bounds of (4.1) are
optimal. From

lim
x→∞ lim

y→∞
G(x + y)
G(x)G(y)

=
1

(n – 1)!

and

lim
x→–β

lim
y→∞

G(x + y)
G(x)G(y)

= +∞

we get the desired result. �

Theorem 4.1 immediately leads to the upper and lower bounds for the ratio ψn(x)ψn(y)/
ψn(x + y).

Corollary 3 Let n ∈N. We have the double inequality

(
eψ(x+y+1/2)

eψ(x+1/2)+ψ(y+1/2)

)n

<
ψn(x)ψn(y)

(n – 1)!ψn(x + y)
<

(
eψ(x+y)

eψ(x)+ψ(y)

)n

for x, y > 0.

From Theorem 4.1 we observe that, for β ≤ 0, the function ξ1(x) = ln(enψ(x)ψn(x – β)) –
ln(n – 1)! is superadditive on (0,∞), and for β ≥ 1

2 , the function ξ2(x) = ln(enψ(x+β)ψn(x)) –
ln(n – 1)! is subadditive on (0,∞).

In fact, ξ1(x) and –ξ2(x) are not only superadditive but also star-shaped on (0,∞).

Theorem 4.2 The functions ξ1(x) and –ξ2(x) are both star-shaped on (0,∞).

Proof Since a function f (x) is star-shaped on (0,∞) if and only if f (x)/x is nondecreasing
on (0,∞) (see [39]), it suffices to prove that ξ1(x)/x and –ξ2(x)/x is increasing on (0,∞).
Since

(
ξ1(x)

x

)′
=

xξ ′
1(x) – ξ1(x)

x2 ,
(

–
ξ2(x)

x

)′
=

–xξ ′
2(x) + ξ2(x)

x2 ,

by Theorem 1.1 we complete the proof of the theorem. �

Remark 4 Theorems 4.1 and 4.2 provide two distinct ways to prove that ξ1(x) and –ξ2(x)
are superadditive.
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5 Conclusions
In this paper, Theorem 1.1 gives necessary and sufficient conditions for α ∈ R such
that the function F(x;α,β) is strictly increasing (decreasing) and concave (convex) on
(max(0, –β),∞) for β ∈ (–∞, 0] (β ∈ [1/2,∞)). Consequently, Theorem 1.1 provides a al-
ternative proof of [34, Thm. 2.1] and yields a double mean-value inequality (Theorem 1.2).
In Theorem 1.3, it is stated that there exist necessary and sufficient conditions such that
the reversed inequality of (1.10) is valid, which enhances Theorem 2 of [32].

Moreover, we find several new inequalities for the polygamma functions. In Theo-
rem 4.1, we prove two sharp inequalities for the function G(x), which determine the upper
and lower bounds for the ratio ψn(x)ψn(y)/ψn(x + y) (Corollary 3). Finally, two star-shaped
functions are posed in Theorem 4.2.
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