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In this article, we prove that the double inequalities

available at the end of the article [7C(a, b) . 9H(a, b)] - )[3,4(0, b) N G(a, b)]
“1 6 16 A 4
< E(a,b)
7C(a,b)  9H(a,b) 3A(a,b)  G(a,b)
<B| e+ e ) H0-p[ = ]
[7C(a, b) N 9H(a, b)]“2[3A(a, b) N Gla, b)]“‘)‘2
16 16 4 4
<E(a,b)
. [7C(a, b) N 9H(a, b)]ﬁ2[3/\(a, b) N Gla, b)]“ﬁz
16 16 4 4

hold for all a,b > 0 with a # b if and only if a; < 3/16=0.1875, B1 > 64/m° -6 =
0484555..., 00 <3/16=0.1875and B, > (5log2 —log 3 - 2 log 7)/(log 7 - log 6) =
0.503817..., where £(a,b) = (2 O”/z acos26 + bsin?0 dh)?, Ha,b) = 2ab/(a + b),
Gla,b) = ~/ab, A(a,b) = (a + b)/2 and C(a,b) = (@ + b)/(a + b) are the quasi-arithmetic,
harmonic, geometric, arithmetic and contra-harmonic means of a and b, respectively.
MSC: 26E60; 33C05
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1 Introduction
Let a,b > 0, p: (0,00) > (0,00) be a strictly monotone real-valued function, 6 € (0,2x)
and

(a"cos?6 + b"sin® )", n 0,
ra(0) = (1.1)

acosz 9b5i112 0, n=0.
Then the class of quasi-arithmetic mean [1] is defined by

1 2
Mp,n(arb) :p_l(gv/()' P(Vn(e)) d@)
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/2
=P_l(%/0 p(ra(9)) d9>, (1.2)

where p~! is the inverse function of p.
Many important means are the special cases of the quasi-arithmetic mean M, ,(a, b).
For example, from (1.1) and (1.2) we clearly see that

T

My, ,2(01; b) =
* 2 foﬂ/z(a2 cos? 6 + b2sin?0)-12 do

= AGM(a, b)

is the Gaussian arithmetic—geometric mean [2—9], which is related to the complete elliptic
integral of the first kind K = K(r) = fﬂ/z —rsin?0) 1240 (0<r< 1),

2
T(a,b) = Myj(a,b) = ~ / Va2 cos? 6 + b2 sin® 6 do
0

is the Toader mean [10-12], which can be expressed in terms of the complete elliptic in-
tegral of the second kind £ = £(r ”/2 V1-r2sin’6db (0<r<1),and

/2 )
TQ(ﬂ, ) x()(él, b) = — / dCOSZGbsmz() 4o
0

is the Toader—Qi mean [13-15], which is related to the modified Bessel function of the
first kind Io(x) = >0 (x/2)%"/(n))* (x > 0).

It is well-known that K(r) is strictly increasing from (0,1) onto (1/2,00) and &(r) is
strictly decreasing from (0, 1) onto (1,77/2). Moreover, (r) and £(r) satisfy the following
Landen identities and derivative formulas (see [16, Appendix E, pp. 474—475])

,C<2_~/;) —(1+9K, 5(2‘/;> _28-rK
1+r

1+r 1+r
%_f—r/le ﬁ_E—IC
dr 2 dr~ r '
d(E—r/ZIC)_ dK-£&) r&€

o e T T

In particular, C(r) and £(r) are the special cases of the Gaussian hypergeometric func-
tion [17-26] as follows:

K(r) = —F<§ % 1;r ) Elr) = —F< ; ; 1;r2>, (1.3)

and the Gaussian hypergeometric function F(a, b; c; x) with real parameters a, b, and ¢ (¢ #
0,-1,-2,...) is defined by

ad (a,n)(b,n) x"
F(a, b;c;x) = oFy(a, b; ¢; x) = 26‘ e (1.4)

for x € (-1,1), where (a)g =1 fora #0, (@), =a(a+1)(a+2)---(a+n-1)='(a+n)/I (a)
is the shifted factorial function and I'(x) = fooo t*ledt (x > 0) is the classical gamma
function [27-35].
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Recently, the bounds for the complete elliptic integrals have attracted the attention of
many researchers. In particular, many remarkable inequalities and properties for KC(r), E(r)
and F(a, b; ¢; x) can be found in the literature [36—66].

