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1 Introduction

The following concept of PNQD random variables was introduced by Lehmann [2].

Definition 1.1 A sequence {X,,n > 1} of random variables is said to be pairwise nega-

tively quadrant dependent (PNQD) if for any r;, r; and i #,
P(X; > r;, X; > ;) < P(X; > r)P(X; > 1j).

Negative quadrant dependence is shown to be a stronger notion of dependence than
negative correlation but weaker than negative association. The convergence properties
of NQD random sequences have been studied in many papers. We refer to Wu [3] for
Kolmogorov-type three-series theorem, Matula [4] for the Kolmogorov-type strong law of
large numbers, Jabbari [5] for the almost sure limit theorems for weighted sums of pairwise
NQD random variables under some fragile conditions, Li and Yang [6], Wu [7], and Xu
and Tang [8] for strong convergence, Gan and Chen [9] for complete convergence and
complete moment convergence, Wu and Guan [10] for a mean convergence theorem and
weak laws of large numbers for dependent random variables, and so on.

The concept of complete convergence of a sequence of random variables was first given
by Hsu and Robbins [11].
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Definition 1.2 A sequence of random variables {U,,, n € N} is said to converge completely
to a constant a if for any ¢ > 0,

oo

ZP(|L[,, —al >8) < 00.

n=1

By the Borel-Cantelli lemma this result implies that U,, — a almost surely. Therefore,
the complete convergence is a very important tool in establishing the almost sure conver-
gence of sums of random variables and weighted sums of random variables.

Recently, Ko [1] proved the following complete convergence theorem for arrays of
PNQD random variables.

Theorem A Let {X,;,1 <j < b,,n > 1} be an array of rowwise and PNQD random vari-
ables with mean zero, and let {a,;,j > 1,n > 1} be an array of positive numbers. Let
{by, n > 1} be a nondecreasing sequence of positive numbers. Assume that, for some 0 < t < 2

and all € >0,
oo by 1
X:C,,(log2 by,)zzP(m,,jX,,ﬂ > &b, ) <00 (1.1)
n=1 j=1
and
0 by
_2 1
Z cuby (log, b,)? Z aijE(an)21(|aan,,,»| <eby) < o0 (1.2)
n=1 j=1
Then

k 1
> (anXoj — anEXyl[|an Xl < b))

1
>¢eb)l } < 00. (1.3)

Chow [12] was the first who showed the complete moment convergence for a sequence
of independent and identically distributed random variables by generalizing the result of
Baum and Katz [13]. The concept of complete moment convergence is as follows.

Definition 1.3 Let {Z,,n > 1} be a sequence of random variables, and let a,, > 0, b, > 0,
and g > 0. If for any ¢ > 0,

oo

> anE{b, | Zy] - €} < o0,

n=1

then this is called the complete moment convergence.

It is easily seen that complete moment convergence is stronger than complete conver-
gence. There are many papers on complete moment convergence; see, for example, Sung
[14] for independent random variables, Wang and Hu [15] for the maximal partial sums
of a martingale difference sequence, Shen et al. [16] for arrays of rowwise negatively su-
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peradditive dependent (NSD) random variables. Wu et al. [17] for arrays of rowwise END
random variables, Wu [7] for negatively associated random variables, Wu et al. [18] for
weighted sums of weakly dependent random variables, Wang et al. [19] for double indexed
randomly weighted sums and its applications, Wu and Wang [20] for a class of dependent
random variables, and so forth.

In this work, we improve Theorem A from complete convergence to complete moment
convergence for PNQD random variables under some stronger conditions. In addition, we
obtain some much stronger conclusions under the same conditions of the corresponding
theorems in Ko [1].

Throughout this paper, the symbol C always stands for a generic positive constant which
may differ from one place to another. By /(A) we denote the indicator function of a set A.
We also denote x, = xI(x > 0).

