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Abstract
In this paper, some exponential inequalities are derived from the inequalities
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1 Introduction
Inequalities involving trigonometric and inverse trigonometric functions play an impor-
tant role and have many applications in science and engineering [2, 8, 12, 17–19, 27]. The
sinc function, defined as sin(x)

x , is often used in signal processing, optics, radio transmis-
sion, sound recording [12], has been studied in many references [1, 3–5, 7, 10, 13–17, 19,
21, 26, 28–30]. The study starts from the Jordan’s inequality [19], namely

2
π

≤ sin(x)
x

≤ 1, 0 ≤ x ≤ π

2
. (1)

Later, the sinc function is bounded by using polynomials [7, 10, 17, 24], or by using expo-
nential bounds [3, 4, 25].

Cusa–Huygens’s inequality is studied in [3, 4, 11, 20, 22, 23, 25], and gives

cos
1
3 (x) <

sin(x)
x

<
2 + cos(x)

3
, 0 < x <

π

2
, (2)

(
2 + cos(x)

3

)θ

<
sin(x)

x
<

(
2 + cos(x)

3

)ϑ

, (3)

where the constants θ = ln(π/2)
ln(3/2) ≈ 1.113 and ϑ = 1 are the best possible.

Becker–Stark’s inequality, namely

8
π2 – 4x2 <

tan(x)
x

<
π2

π2 – 4x2 , 0 < x <
π

2
, (4)

is studied in [3, 4, 10, 19, 29, 31]. In [32], Zhu provided improved bounds:

t1(x) <
tan(x)

x
< t2(x), 0 < x <

π

2
, (5)
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where t1(x) = 8
π2–4x2 + 2

π2 – π2–9
6π4 (π2 – 4x2) and t2(x) = 8

π2–4x2 + 2
π2 – (10–π2)

π4 (π2 – 4x2). Later,
there in [6] further improved bounds were given, namely

t3(x) =
t̄3(x)

45π6(π2 – 4x2)
<

tan(x)
x

<
t̄4(x)

3π6(π2 – 4x2)
= t4(x), (6)

where t̄3(x) = 45π8 + (–2π8 – 3660π6 + 36000π4)x2 + (16π7 + 21000π5 – 208800π3)x3 +
(–48π6 – 49440π4 + 492480π2)x4 + (64π5 + 54240π3 – 541440π )x5 + (–32π4 – 23040π2 +
230400)x6 and t̄4(x) = 3π8 + (–12π6 + π8)x2 + (5280π3 – 456π5 – 8π7)x3 + (–24768π2 +
2272π4 + 24π6)x4 + (40704π – 3808π3 – 32π5)x5 + (–23040 + 2176π2 + 16π4)x6.

Chen and Cheng established the following exponential bounds [3]:

(
π2

π2 – 4x2

) π2
12 ≤ tan(x)

x
≤ π2

π2 – 4x2 , 0 < x <
π

2
. (7)

Recently, Nishizawa established [25]

(
cos(x)

) θ̄1(x)
3 ≤ sin(x)

x
≤ (

cos(x)
) θ̄2(x)

3 , 0 < x <
π

2
, (8)

(
4π

π2 – 4x2

)(2x/π )2

≤ 1
cos(x)

≤
(

4π

π2 – 4x2

)θ̄3(x)

, 0 < x <
π

2
, (9)

where

θ̄1(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, 0 < x ≤ 1,

2 – x, 1 < x ≤ 3/2,

1/2, 3/2 < x < π/2,

θ̄2(x) = 1 – 2x/π , and

θ̄3(x) =

⎧⎨
⎩

x, 0 < x ≤ 1,

1, 1 < x < π/2.

Motivated by Eqs. (5), (8) and (9), we provide some inequalities with much tighter bounds
by using power exponential functions, which are described in Theorems 1.1–1.2.

Theorem 1.1 For every 0 < x < π/2, we have

a(x)–θ1(x) ≤ 1
cos(x)

≤ a(x)–θ2(x), (10)

where a(x) = 1+ π–4
π

x– 2(π–2)
π2 x2, θ1(x) = – π

2(π–4) x– π2–4π+8
4(π–4)2 x2 + π4+8π2–128π+256

2π3(π–4)2 x3 and θ2(x) =

– π
2(π–4) x + 2(π2+6π–24)

π2(π–4) x2 – 2(π2+8π–32)
(π–4)π3 x3.