In this article, we focus on the special quasi-arithmetic mean E(a, ) obtained by substi-
tuting p = /x and # = 1 into (1.2), more explicitly,

2 /2 2
E(a,b) =M /;,(a,b) = (—/ Vacos? + bsinzé’de) , (1.5)
T Jo

which can be rewritten in terms of complete elliptic integral of the second kind as

4a€(v/1=bla)>

E(a,b) = 2 azbh (1.6)
4b£(«/ﬂ12—a/b)2, a<b.

Very recently, Meng [67], and Yuan, Yu and Wang [68] proved that the double inequali-
ties
)"IA(ax b) + (1 - )"I)G(d: b) < E(“: b) < /.L]A(ﬂ, b) + (1 - Ml)G(ﬂ, b): (1‘7)
22C(a,b) + (1 - 12)H(a, b) < E(a,b) < 12C(a, b) + (1 — u2)H(a, b) (1.8)
hold for a,b > 0 with a # b if and only if A1 < 3/4, pu; > 8/72, Ay < 4/7? and pu, > 7/16,
where A(a,b) = (a +b)/2, G(a, b) = Vab, H(a, b) = 2ab/(a + b) and C(a, b) = (a> + b*)/(a +b)
are the arithmetic, geometric, harmonic and contra-harmonic means of 4 and b, respec-
tively.
Qian and Chu [69] showed that the double inequality
G”[Aa +(1-A)b,Ab+(1- A)a]Al’p(a, b)
< E(a,b)
< G”[;uz + (1 —-wb,ub+ (1 - ,u)a]Al’p(a, b)

holds forany p € [1,00) and all @, b > O with @ # bifand onlyif A < 1/2—/1 — (24/2/7)4?/2
and u > 1/2 - . /p/(4p).
From (1.7) and (1.8) we clearly see that

A y ) ) H ’
3A(a,b) . G(a,b) <E@b)< 7C(a, b) X 9H (a, b) (19)
4 4 16 16
for a,b > 0 with a # b.
We define
A ) ] ) H )
Mi(a,b) = 3A(a b)é: Gla b)’ My(a,b) = 7C(a b)1+69 (a b)‘ (1.10)

Motivated by inequality (1.9), it is natural to ask what are the best possible parameters
a;, B; € (0,1) (i = 1,2) such that the double inequalities

a1Ms(a, b) + (1 — )M (a, b) < E(a, b) < piMs(a, b) + (1 - p1)Mi(a, b),
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M(a,b)*>Mi (a,b)'~*2 < E(a, b) < M>(a, by> M (a,b)' >
hold for all @, b > 0 with a # b? The main purpose of this article is to answer this question.

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-

tion.

Lemma 2.1 (See [16, Theorem 1.25]) Let —oco <a < b < 0o, f,g: [a,b] = R be continu-
ous on [a, b] and differentiable on (a,b), and g'(x) # 0 on (a,b). If f'(x)/g'(x) is increasing
(decreasing) on (a, b), then so are the functions

f@-fa . f&)-fb)

g(x) - g(a) gx) —gb)’

Iff'(x)/g (x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2 (See [70]) Suppose that the power seriesf (x) = Y .o anx" and g(x) = > -0 byx"
have the radius of convergence r > 0 with b, > 0 for all n € {0,1,2,...}. If the non-constant
sequence {a,/b,}5 is increasing (decreasing) for all n > 0, then f (x)/g(x) is strictly increas-
ing (decreasing) on (0,r).