2 Main results
Now we state the main results of this paper. The proofs are given in next section.

Theorem 2.1 Let {X,;,1 <j < b,,n > 1} be an array of rowwise and PNQD random
variables with mean zero, and let {a,;,j > 1,n > 1} be an array of positive numbers. Let
{b,,n > 1} be a nondecreasing sequence of positive numbers. Assume that, for some 0 < t < 2

and all ¢ >0,
bn
chb (logy 5.)? > ay Xy (janXoy] = eby) < o0 (2.1)
n=1 j=1
and
oo by
_2 1
Z ¢uby ' (log, b,)? Z aﬁjE(X,,j)zl(man,,ﬂ <eb) ) < 00. (2.2)
n=1 j=1
Then, for all ¢ > 0,
,% k %
ch b, 13@2 Zl(aan,,j — a,,jEX,,jI[|a,,,»X,,j| <eb) ]) —g¢ <o0. (2.3)
/= +

1
Remark 2.1 Let H,; = Z}l‘(:l(dﬂanj — anyEX,jl[|a,X,;| < eb, ]). Note that

_1
Zc,,E[bnt max |H,| —s]
.

1<k<by

,,? max |Hy| > & +u) du
<bn

1
max [Hyl > (e + u)b,* > du

1<j<b,

e ], A
Ji

o0
1
> Zc P( max |H,| > 2eb, ‘)

1<1< -

Thus (2.3) is much stronger than (1.3).



Ge et al. Journal of Inequalities and Applications (2019) 2019:46 Page 4 of 14

Theorem 2.2 Let {X,;,1 <j < b,,n > 1} be an array of rowwise and PNQD random
variables with mean zero, and let {a,j,j > 1,n > 1} be an array of positive numbers. Let
{by,n > 1} be a nondecreasing sequence of positive numbers. Assume that, for some se-
quence {\,,n > 1} with 0 < 1, < 1, we have E|X;|'**" < 0o for 1 <j < by, n> 1. If for some

sequence {c,,n > 1} of positive real numbers and 0 < t < 2,

1i-1-a,
ch(logz (bi) ZE|un]X,,]| < o0, (2.4)
j=1

then for any € > 0,

o0
21: C,,E{ ;ll 151(2?(” Z i Xj } < 00. (2.5)
n= +

Remark 2.2 Noting that the conditions of Theorem 2.2 are the same as in Theorem 3.2 in

Ko [1], we have

>s+u>d
> (e +u)b, )
> 2¢b, )

Therefore (2.5) is much stronger than (3.8) of Theorem 3.2 in Ko [1]. To sum up, Theo-

[e's) ) k
E ¢,E{b," max E AniXyj| — €
1<k<by,
n=1 j=
00 =
= ,,t max
0 1<k<b,

o0
> E Cy max
1<k<by
n=1
[o¢]
> E ¢, P| max
1<k<by

n=1

§ :“"l nj

E :“n/ nj

E :“ni nj

rem 2.2 improves Theorem 3.2 in Ko [1].

Corollary 2.3 Let {X,j,1 <j<b,,n> 1} bean array of rowwise PNQD random variables,
and let {a,j,j > 1,n > 1} be an array of positive numbers. Let h(x) > 0 be a slowly varying
function as x — oo, and let o > % and ar > 1. Suppose that, for 0 < t < 2, the following

conditions hold for any & > 0:

> n2 (log, n) zh(n)z|an,|E|Xn1|1(|a,,]X,,,| > ent) <00 (2.6)
n=1 j=1
and
00 ) n 1
> (logy m)h(n) Y ayyE(Xy ) 1 [layXyy| < en ] < oo, @7)

n=1 j=1
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Then, for all ¢ > 0,

k

o0

E n‘”zh(n)E{n} m]le E (a,,jX,,j - an,-EX,,,»I[la,,,»anl < sn}])‘ - 8} <oo.  (2.8)
1<k<n

n=1 N +

j=1

Theorem 2.4 Let {X,,j > 1,n > 1} be an array of rowwise identically distributed PNQD
random variables with EXy; = 0, and let h(x) > 0 be a slowly varying function as x — oo. If
E|X11 | @2 (|1 X1 |") < o0 for o> &, ar > 1, and 0 < t < 2, then

o0
1
Zn"‘”zh(n)E 7t max
1<k<by,

n=1

i —8} < 00. (2.9)