Theorem 1.2 For every 0 < x < π/2, we have

cos(x)
1
3 – 2

45 x2+ 5
124 x3– 41

1000 x4 ≤ sin(x)
x

≤ cos(x)
1
3 – 4

3π2 x2
. (11)
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2 Proof of Theorem 1.1

Proof Equation (10) is equivalent to

–θ1(x) · ln
(
a(x)

) ≤ – ln
(
cos(x)

) ≤ –θ2(x) · ln
(
a(x)

)
. (12)

Step 1. Firstly, we prove that for every 0 < x < π/2,

–θ1(x) · ln
(
a(x)

) ≤ – ln
(
cos(x)

)
,

which is equivalent to

D1(x) = ln
(
cos(x)

)
–θ1(x) · ln

(
a(x)

) ≤ 0. (13)

Let x1 = 0.9 and x2 = 111·π
256 ≈ 1.362.

Case 1.1. Proof of D1(x) ≤ 0, ∀x ∈ (0, x1].
Combining with Eq. (6), for every 0 < x ≤ x1, we have that

D′
1(x) = – tan(x) –

θ1(x) · a′(x)
a(x)

– θ ′
1(x) · ln

(
a(x)

)

≤ –t3(x) · x –
θ1(x) · a′(x)

a(x)
– θ ′

1(x) · ln
(
a(x)

)
= D2(x). (14)

It can be verified that θ ′
1(x) = α2x2 + α1x + α0 = α2(x + α1

2α2
)2 + α3, where α0 ≈ 1.82, α1 ≈

–3.59, α2 ≈ 1.98 > 0 and α3 ≈ 0.19 > 0, so we have θ ′
1(x) > 0, ∀x ∈ (0,π/2). Let D3(x) = D2(x)

θ ′
1(x) .

It can be verified that

D′
3(x) =

(
∑9

i=0 γ1,iB1,i(x)) · x2

W1(x)
, (15)

where W1(x) = ((πx – 2x +π ) · (2x +π ) · (–768x2 – 3π4x2 – 24π2x2 + 384πx2 +π5x – 4π4x +
8π3x – 4π4 + π5) · π )2(π – 2x), B1,i(x) = Ci

9·xi·(x1–x)9–i

(x1–0)9 , and γ1,0 ≈ –3.5 · 107 < 0, γ1,1 ≈ –3.2 ·
107 < 0, γ1,2 ≈ –2.9 · 107 < 0, γ1,3 ≈ –2.4 · 107 < 0, γ1,4 ≈ –2.0 · 107 < 0, γ1,5 ≈ –1.5 · 107 < 0,
γ1,6 ≈ –1.1 · 107 < 0, γ1,7 ≈ –7.7 · 106 < 0, γ1,8 ≈ –4.5 · 106 < 0, γ1,9 ≈ –1.7 · 106 < 0. Note
that W1(x) > 0, ∀x ∈ [0,π/2) and B1,i(x) ≥ 0, ∀x ∈ [0, x1], and from Eq. (15) we have that
D′

3(x) ≤ 0, ∀x ∈ [0, x1]. So

D3(x) ≤ D3(0) = 0. (16)

Combining Eq. (16) with θ ′
1(x) > 0, we have that D2(x) ≤ 0, ∀x ∈ (0, x1]. Combining with

Eq. (14) yields

D′
1(x) ≤ D2(x) ≤ 0, ∀x ∈ (0, x1]. (17)

From Eq. (17), we have that

D1(x) ≤ D1(0) = 0, ∀x ∈ (0, x1]. (18)
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Case 1.2. Proof of D1(x) ≤ 0, ∀x ∈ (x1, x2].
For every x1 < x ≤ x2, we have θ ′

1(x) ≥ 0, ln(a(x)) ≤ 0, θ1(x) ≤ θ1(x2) and

D1(x) ≤ ln
(
cos(x)

)
–θ1(x2) · ln

(
a(x)

)
= D4(x). (19)

Combining with Eq. (5) gives

D′
4(x) = – tan(x) – θ1(x2)

a′(x)
a(x)

≤ –x · t1(x) – θ1(x2)
a′(x)
a(x)

=
(
∑6

i=0 γ2,i · xi)
(πx – 2x + π )(–2x + π )(π – 4)2π4(2x + π )

= D5(x), (20)

where γ2,6 ≈ 1.95 > 0, γ2,5 ≈ 5.36 > 0, γ2,4 ≈ 56.7 > 0, γ2,3 ≈ 156.2 > 0, γ2,2 ≈ –265.4 < 0,
γ2,1 ≈ –1050 < 0, γ2,0 ≈ 502.8 > 0. So for every x1 < x ≤ x2,

6∑
i=0

γ2,i · xi < γ2,6 · x6
2 + γ2,5 · x5

2 + γ2,4 · x4
2 + γ2,3 · x3

2 + γ2,0 + γ2,2 · x2
1 + γ2,1 · x1

≈ –29.68 < 0.