Lemma 2.3 The following assertions hold true:
(1) The function r — (€ — 2 K)/r? is strictly increasing from (0,1) onto (7 /4, 1);
(2) The function r — 2€ — r2K is strictly increasing from (0,1) onto (7 /2,2);
(3) The function r — [KC - € — (€ — r?K)]/r* is strictly increasing from (0,1) onto
(7/16, +00).

Proof Parts (1) and (2) can be found in the literature [16, Theorem 3.21(1) and Exercise
3.43(13)].
For part (3), we clearly see that

K-E-(E-rK) K-E-(E-rK) (E-r"K\?
” T (E-rKp ‘

2
Therefore, part (3) follows easily from part (1) and [16, Exercise 3.43(25)]. O
Lemma 2.4 The function

8?1+ )2 - r?K)? - (r* + 1)(r* + 2)

£0) p

is strictly increasing from (0,1) onto (3/16,64/7* — 6).

Proof Let fi(r) = 8/m2(1 + r})(2€ — r?K)? = (r2 + 1)(r* + 2) and fo(r) = r%, then £1(0*) =
f£2(0*) =0and f(r) = f1(r)/fo(r).

A simple calculation yields

A0 ful)

£0) " folr)’

(2.1)
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where

fir () =16(28 = 2K)* +16(1 + 1) (2€ = 1K) (€ - 2K) I - (47 +6),

f22(r):4r2.
Moreover,
fi1(0") =f2(0%) =0, (2.2)
Fl(r) b E—12K E-r2K\?
P (o - o) 2(1+r2)< ! )
/2
1)) ETEETT (23)

From Lemma 2.3 and (2.3), we clearly see that f{; (r)/f,,(r) is strictly increasing on (0, 1).
Equations (2.1)—(2.2) and Lemma 2.1 lead to the conclusion that f(r) is strictly increasing

on (0,1).
Therefore, Lemma 2.4 follows from the monotonicity of f(r), together with the facts that
f(0")=3/16 and f(17) = 64/n% - 6. O

Lemma 2.5 The function

(2r° + 5r* + 572 + 2)[2(€ = r2K) - F*E]

&) = G312+ 4)(2€ - 1°K)

is strictly increasing from (0, 1) onto (3/16,1).

Proof Let gi(r) = (2r® + 5r* + 5% + 2)[2(€ - r2K) — r2E] and g (r) = r*(3r% + 4)(2€ - %K),
then g(r) = g1(r)/ga(r).
Making use of (1.3) and (1.4), we get

2ia(e— 210 - 2 _mezm

- [2(5 r /C) r 5] = 2 2illn 2! e, (2.4)
2 /2 _ . (%’n)Z 2n+2

- (28-r*K)=1+ n§=0 s 1)!]2;’ . (2.5)

It follows from (2.4) and (2.5) that

n)(l,n +1)
2n!(n +2)!

2n+4

oo
gi(r) = (2r° + 5r* + 5r* + 2) Z

n=

00 1 o8 1 1
3( n n+1)r2n+4+z IS(E’H)(E’H+1)r2n+6
— nl(n +2)! — 2nl(n + 2)!
o0 00 1 1
+Z ”+1)r2n+8+Zg(§’”)(§’n+1)r2n+1o

2n'(n +2)! nl(n +2)!

=0 n=0

n

oo
3,33, 1245, Y
4716 Te1a”

n=0
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o0
=rt ZAan” (2.6)
n=0
and
2 L n)?
- 3 4 1 2n+2
gz() o+ ( +Z4[(n+1)‘]2 )
00 1 2 o0 1 2
4 2 3" 331 4
=r'{4+3r+ —=r + —7r
( ; [(m+ 1)1 ; 4[(n +1)1]?
o0
=7t (4 +4r7 + =ty ZBnr2”+6>
n=0
o0
=r*Y B, (2.7)
n=0
where
3 33 1245 ~
AO:L_L’ A; 3 2= 215 n=An3 (m=3),
13 ~
BO = Bl =1 BZ 1_61 Bn = Bn—S (}’l > 3);
~ 3(4, )( ,n+1)

(45,765 + 152,928 + 192,838

n

64(11 +3)!(n + 5)!
+120,6721° + 40,024n" + 67201° + 448n°),

% 2.n+1)%(7n + 30n + 36)
" [4(n + 3)!]2

for n>0.
It follows from (2.6) and (2.7) that

2o Anr™
=== - 2.8
&) S B (2.8)
forr € (0,1).