Remark 2.3 Noting that the conditions of Theorem 2.2 are the same as in Theorem 3.4 in

Ko [1], we have

[es) k
1

E n¥2h(n)E{n~t max E Xy —e
1<k<by |~

n=1 j=1 +

Therefore (2.9) is much stronger than (3.13) of Theorem 3.4 in Ko [1]. Theorem 2.4 im-
proves Theorem 3.4 in Ko [1].

Corollary 2.5 Let {X,;,1 <j < b,,n > 1} be an array of rowwise and PNQD random
variables with mean zero, and let {a,;,j > 1,n > 1} be an array of positive numbers. Let
{by,n > 1} be a nondecreasing sequence of positive numbers, and let {c,,n > 1} be a se-
quence of positive numbers. Assume that, for all ¢ > 0,

by
ch(logz 2> lam|ENX 1 (|anXoy) > £10g, by) < 00 (2.10)
j=1
and
o0 by
> e Y ayE(y) ] |anX,l < elogy by| < . (2.11)
n=1 j=1

Then, for all ¢ > 0,

k
> (X - anEXoyI[|anX,| < log, by])

—1
E Cn {(logz  max
=R =Un
Jj=1

)

Page 5 of 14
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< 00. (2.12)

Corollary 2.6 Let {X,,1 <j < b,,n> 1} be an array of rowwise and PNQD random vari-
ables with mean zero and finite variances. Let {a,;,j > 1,n > 1} be an array of positive
numbers satisfying

ZﬂijE(Xni)z = O(n's) asn— 0o (2.13)

j=1

for some 0 <8 < 1. Then, for all e >0 and o > 0,

00 k
2e-DE) (10 -1 ma Xl —¢ 00. 2.14
;VI {I’l (log, n) 15k5)l§n }Xl:‘ln/ nj < ( )
_ - .

Remark 2.4 Note that

o0

2 :“nl nj

nz("‘_l)Ei “(log, n)~  max

n=1

}+
k
E aan;d
j=1

k

§ :”w nj

[ee]

X:: / ( ~“(log, n)™" mz;)én

>s+u)du

> (¢ + u)n® log, n) du

3

ZZ (- 1)/ ( *(log, 1)~ 11”11(&)(
<

k

o0
ZE n? @ Dp( max E i
1<k<by |4
n=1 j=1

> 2en® log, n).

Therefore (2.14) is much stronger than (3.18) of Corollary 3.6 in Ko [1].

3 The proofs
To prove our results, we need some lemmas. The first one is the basic property for PNQD
random variables, which can be referred to Lehmann [2].

Lemma 3.1 Let {X,,,n > 1} be a sequence of PNQD random variables, and let {f,,,n > 1}
be a sequence of nondecreasing functions. Then {f,,(X,),n > 1} is still a sequence of PNQD
random variables.

The next lemma comes from Wu [3] and plays an essential role to prove the result of the
paper.

Lemma 3.2 Let {X,,n > 1} be a sequence of PNQD random variables with mean zero and
finite second moments. Then

2

< C(log, n)? ZEXZ (3.1)
j=1

E max
1<k<n

ZX
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A positive measurable function h(x) on [a, 00) for some a > 0 is said to be slowly varying

asx — oo if

i h(ix)
550 i(x)

=1 foreach A >O. (3.2)

The last lemma can be found in Wu [21].
Lemma 3.3 Ifh(x) > 0 is a slowly varying function as x — 0o, then
(i) limy—s oo SUPgk okt H(x)/R(2%) = 1, and

(ii) €12%(e2%) < Y8, Vh(e2) < 2% h(e2¥)
forallr>0,¢ >0, and positive integers k and some positive constants c; and c;.