Combining with Eq. (20) yields

D′
4(x) ≤ D5(x) ≤ 0. (21)

Combining with Eqs. (19)–(21), we have that

D1(x) ≤ D4(x) ≤ D4(x1) ≈ –0.0058 < 0, ∀x ∈ (x1, x2]. (22)

Case 1.3. Proof of D1(x) ≤ 0, ∀x ∈ (x2,π/2).
Combining with Eq. (5), for every x2 < x < π/2, we have

D′
1(x) = – tan(x) –

θ1(x) · a′(x)
a(x)

– θ ′
1(x) · ln

(
a(x)

)

≥ –t2(x) · x –
θ1(x) · a′(x)

a(x)
– θ ′

1(x) · ln
(
a(x)

)
= D6(x). (23)

Let D7(x) = D6(x)
θ ′

1(x) . It can be verified that

D′
7(x) =

(
∑7

i=0 γ3,iB2,i(x)) · x2

W1(x)
, (24)

where B2,i(x) = Ci
7·(x–x2)i·(π/2–x)7–i

(π/2–x2)7 ≥ 0, ∀x ∈ [x2,π/2), γ3,0 ≈ 8.8 · 106, γ3,1 ≈ 9.7 · 106, γ3,2 ≈
1.0 · 107, γ3,3 ≈ 1.1 · 107, γ3,4 ≈ 1.3 · 107, γ3,5 ≈ 1.4 · 107, γ3,6 ≈ 1.6 · 107 and γ3,7 ≈ 1.8 · 107,
such that γ3,i > 0, i = 0, 1, . . . , 7, and D′

7(x) ≥ 0, ∀x ∈ (x2,π/2). So we have

D7(x) ≥ D7(x2) ≈ 6.7 > 0, ∀x ∈ (x2,π/2). (25)
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Note that θ ′
1(x) > 0, ∀x ∈ (0,π/2), and, combining with Eqs. (23)–(25), we have that

D′
1(x) ≥ D6(x) ≥ 0, ∀x ∈ (x2,π/2). (26)

From Eq. (26), we obtain

D1(x) ≤ D1(π/2) = 0, ∀x ∈ (x2,π/2). (27)

Using Eqs. (18), (22) and (27), we have completed the proof of Eq. (13).
Step 2. Now we prove that for every 0 < x < π/2,

– ln
(
cos(x)

) ≤ –θ2(x) · ln
(
a(x)

)
,

which is equivalent to

E1(x) = ln
(
cos(x)

)
–θ2(x) · ln

(
a(x)

) ≥ 0. (28)

Let x3 = 98·π
256 ≈ 1.202.

Case 2.1. Proof of E1(x) ≥ 0, ∀x ∈ (0, 1].
It can be verified that for every x ∈ (0,π/2),

⎧⎨
⎩

0 < a(x) ≤ 1,

ln(a(x)) ≤ (a(x) – 1) – (a(x)–1)2

2 + (a(x)–1)3

3 .
(29)

Combining Eq. (29) with Eq. (5), for every 0 < x ≤ 1, we have that

E′
1(x) = – tan(x) –

θ2(x) · a′(x)
a(x)

– θ ′
2(x) · ln

(
a(x)

)

≥ –t2(x) · x –
θ2(x) · a′(x)

a(x)
– θ ′

2(x) · ln
(
a(x)

)

≥ –t2(x) · x –
θ2(x) · a′(x)

a(x)
– θ ′

2(x) ·
((

a(x) – 1
)

–
(a(x) – 1)2

2
+

(a(x) – 1)3

3

)

=
(
∑8

i=0 γ4,iB3,i(x)) · x2

((π – 2)x + π )(2x + π )
, (30)

where B3,i(x) = Ci
8xi(1 – x)8–i, γ4,0 ≈ 5.54, γ4,1 ≈ 5.28, γ4,2 ≈ 4.91, γ4,3 ≈ 4.43, γ4,4 ≈ 3.84,

γ4,5 ≈ 3.16, γ4,6 ≈ 2.38, γ4,7 ≈ 1.52 and γ4,8 ≈ 0.632. In Eq. (30), for every x ∈ (0, 1), we have
B3,i(x) > 0, γ4,i > 0 and ((π – 2)x + π )(2x + π ) > 0, which means that

E′
1(x) ≥ 0, ∀x ∈ [0, 1]. (31)

From Eq. (31), we obtain

E1(x) ≥ E1(0) = 0, ∀x ∈ [0, 1]. (32)

Case 2.2. Proof of E1(x) ≥ 0, ∀x ∈ (1, x3].
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For every 1 < x ≤ x3, note that θ ′
2(x) > 0 and ln(a(x)) < 0, hence

E1(x) ≥ ln
(
cos(x)

)
– θ2(1) · ln

(
a(x)

)
= E2(x). (33)

Combining with Eq. (5), we have that

E′
2(x) = – tan(x) – θ2(1) · a′(x)

a(x)

≤ –x · t1(x) – θ2(1) · a′(x)
a(x)

=
(
∑6

i=0 γ5,i · B4,i(x))
(πx – 2x + π )(–2x + π )(2x + π )