In order to prove the monotonicity of g(r), Lemma 2.2 and (2.8) enable us to conclude
that it suffices to show the monotonicity of {4,/B,}52,.
A simple calculation leads to

Ay 3 A1 33 Ay 1245 A3 3051

Ad_5 A S5 A 124 _ 2 (2.9)
B, 16 B, 64 B, 416 B; 128

An+3 Zn _ 3
T 8(n+4)(n+5)2n +1)(36 + 301 + 7n?)

(45,765 + 152,928n

+192,8381> + 120,6721° + 40,024n" + 67201° + 448n°),

Page 6 of 12
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_3A1(n)
O (2.10)

for n > 0, where

A1(n) = 20,417,670 + 119,034,009% + 234,552,8701>
+238,084,4341° + 144,127,820n*
+55,145,4201° + 13,474,8321° + 2,036,720n" + 172,9281° + 62721°,
As(n) = (n+4)(n +5)(n + 6)(2n + 1)(21 + 3)(36 + 30m + 7n*) (73 + 44n + 7n?).
It follows from Lemma 2.2 and (2.8)—(2.10) that g(r) is strictly increasing on (0, 1). There-

fore, Lemma 2.5 follows easily from the monotonicity of g(r), together with the facts that
g(0") =A¢/By=3/16 and g(17) = 1. 0

3 Main results
Theorem 3.1 The double inequality

Olle(ﬂ, b) + (1 - Oll)Ml(ﬂ, b) < E(ﬂ, b) < ﬂlMZ(a: b) + (1 - ﬂl)Ml(a¢ b)
holds for a,b > 0 with a # b if and only if a; < 3/16 and B > 64/n% - 6.

Proof Since Mi(a, b), My(a, b) and E(a, b) are symmetric and homogeneous of degree one,
bla)/(1+/bla) € (0,1),

without loss of generality, we assume thata > b > 0. Let r = (1 —
then (1.6) and (1.10), together with Landen identities, lead to

4(1 + r)? 27 4 (28 -1r%K)?
E Ala, =Al(a,b)— R Nt
(a,b) = A(a, b) 20+ )5 T r (a b) T2 (3.1)
r?+2 2+3r% +2r*
M ) = A ) N1 o\ ) = A ) T A71 . o\ .
1(a,b) = A(a, b) ) M>(a,b) = A(a, b) R (3.2)
and
E(ﬂ, b) _pMZ(ﬂ: b) - (1 _p)Ml (ﬂ, b)
4 (2 -r?K)? 24372+ 21 rr+2
=A(a,b _(1l-p)———
@ )|: 1472 -P 2(1 + r2)2 p)2(1+rz)i|
A(a, b)r*
3.3
2(1 +r 2)2 [f( ) ] ( )
where f(r) is defined as in Lemma 2.4.
Therefore, Theorem 3.1 follows from Lemma 2.4 and (3.3) immediately. O

Theorem 3.2 The double inequality
My (a, b)*2M;(a,b) ™ < E(a, b) < My(a, b)?> M (a, b)' P2

holds for a,b > 0 with a # b if and only if s < 3/16 and B, > log[32/(37%)]/10g(7/6).