1
Proof of Theorem 2.1 Let S; = lele(a,,jX,,,» — anyEX,jl(|a,X,| < b, ]). For any fixed & > 0,
o0
Zc,,E{b; max |S;| - 8}
) 1<j<by +

o 0
= E c,,/ P(bf max |S|—8>u)du
0 <]<

n=1
R o)
<<9ch (max |S|>sbt +Zc,, max |S|>ubt)d
1<}< o 1<]<b
n=1
=:]1 +12.

Obviously, we have I; < 0o by Theorem A. Hence we need only to prove I, < co. Clearly,

P(ln}aﬁn |Sj| > ubj; )

n:l I njlnjl =
=P Il}aX |.; | >U |6l }X 1| U }

j=1

p bn
+ P| max |S|>ub,,,m | X | <ub }

1<j<by,
S/= j=1

by

<> P(|anXy > ubj; )
j=1

k

1 1
+ P<1I§T}é§n le(a,,anjl(|a,,an/| < Sbé ) - ﬂn]'EXy,}'I(|ﬂann/| < Eh;é ))
j=

1
>ub! ).

Then we can get

bn oo
Z/ |a,,,X,,,| > ub) )d
j=1 v¢

k

[o¢]
max
1<k<by|“ 1

5l

1
Z(ﬂann/I(|an]«an| < ub)} )

n=1
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1
>ub}

Firstly, we will prove that I35 < co. Noting that

Ge et al. Journal of Inequalities and Applications

1
— anEXyil (|anXy| < ubjt))

=: 13 + [4.

o0 1 -1 1
/ P(|dn/'an| Z Mbr); ) du = bn tE|aannj|1(|aannj| = Ebrf );
£

by (2.1) we have

%] by 00 1
L<) ) / P(|ayX,| = uby) du
j=1v¢

n=1
© b 1

=< chbn ! ZE|ﬂannj|I(|ﬂannj| > é‘bé) <0,
n=1 j=1

To prove that I < 00, let

1 1 1 1 1
Y.« = —ub} I(a,,jX,,j < —ub,ﬁ) + a,,,'X,,/I(|ay,}-X,,j| < ub,ﬁ) + ub) I(ozy,jX,,j > ub)} ),

1 1 1

1 1 1 1
Zuk = —ub)! I(aniX,,/ < —ub,é‘) + ub} I(aan,,j > ub)} )

We have
; % N
P 12}(2” le(aan,,jl(mannﬂ <eby) — anEXyl(|ayX,| < eby))| > ubj,
=
k
1
= P(J;}fg}]n ;(Ynk - EYnk - an + Ean) > Mbri )
j=

Then we have

oo 0
+ch P| max Z
! e 1<k<by|<
n=

j=1

=: 15 + 16.

For I5, by the Markov inequality and (2.1) we have

o) by 00
I < CZC,,Z] U E|Z| du
j=1 °¢

n=1

o0 1 by 50 1
< Cchb,f Z/g P(Iaan,,jl > ub,f)du
n=1 j=1
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1, 1 1
=< Czcnbrtl antE|ﬂannj|I(|uannj| > gbnt)

=1 j=1

=

Mg

by
ZElan,Xn,H |0 X > ubt)
j=1

=
1
—

Now consider Is. By the Markov inequality and Lemma 3.2 we have

2
)du

k

o0 B 2 o0
Ig<C Z byt u2E| max
e 1<k<by,
n=1 j=1

> (Y — EYoe)

o0 2 bn o0
<CY cuby' (logybu)* Y / U E| Y| du
n=1 j=1 V¢
o) 2 by 00 1
~CY bt tomb Y [ u ey PEXPI(laX, | < ub)
n=1 j=1 ¢

o0 bﬂ o0
1
+C Z ¢q(log, b,)? Z/ P(|a,,,'X,,j| > ub)} ) du
n=1 j=1 ¢
= 17 + 18'
Firstly, we will prove that I < co. By (2.1) we have

by
Is < Cch » 1og2b )Y lan E\XglI (|anXo| > £b; )

j=1

Next, consider I; < oo. We have

I = CZC,,I’) (10g2 Z/ _2|6{n1|2E|Xn]|2l(|d,,1an| <eb, )

n=1
>, 2 b poo 1 1
+C ) cuba’ (logy ) ) / i PEX P (ebi < |ayXoy| < ubyi)
= ji=1 V¢

.7 1
=L +1;.