= E3(x), (34)

where B4,i(x) = Ci
6(x–1)i(x3–x)6–i

(x3–1)6 , γ5,0 ≈ –3.98, γ5,1 ≈ –4.23, γ5,2 ≈ –4.45, γ5,3 ≈ –4.65, γ5,4 ≈
–4.81, γ5,5 ≈ –4.94 and γ5,6 ≈ –5.03. In Eq. (34), for every 1 < x < x3, we have γ5,i < 0,
B4,i(x) > 0 and (πx – 2x + π )(–2x + π )(2x + π ) > 0, which means that E3(x) ≤ 0, ∀x ∈ (1, x3).
Combining with Eq. (33), we get

E′
2(x) ≤ E3(x) < 0, ∀x ∈ (1, x3). (35)

Combining Eq. (35) with Eq. (33) yields

E1(x) ≥ E2(x) ≥ E2(x3) ≈ 0.0026 > 0, ∀x ∈ (1, x3). (36)

Case 2.3. Proof of E1(x) ≥ 0, ∀x ∈ (x3,π/2).
Combining with Eq. (5), for every x3 < x < π/2, we have

E′
1(x) = – tan(x) –

θ2(x) · a′(x)
a(x)

– θ ′
2(x) · ln

(
a(x)

)

< –t1(x) · x –
θ2(x) · a′(x)

a(x)
– θ ′

2(x) · ln
(
a(x)

)
= E4(x). (37)

Let E5(x) = E4(x)
θ ′

2(x) . It can be verified that

E′
5(x) =

∑8
i=0 γ6,iB5,i(x)

W2(x)
, (38)

where W2(x) = ((πx – 2x + π )(–2x + π )(2x + π )(–48πx + 192x – 6π2x + π3))2 ≥ 0, B5,i(x) =
Ci

8·(x–x3)i·(π/2–x)8–i

(π/2–x3)8 ≥ 0, ∀x ∈ [x3,π/2), γ6,0 ≈ –1.34 · 105, γ6,1 ≈ –1.46 · 105, γ6,2 ≈ –1.54 ·
105, γ6,3 ≈ –1.5 · 105, γ6,4 ≈ –1.5 · 105, γ6,5 ≈ –1.4 · 105, γ6,6 ≈ –1.25 · 105, γ6,7 ≈ –98875
and γ6,8 ≈ –64163. In Eq. (38), for every x3 < x < π/2, noting that W2(x) > 0, γ6,i < 0 and
B5,i(x) > 0, we have

E′
5(x) ≤ 0, ∀x ∈ (x3,π/2). (39)

From Eq. (39), we obtain

E5(x) ≤ E5(x3) ≈ –0.25 < 0, ∀x ∈ (x3,π/2). (40)
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Combining Eq. (40) with Eq. (37), for every x ∈ (x3,π/2), and noting that θ ′
2(x) > 0, we get

⎧⎨
⎩

E4(x) < 0, ∀x ∈ (x3,π/2),

E1(x) > E1(π/2) = 0, ∀x ∈ (x3,π/2).
(41)

Using Eqs. (32), (36) and (41), we have completed the proof of Eq. (28).
Now combining Eq. (13) with Eq. (28), we have completed the proof of Eq. (10), and

hence of Theorem 1.1. �

3 Proof of Theorem 1.2
3.1 Lemmas
We recall Theorem 3.5.1 in [9, Chap. 3.5, p. 67] as follows.

Theorem 3.1 Let w0, w1, . . . , wr be r + 1 distinct points in [a, b], and n0, . . . , nr be r + 1
integers ≥ 0. Let N = n0 + · · ·+nr +r. Suppose that g(t) is a polynomial of degree N such that
g(i)(wj) = f (i)(wj), i = 0, . . . , nj, j = 0, . . . , r. Then there exists ξ1(t) ∈ [a, b] such that f (t)–g(t) =
f (N+1)(ξ1(t))

(N+1)!

r∏
i=0

(t – wi)ni+1.

Lemma 3.2 For every 0 < x < π/2, we have that

sin(x) ≤ 1
120

x5 –
1
6

x3 + x = c(x).

Proof Let H1(x) = sin(x) – ( 1
120 x5 – 1

6 x3 + x). It can be verified that H1(0) = H ′
1(0) = · · · =

H (6)(0) = 0 and H (7)(0) = –1 �= 0. For every 0 < x < π/2, using Theorem 3.1, there exists
ψ(x) ∈ (0,π/2) such that

H1(x) =
H (7)(ψ(x))

7!
(x – 0)7 =

– cos(ψ(x))
7!

x7 ≤ 0,

completing the proof. �

Lemma 3.3 For every 0 < x < π/2, we have

ln(7)(cos(x)
)

< 0,

where ln(7)(cos(x)) denotes the seventh derivative.