Page 7 of 12
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Proof Without loss of generality, we may assume that a > b > 0. Let r = (1 — +/b/a)/(1 +
v/bla) € (0,1), then (3.1) and (3.2) lead to

log E(a, b) — Alog My(a, b) — (1 — A)log My (a, b)

(2€ - r?K)? 2/t +3r2 +2
A A PO A
242 B+ )7 +2)

2 o(n). (3.4)

Elaborated computations lead to

32 7
¢(0) =0, @(1) = log 372 Alog o (3.5)
2
o) = 2r(3r +4) (e() 1], (3.6)

2+ 1)(r2 +2)(2r* + 3r2 + 2)

where g(r) is defined as in Lemma 2.5.
We divide the proof into three cases.
Case 1. A1 = 3/16. We clearly see from Lemma 2.5 that

g(r) > (3.7)

for r € (0,1). It follows from (3.5)—(3.7) that ¢(r) > O for r € (0,1). This, in conjunction
with (3.4), yields

E(a, b) > My(a, b)* M (a, b)' ™

for all a,b > 0 with a # b.

Case 2. hy = 10g[32/(37%)]/10og(7/6). It follows from Lemma 2.5 that there exists § € (0, 1)
such that g(r) < &, for r € (0,8) and g(r) > A, for € (8, 1). This, in conjunction with (3.6),
implies that ¢(r) is strictly decreasing on (0, §) and is strictly increasing on (§, 1). Moreover,

we clearly see from (3.5) that

9(0) = (1) =0. (3.8)

The piecewise monotonicity property of g(r) and (3.8) lead to the conclusion that ¢(r) <0
for r € (0,1). Therefore,

E(a, b) < My(a, b)*M;(a, b)' 2

for all a, b > 0 with a # b follows from (3.4).
Case 3. 3/16 < A3 < 10g[32/(372)]/10g(7/6). By the locally sign-preserving property of
limit, Lemma 2.5 and (3.6) enable us to know that there exists t; € (0, 1) such that ¢(r)

is strictly decreasing on (0, 71). This, in conjunction with (3.5), implies that ¢(r) < 0 for
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0 < r < 11. Therefore,
E(a, b) < My(a, b)* M (a, b)' ™3
for b<a<[(1+1)/(1-1)]%b follows from (3.4).
On the other hand, we clearly see from (3.5) that ¢(1) > 0. This, in conjunction with

the continuity of ¢(r), implies that there exists 7, € (0, 1) such that ¢(r) > 0 for 7, <r < 1.
Therefore, it follows from (3.4) that

E((l, b) > MZ(“: b))\SMl(a) b)l_)L3
fora>[(1+15)/(1 - 12)]%b. O

Leta=1and b =1-r?=r"?, then (1.6), and Theorems 3.1 and 3.2 give rise to Corol-
lary 3.3 immediately.

Corollary 3.3 The double inequalities

3(7 + 1872 + 7%  13(1 +6r +1?)

+
256(1 + r'2) 128
<&
(64— 67%)(7 +18r% + 7% (7Tn? - 64)(1 + 61 +r?)
+ ’
1672(1 + r2) 872
7+18r% + 74 (1w 6r 4 2\ P10
16(1 + r'2) 8
<&(r)
log 32/(372) log(772/64)
7 +18r% + 774 Tloe00) (1 + 61 + 1’2\ " 1og70)
16(1 + r2) 8

hold for all r € (0,1).

4 Results and discussion
In this article, we find the best possible parameters a1, 81, a3 and B, on the interval (0, 1)

such that the double inequalities

+

7C(a,b) 9H(a,b) 3A(a,b) Gl(a,b)
Oll|: + ] + (1 - 051)|: :|

16 16 4
< E(a,b)
Cla,b H(a,b Aa,b) Gla,b
[ HaB) \ ihe) Glab]

7C(a,b) 9H(a,b)1*[3A(a,b) Gla,b)] ™
[16+16:||:4 +4}

< E(a,b)
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|:7C(a, b) 9H(a, b)]ﬂz [3A(a, b) Gla, b)}lm
< + +
16 16 4 4

hold for all a, b > 0 with a # b. Our results improve and refine the results given in [67, 68].

5 Conclusion
We present several sharp bounds for the quasi-arithmetic mean in terms of the combina-
tion of harmonic, geometric, arithmetic and contra-harmonic means. Our approach may

have further applications in the theory of bivariate means.
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