By (2.2) it is easy to see that

1 00
I <C§ Cuby logzb )2§ | |*E| X |*1 (|2 X, < €b}}) / uw?du
&€

j=1

< OQ.
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By the Markov inequality and (2.1) we have

(m+1)e
I = CZC,, N logzb )? ZZ / u*2E|aann,|21(sbﬁ < Xyl < ubé ) du
j=1 m=1
by o0
< Cch 7 (log, by Y > m ElayX, I(ab‘ < |ayXyjl < (m+1)eb); )
j=1 m=1

= CZC,, logzb )2 ZZWZ_Z ZE|¢V,1X,,,| I(seb‘ < @i Xl < (s + 1)eby; )

j=1 m=1 s=1
by oo . @
= Cch log2 ZZEM,,,X,,,FI(SSI? <lanXyjl < (s +1)eby) Zm_z
j=1 s=1 m=s
by oo 1
< CZC,, " logzb )2 ZZS 1E|a,,,X,,,|21(se9b <lanXyjl < (s +1)eby;)
j=1 s=1
—CZC,, + (10g, b,)? ZZS (s +1)%b,
j=1 s=1
aannj 2 1 1
x E T I(seb); < |anyXyl < (s+1)eb;)
(s+1)eb}
<CZC,, + (log, b, )2225 s +1)%;
j=1 s=1
X, 1 1
x E j 2 T I(ssb,ﬁ <layXyl < (s + l)eb,f)
(s+1)eb;

by o0

= CZC,, " log2 ZZS s+ l)th|a,,,X,,,|I(ssb < @i Xl < (s + l)abt)

j=1 s=1

by o0

< CZC,, M logzb )2 ZZE|an,Xn,|I(seb <|an Xyl < (s +1)eb; )

j=1 s=1

—Cch » 1og2b )221; Elay Xl (lanX,| > b} )
j=1

_Cch ; 1og2b )ZZE|a,,}Xn,|I(|an]X,,,| > eb! )
j=1

This completes the proof of the theorem.

Proof of Theorem 2.2 We estimate

> 1 b 1
> " eubu’ (10g, by)> Y |aw | EIXoyI(1an Xy > ebyl)

n=1 j=1

Page 10 of 14
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a ApiXyi
_SZC,, log, b, ZE 2l "1 (Llnl 21)
j=1 sb‘ ebl
o] 1+A
A, Xy " i X
<& cullogy by )QZE — 1( s zl)
n=1 =1 | eb} eb}

o) by
<CY cullog, bn)z(bf )T Elay Xt < 00
n=1 j=1

and

2 ba 1
> eubn (10g,ba)* Y apE(Xy)M[|an X,y < byt ]

n=1 j=1
I( < 1)

a”] i a”iX”j
1

ebl

A Xyj
1
&b}

LLU)CU

eb)
1+Ay
I( < 1)

00 by
<CY aullog, (b)Y Bl X1 < .
n=1 j=1

=¢ ch(logz W2E|

n=1

< CZC,, log, b, )ZZE

1
t

Hence conditions (2.1) and (2.2) of Theorem 2.1 are satisfied. Since EX,;; = 0, we get

k
ZEan,Xn,1[|an,Xn,| <eb) ]

sl

b," max
1<k<by

k 1
<b," max Z|an,|E|Xn,|1[|an,Xn,| > b, |

—

IA

bn
N Y
(b,, ') " Z |a,,j|1”"E|X,,j|“’\" —0 asn— oo,
j=1

and thus (2.5) is completed. d

Proof of Corollary 2.3 Let ¢, = n*""2h(n) and b, = n. Then, by Theorem 2.1, (2.8) is com-

pleted. d

Proof of Theorem 2.4 For a,j=1,j>1,n> 1, by Lemma 3.3 we have

e 1
> " n " (logy n* h(mE| X1 |I(|X01| > en?)