Proof For every 0 < x < π/2, it can be verified that

ln(7)(cos(x)
)

=
–16(45 – 30 · cos(x)2 + 2 · cos(x)4)) · sin(x)

(cos(x))7

<
–16(45 – 30) · sin(x)

(cos(x))7 < 0.

This completes the proof. �
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Lemma 3.4 For every 0 < x < π/2, we have

ϕ1(x) = 1 – x2 +
x4

3
–

2x6

45
+

x8

315
–

2x10

14175
+

2x12

467775
–

4x14

42567525
≤ cos(x)2 = κ1(x).

Proof For every 0 < x < π/2, it can be verified that κ̄
(i)
1 (0) = 0, i = 0, 1, . . . , 15 and κ̄

(16)
1 (0) =

32768 > 0, where κ̄1(x) = κ1(x) –ϕ1(x). Employing Theorem 3.1, for every 0 < x < π/2, there
exists ξ2(x) ∈ (0,π/2) such that

κ1(x) – ϕ1(x) =
κ

(16)
1 (ξ2(x))

16!
(x – 0)16

=
32768 cos(2ξ2(x))

16!
(x – 0)16, ∀x ∈ (0,π/2). (42)

Note that κ̄1(π/2) = 32768 cos(2ξ2(π/2))
16! (π/2)16 ≈ 0.0000020 > 0, and, on the other hand,

cos(2x) > 0, ∀x ∈ (0,π/4) and cos(2x) < 0, ∀x ∈ (π/4,π/2), hence we have that ξ2(π/2) ∈
(0,π/4) and then ξ2(x) ∈ (ξ2(0), ξ2(π/2)) ∈ (0,π/4). Combining with Eq. (42), we get
κ1(x) – ϕ1(x) > 0, ∀x ∈ (0,π/2), completing the proof. �

Lemma 3.5 For every 0 < x < π/2, we have

ln(6)
(

x
sin(x)

)
> 0.

Proof It can be verified that

ln(6)
(

x
sin(x)

)
=

8 · κ2(x)
sin(x)6x6 , (43)

where κ2(x) = (2 cos(x)4 + 11 cos(x)2 + 2) + cos(x)2(45 – 45 cos(x)2 + 15 cos(x)4) – 15. Com-
bining with Lemma 3.4, we have

κ2(x) ≥ (
2ϕ1(x)2 + 11ϕ1(x) + 2

)
+ ϕ1(x)

(
45 – 45ϕ1(x) + 15ϕ1(x)2) – 15 = κ3(x),

where κ3(x) = x10

5142140516927060521875 κ̄3(x), and

κ̄3(x) = –64x30 + 8736x28 – 685776x26 + 38749256x24 – 1619962344x22

+ 53283946716x20 – 1386097749036x18 + 28235771493930x16

– 435529376632350x14 + 4560089491932975x12 – 17910555851588400x10

– 349231679183512125x8 + 7231910390065486125x6

– 58866255075932679375x4 + 179566811702214811875x2

+ 163242556092922556250

≥
(

–64
(

π

2

)2

+ 8736
)

x28 +
(

–685776
(

π

2

)2

+ 38749256
)

x24

+
(

–1619962344
(

π

2

)2

+ 53283946716
)

x20
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+
(

–1386097749036
(

π

2

)2

+ 28235771493930
)

x16

+
(

–435529376632350
(

π

2

)2

+ 4560089491932975
)

x12

+
(

–17910555851588400
(

π

2

)4

+ 7231910390065486125
)

x6

+
(

–349231679183512125
(

π

2

)6

– 58866255075932679375
(

π

2

)2

+ 179566811702214811875
)

x2 + 163242556092922556250

≈ 8578x28 + 3.7 × 107x24 + 4.9 × 1010x20 + 2.4 × 1013x16 + 3.4 × 1015x12

+ 7.1 × 1018x6 + 2.9 × 1019x2 + 1.6 × 1020 > 0, ∀x ∈ (0,π/2).

Combining with Eq. (43), for every 0 < x < π/2, and noting that sin(x)6x6 > 0, we have
ln(6)( x

sin(x) ) > 0, which completes the proof. �

Lemma 3.6 For every 0 < x < π/3, we have

ϕ2(x) ≥ ln
(
cos(x)

)
,

where ϕ2(x) = –x2

2 – x4

12 + (162
√

3π+108π2+π4–2916 ln(2))·x5

2π5 – 3(324
√

3π+162π2+π4–4860 ln(2))·x6

4π6 .

Proof Let κ4(x) = ln(cos(x)) – ϕ2(x). It can be verified that

κ
(i)
4 (0) = 0, i = 0, 1, . . . , 4, and κ

(j)
4 (π/3) = 0, j = 0, 1.

Using Theorem 3.1 and Lemma 3.3, for 0 < x < π/3, there exists ξ3(x) ∈ (0,π/3) such that

κ4(x) =
κ

(7)
4 (ξ3(x))

7!
(x – π/3)2 · x5 =

ln(7)(cos(ξ3(x)))
7!

(x – π/3)2 · x5 < 0,

which means that ln(cos(x)) – ϕ2(x) ≤ 0, and we complete the proof. �

Lemma 3.7 For every 0 < x < π/3, we have

ϕ3(x) =
x2

6
+

x4

180
–

(–14580 ln( 2
√

3·π
9 ) + 270π2 + π4) · x5

60π5 ≥ ln

(
x

sin(x)

)
.

Proof Let κ5(x) = ln( x
sin(x) ) – ϕ3(x). It can be verified that

κ
(i)
5 (0) = 0, i = 0, 1, . . . , 4, and κ5(π/3) = 0.

Now by Theorem 3.1 and Lemma 3.5, for 0 < x < π/3, there exists ξ4(x) ∈ (0,π/3) such that

κ5(x) =
κ

(6)
5 (ξ4(x))

6!
(x – π/3) · x5 =

ln(6)( ξ4(x)
sin(ξ4(x)) )
6!

(x – π/3)) · x5 < 0,

which means that ln( x
sin(x) ) – ϕ3(x) < 0, ∀x ∈ (0,π/3), and we complete the proof. �
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3.2 Proof of Theorem 1.2

Proof of Theorem 1.2 Step 1. Firstly, we prove that sin(x)
x ≤ cos(x)θ3(x), ∀x ∈ (0,π/2), where

θ3(x) = 1
3 – 4

3π2 x2. This is equivalent to

F1(x) = ln
(
sin(x)

)
– ln(x) – θ3(x) · ln

(
cos(x)

) ≤ 0, ∀x ∈ (0,π/2). (44)

Combining with Lemma 3.2, we have that

F1(x) ≤ ln
(
c(x)

)
– ln(x) – θ3(x) · ln

(
cos(x)

)
= F2(x), ∀x ∈ (0,π/2). (45)

For every 0 < x < π/2, noting that θ ′
3(x) = – 8x

3π2 < 0 and θ3(x) > 0, and combining with
Eq. (4), we have

F ′
2(x) =

c′(x)
c(x)

–
1
x

+ θ3(x) · tan(x) – θ ′
3(x) · ln

(
cos(x)

)

≤ c′(x)
c(x)

–
1
x

+ θ3(x) · tan(x)

<
c′(x)
c(x)

–
1
x

+ θ3(x) · π2 · x
π2 – 4x2

=
(x2 – 8) · x3

3(x4 – 20x2 + 120)
< 0, ∀x ∈ (0,π/2). (46)

Combining Eq. (45) with Eq. (46), we obtain

F1(x) ≤ F2(x) < F2(0) = 0, ∀x ∈ (0,π/2). (47)

This completes the proof of Eq. (44), and hence proves sin(x)
x ≤ cos(x)θ3(x).

Step 2. Secondly, we prove that cos(x)θ4(x) ≤ sin(x)
x , ∀x ∈ (0,π/2), where θ4(x) = 1

3 – 2
45 x2 +

5
124 x3 – 41

1000 x4. This is equivalent to

F3(x) = θ4(x) · ln
(
cos(x)

)
+ ln

(
x

sin(x)

)
≤ 0, ∀x ∈ (0,π/2). (48)

Case 2.1. 0 < x < π/3.
Noting that θ4(x) ≥ 0, and combining with Lemmas 3.6 and 3.7, we have that

F3(x) ≤ θ4(x) · ϕ2(x) + ϕ3(x) =

( 5∑
i=0

γ7,iB6,i(x)

)
· x5= G1(x), (49)

where B6,i = Ci
5·xi·(π/3–x)5–i

(π/3)5 , and γ7,0 ≈ –0.0068, γ7,1 ≈ –0.0067, γ7,2 ≈ –0.0071, γ7,3 ≈
–0.0072, γ7,4 ≈ –0.0070, γ7,5 ≈ –0.0041. Noting that B6,i ≥ 0 and γ7,i < 0, i = 0, 1, . . . , 5,
and combining with Eq. (49), we obtain

F3(x) ≤ G1(x) < 0, ∀x ∈ (0,π/3]. (50)

Case 2.2. π/3 < x < 1.36.
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Let ϕ4(x) be the sextic interpolation polynomial such that

ln(i)(cos(π/3)
)

= ϕ
(i)
4 (π/3), i = 0, 1, . . . , 4, and

ln(j)(cos(1.36)
)

= ϕ
(j)
4 (1.36), j = 0, 1,

and κ6(x) = ln(cos(x)) – ϕ4(x). We have that

κ
(i)
6 (π/3) = 0, i = 0, 1, . . . , 4, and κ

(j)
6 (1.36) = 0, j = 0, 1.