n=1

(25 Kh(2°) Elxu (1% | = e(2k)%)

M2

<C

n=1

1
t

)

(Zk)amzh(zk)E'Xn |[(|X11 | > 8(2k)

IA
9
e

=
Il

1
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oo m
<CY ElXnllle (2*”)% < [Xul < (2) % ) 1> (@) h

j=1

Sl

1
£

m=1

o0

<C> (@) R EXul[e(27)F < Xl <e(2)]
m=1

< EXu1|“"* P h(1X11]) < 00

and

[o¢] n
2 1
Zn‘”_l_f(log2 n)*h(n) aijE(Xn)zI[IXuI < 871?]

n=1 j=1

> or— (Zk)%

<> (29 FKeh(2%) / x* dF (x)
0

1

t

@
(2k)ar+2——h( )/2 deF(x)
0

ar+2— (2*’")%
(27) (2 / 2 dF(x)

@yt

1
a2 [@F p(2 x 2m
-y @ /( %yh(mf)xzdlf(x)

— -1y h(|x|)

> ar+2-2 (Zm)% a2
<C 2m ¢ h(|x|")x” dF (x
N /(M% (I+l)* dE @)

<cZ/ O (lal)* dF (1)

= CEIXu | h(1Xu ") < o0,
and thus (2.6) and (2.7) are satisfied. Then, to complete the proof, it remains to show that,

for 1 <j<mn, mtJIEXuI[|Xi1] < ent]| — 0 as n — oo.

If (wr + 2)t < 1, then we have, as 1 — oo,
I’f%]’|EX11][|X11| < Sn%] { < (8)lf(ar+2)tn17(0tr+2)tE|X11 |(ar+2)t N 0’
and if (ar + 2)t > 1, then since |EX11| = 0, we have, as n — o0,

W | EXI[ X0 < ent ]| < n'F |~EXI[1 X0 = ent ]|

< (8)1—(ar+2)tnl—(ar+2)tE|X11I(otr+2)t = 0.

Hence the proof of Theorem 2.4 is completed. O

1
Proof of Corollary 2.5 Taking log, b, instead of b,; in Theorem 2.1, we get (2.12). O
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-

Proof of Corollary 2.6 In Theorem 2.1, let ¢, = n*@~Y and b,,* = n=%(log, n)~!. By (2.13)

we have
0 by 1
> by (g, by lag EIXy 1 (lanX,sl > £} )
n=1 j=1
an] n] ﬂn]Xn]
—eZc,,(log2 ZE >1
j=1 sb‘ sbt
“”1 't/ a,,/X,,}-
<82C,,(10g2b) ZE — =1
j=1 ebt &b}
oo 2 by
<C) cuby' (logy b)Y ElanXyl®
n=1 j=1
<C Z 712("‘_1)71_2"‘(10g2 1/1)_2(10g2 b,)n’
n=1
< C Z n—2+8 )
n=1
and
0 by
Z by (logzb )ZZamE ,,,)21[|a,,}Xn]| <eb} ]
n=1 j=1
[o¢] 2 n
< cuby (108, b,)* Y ElayXyl®
n=1 j=1
o0
<CY n?* Dy (log, n)%(log, b,)*n’
n=1
o0
< CZ n < o0
n=1

Hence conditions of (2.1) and (2.2) of Theorem 2.1 are satisfied. Since EX,;; = 0, by (2.13)

we get
o |3 !
b, max ZEa Xl ||an X, < eb
n 1<k<by| 4 nj4 nj [| nj n1| n]
j=1
_1 k 1
<b," max Z|an,|E|Xn,|1[|an,Xn,| > eby |
2 bn
7 2 2
<b," ) layl’E|X,l
j=1

<Cn*"(log,n)> -0 asn—> oo,

and thus (2.14) is completed. a
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