Similar as in the proof of Lemma 3.6, by Theorem 3.1 and Lemma 3.3, for π/3 < x < 1.36,
there exists ξ5(x) ∈ (π/3, 1.36) such that

κ6(x) =
ln(7)(cos(ξ5(x)))

7!
(x – 1.36)2 · (x – π/3)5 < 0,

which means that ln(cos(x)) – ϕ4(x) ≤ 0.
On the other hand, let ϕ5(x) be the quintic interpolation polynomial such that

ln(i)
(

π/3
sin(π/3)

)
= ϕ

(i)
5 (π/3), i = 0, 1, . . . , 4, and ln

(
1.36

sin(1.36)

)
= ϕ5(1.36).

Similarly, let κ7(x) = ln( x
sin(x) ) –ϕ5(x), and then, for every π/3 < x < 1.36, there exists ξ6(x) ∈

(π/3, 1.36) such that

κ
(i)
7 (π/3) = 0, i = 0, 1, . . . , 4, and κ7(1.36) = 0,

κ7(x) =
ln(6)( ξ6(x)

sin(ξ6(x)) )
6!

(x – π/3)5 · (x – 1.36) < 0,

which means that ln( x
sin(x) ) ≤ ϕ5(x). Finally, for every π/3 < x < 1.36, we have

F3(x) ≤ θ4(x) · ϕ4(x) + ϕ5(x) =
10∑
i=0

γ8,iB7,i(x) = G2(x), (51)

where B7,i(x) ≈ Ci
10·(x–π/3)i·(1.36–x)10–i

(1.36–π/3)10 , γ8,0 ≈ –0.0052, γ8,1 ≈ –0.0054, γ8,2 ≈ –0.0055, γ8,3 ≈
–0.0056, γ8,4 ≈ –0.0055, γ8,5 ≈ –0.0052, γ8,6 ≈ –0.0048, γ8,7 ≈ –0.0041, γ8,8 ≈ –0.0033,
γ8,9 ≈ –0.0026 and γ8,10 ≈ –0.0022. Noting that B7,i(x) ≥ 0 and γ8,i < 0, and combining
with Eq. (51), we have

F3(x) ≤ G2(x) < 0, ∀x ∈ (π/3, 1.36]. (52)

Case 2.3. 1.36 < x < 1.54.
Let ϕ6(x) be the sextic interpolation polynomial such that

ln(i)(cos(1.36)
)

= ϕ
(i)
6 (π/3), i = 0, 1, . . . , 4, and

ln(j)(cos(1.54)
)

= ϕ
(j)
6 (1.54), j = 0, 1,
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and κ8(x) = ln(cos(x)) – ϕ6(x). We have that

κ
(i)
8 (1.36) = 0, i = 0, 1, . . . , 4, and κ

(j)
8 (1.54) = 0, j = 0, 1.

Similar as in the proof of Lemma 3.6, by Theorem 3.1 and Lemma 3.3, for 1.36 < x < 1.54,
there exists ξ7(x) ∈ (1.36, 1.54) such that

κ8(x) =
ln(7)(cos(ξ7(x)))

7!
(x – 1.54)2 · (x – 1.36)5 < 0,

which means that ln(cos(x)) ≤ ϕ6(x).
On the other hand, let ϕ7(x) be the quintic interpolation polynomial such that

ln(i)
(

1.36
sin(1.36)

)
= ϕ

(i)
7 (1.36), i = 0, 1, . . . , 4, and ln

(
1.54

sin(1.54)

)
= ϕ7(1.54).

Similarly, letting κ9(x) = ln( x
sin(x) ) – ϕ7(x), for every 1.36 < x < 1.54, there exists ξ8(x) ∈

(1.36, 1.54) such that

κ
(i)
9 (1.36) = 0, i = 0, 1, . . . , 4, and κ9(1.54) = 0,

κ9(x) =
ln(6)( ξ8(x)

sin(ξ8(x)) )
6!

(x – 1.36)5 · (x – 1.54) < 0,

which means that ln( x
sin(x) ) ≤ ϕ7(x). Finally, for every 1.36 < x < 1.54, we have

F3(x) ≤ θ4(x) · ϕ6(x) + ϕ7(x) =
10∑
i=0

γ9,i · B8,i(x) = G3(x), (53)

where B8,i(x) = Ci
10·(x–1.36)i·(1.54–x)10–i

(1.54–1.36)10 , γ9,0 ≈ –0.0022, γ9,1 ≈ –0.0019, γ9,2 ≈ –0.0018, γ9,3 ≈
–0.0020, γ9,4 ≈ –0.0025, γ9,5 ≈ –0.0029, γ9,6 ≈ –0.0024, γ9,7 ≈ –0.0021, γ9,8 ≈ –0.0068,
γ9,9 ≈ –0.025 and γ9,10 ≈ –0.071. Noting that B8,i(x) > 0, ∀x ∈ (1.36, 1.54), and γ9,i < 0, and
combining with Eq. (53), we have that

F3(x) ≤ G3(x) < 0, ∀x ∈ [1.36, 1.54]. (54)

Case 2.3. 1.54 < x < π/2.
Let ϕ8(x) be the quintic interpolation polynomial such that

ln(i)
(

1.54
sin(1.54)

)
= ϕ

(i)
8 (1.54), i = 0, 1, . . . , 4, and ln

(
π/2

sin(π/2)

)
= ϕ8(π/2).

Similarly, letting κ10(x) = ln( x
sin(x) ) – ϕ8(x), for every 1.54 < x < π/2, there exists ξ9(x) ∈

(1.54,π/2) such that

κ
(i)
10(1.54) = 0, i = 0, 1, . . . , 4, and κ10(π/2) = 0,

κ10(x) =
ln(6)( ξ9(x)

sin(ξ9(x)) )
6!

(x – 1.54)5 · (x – π/2) < 0,
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Figure 1 Plots of (a) Fi(x) and (b) pi(x), i = 1, 2, 3, 4

which means that ln( x
sin(x) ) ≤ ϕ8(x). Finally, for every 1.54 < x < π/2, we have

F3(x) ≤ θ4(x) · ln
(
cos(1.54)

)
+ ϕ8(x) =

5∑
i=0

γ10,i · B9,i(x) = G4(x), (55)

where B9,i(x) = Ci
5·(x–1.54)i·(π/2–x)5–i

(π/2–1.54)5 , γ10,0 = –0.071, γ10,1 = –0.057, γ10,2 = –0.043, γ10,3 =
–0.030, γ10,4 = –0.01 and γ10,5 = –0.0020. Noting that B9,i(x) > 0, ∀x ∈ (1.54,π/2), and
γ10,i < 0, and combining with Eq. (55), we have

F3(x) ≤ G4(x) < 0, ∀x ∈ [1.54,π/2]. (56)

Using Eqs. (50), (52), (54) and (56), we have completed the proof of Eq. (48).
Combining Eqs. (44) and (48), we have completed the proof of Theorem 1.2. �

4 Comparisons and conclusion
Let f1(x) = ( 4π

π2–4x2 )(2x/π )2 , f2(x) = a(x)–θ1(x), f3(x) = a(x)–θ2(x) and f4(x) = ( 4π

π2–4x2 )θ̄3(x), and
Fi(x) = 1

fi(x) , i = 1, 2, 3, 4. As shown in Fig. 1(a), F1(x) ≥ F2(x) ≥ F3(x) ≥ F4(x), which means
that Theorem 1.1 achieves much tighter bounds than those of Eq. (9).

Let p1(x) = θ̄1(x)/3, p2(x) = 1
3 – 2

45 x2 + 5
124 x3 – 41

1000 x4, p3(x) = 1
3 – 4

3π2 x2 and p4(x) = θ̄2(x)/3.
As shown in Fig. 1(b), we have that p1(x) ≥ p2(x) ≥ p3(x) ≥ p4(x), ∀x ∈ (0,π/2), combining
with cos(x) < 1, ∀x ∈ (0,π/2), we have that

cos(x)p1(x) ≤ cos(x)p2(x) ≤ sin(x)
x

≤ cos(x)p3(x) ≤ cos(x)p4(x), ∀x ∈ (0,π/2).

which means that the bounds in Theorem 1.2 are tighter than in Eq. (8).
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21. Nenezić, M., Malešević, B., Mortici, C.: New approximations of some expressions involving trigonometric functions.

Appl. Math. Comput. 283, 299–315 (2016)
22. Neuman, E.: On Wilker and Huygens type inequalities. Math. Inequal. Appl. 15(2), 271–279 (2012)
23. Neuman, E., Sandor, J.: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the

Cusa–Huygens, Wilker and Huygens inequalities. Math. Inequal. Appl. 13(4), 715–723 (2010)
24. Nishizawa, Y.: Sharpening of Jordan’s type and Shafer–Fink’s type inequalities with exponential approximations. Appl.

Math. Comput. 269, 146–154 (2015)
25. Nishizawa, Y.: Sharp exponential approximate inequalities for trigonometric functions. Results Math. 71(3–4),

609–621 (2017)
26. Qi, F.: Extensions and sharpenings of Jordan’s and Kober’s inequality. J. Math. Technol. 12(4), 98–102 (1996)
27. Rahmatollahi, G., De Abreu, G.T.F.: Closed-form hop-count distributions in random networks with arbitrary routing.

IEEE Trans. Commun. 60(2), 429–444 (2012)
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