
Chao et al. Journal of Inequalities and Applications         (2019) 2019:38 
https://doi.org/10.1186/s13660-019-1987-9

R E S E A R C H Open Access

Some characterizations of error bound for
non-lower semicontinuous functions
Miantao Chao1,2,3, Xiuping Wang4 and Dongying Liang5*

*Correspondence:
liangdy_go@126.com
5Guangxi Vocational and Technical
College of Communications,
Nanning, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we study the error bound of non-lower semicontinuous functions. First,
we extend the concepts of strong slope and global slope to the non-lower
semicontinuous functions. Second, by using the two concepts, some
characterizations of the existence of the global and local error bounds are given for
the non-lower semicontinuous functions. Especially, we get a necessary and sufficient
condition of global error bounds for the non-lower semicontinuous functions.
Moreover, it is shown by an example that the strong slope and the global slope
cannot characterize the error bounds of the non-lower semicontinuous functions.
Third, we emphasize the special case of convex functions defined on Euclidean space.
Although the strong slope and the global slope cannot characterize the error bounds
of the non-lower semicontinuous functions, they could be used to characterize the
error bounds of the non-lower semicontinuous convex functions. We get several
necessary and sufficient conditions of global error bounds for the non-lower
semicontinuous convex functions.

Keywords: Non-lower semicontinuous function; Error bound; Convex function;
Strong slop; Global slop

1 Introduction
Error bounds have important applications in the sensitivity analysis of mathematical pro-
gramming and in the convergence analysis of some algorithms. For example, the theory
of error bound can be useful in the convergence analysis in the algorithm in solving op-
timization problem [1–3], variational inequality problem [4, 5], and identifying the active
constraint [6]. Many researchers have focused their attention on the study of the error
bound (see [7–25] and the references therein). We refer the interested reader to the sur-
veys by Azé [8], Fabian et al. [13], Lewis and Pang [18], and Pang [23].

Although there is an extensive literature body on error bound, there is little literature
on the error bound of the non-lower semicontinuous functions. In this paper, we study
error bounds for the non-lower semicontinuous functions. The study of an inequality
defined by a non-lower semicontinuous function arose from a broad class of outer ap-
proximation methods for convex optimization (see [26] and the references therein). It is
also a theoretical interest to study error bounds without lower semicontinuity [16]. Some
commonly studied non-lower semicontinuous functions include the indicator functions
of non-closed sets. For example, the feasible direction cones of a closed convex set may
not be closed, thus their indicator functions may not be lower semicontinuous [27].
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The paper is organized as follows. In Sect. 2, we provide some preliminaries. In Sect. 3,
we extend the concepts of strong slope and global slope to the non-lower semicontinu-
ous functions. By using the two concepts, some characterizations of the global and local
error bounds are given for the non-lower semicontinuous functions. Especially, we get a
necessary and sufficient condition of global error bounds for the non-lower semicontin-
uous functions. In Sect. 4, we emphasize the special case of the non-lower semicontinu-
ous convex functions defined on Euclidean space. We get several necessary and sufficient
conditions of global error bounds for the non-lower semicontinuous convex functions.
Moreover, the results imply that the strong slope and the global slope could be used to
characterize the error bound of the non-lower semicontinuous convex functions. Finally,
we make some conclusions in Sect. 5.

2 Preliminaries
Throughout the paper, unless otherwise specified, let (X, d) be a complete metric space,
f : X → R ∪ {+∞} be a non-lower semicontinuous function. The lower semicontinuous
hull of the function f is defined by cl f (x) := min{lim infy→x f (y), f (x)}. As usual, dom f :=
{x ∈ X|f (x) < +∞} denotes the effective domain of f , f+(x) := max{f (x), 0}. Let [f ≤ 0] :=
{x ∈ X|f (x) ≤ 0}, [f = 0] := {x ∈ X|f (x) = 0}, and [f > 0] := {x ∈ X|f (x) > 0}. For U ⊆ X and
ρ ∈ (0, +∞), we define

Bρ(U) :=
{

x ∈ X|d(x, U) < ρ
}

and B̄ρ(U) :=
{

x ∈ X|d(x, U) ≤ ρ
}

,

where d(x, U) := inf{d(x, y)|y ∈ U} with the convention that d(x,∅) = +∞. Let cl U denote
the closure of the set U .

First, we recall the notation of global and local error bound.

Definition 2.1 We say that f has a global error bound if there exists a positive real number
σ such that

σd
(
x, [f ≤ 0]

) ≤ f (x) for all x ∈ X.

Let σ (f ) denote the supremum of τ ∈ [0, +∞) such that

τd
(
x, [f ≤ 0]

) ≤ f (x) for all x ∈ X.

Definition 2.2 Let x̄ ∈ X such that f (x̄) ≤ 0. We say that f has a local error bound at x̄ if
there exist a neighborhood U of x̄ and a positive constant σ such that

σd
(
x, [f ≤ 0]

) ≤ f+(x) for all x ∈ U .

Next, we recall the notion of strong slope introduced by De Giorgi et al. [28]. The strong
slope was used by several authors to give characterizations of error bound for the lower
semicontinuous functions (see [7, 9, 29]).
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Definition 2.3 The strong slope of function f at x ∈ dom f is defined by

|∇f |(x) = lim sup
y→x

(f (x) – f (y))+

d(x, y)
.

For x /∈ dom f , let |∇f |(x) = +∞.

The following notion (called nonlocal slope in [30]) was first introduced by Ngai and
Théra in [21, Theorem 2.1].

Definition 2.4 The global slope of function f at x ∈ dom f is defined by


|∇f |(x) = sup
y

(f (x) – f+(y))+

d(x, y)
.

For x /∈ dom f , let 
|∇f |(x) = +∞.

In Sect. 3, we will give an example to show that the strong slope and the global slope can-
not be used to characterize the error bound of the non-lower semicontinuous functions
(see Example 3.1).

3 Global and local error bounds
In this section, we extend the concepts of strong slope and global slope to the non-lower
semicontinuous functions and use them to give some necessary and/or sufficient condi-
tions for the global and local error bounds of the non-lower semicontinuous functions.

Definition 3.1 The closed strong slope of f at x ∈ dom f is defined by

|∇f |∗(x) = lim sup
u→x

(cl f (x) – f (u))+

d(x, u)
.

For x /∈ dom f , let |∇f |∗(x) = +∞.

Definition 3.2 The closed global slope of f at x is defined by


|∇f |∗(x) = sup
u

(cl f (x) – f+(u))+

d(x, u)
.

For x /∈ dom f , let 
|∇f |∗(x) = +∞.

According to the above definitions, one can easily get the following proposition.

Proposition 3.1
(i) If x ∈ X \ cl[f ≤ 0], then 
|∇f |(x) ≥ |∇f |(x) and 
|∇f |∗(x) ≥ |∇f |∗(x).

(ii) 
|∇f |∗(x) ≤ 
|∇f |(x) and |∇f |∗(x) ≤ |∇f |(x).
(iii) If f is lower semicontinuous, then


|∇f |∗(x) = 
|∇f |(x) and |∇f |∗(x) = |∇f |(x).
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The following proposition implies that the closed strong slope and the closed global
slope of the function f is the strong slope and the global slope of the function cl f , respec-
tively.

Proposition 3.2
(i) |∇f |∗(x) = lim supu→x

(cl f (x)–cl f (u))+
d(x,u) = |∇ cl f |(x),

(ii) 
|∇f |∗(x) = supu
(cl f (x)–(cl f )+(u))+

d(x,u) = 
|∇ cl f |(x).

Proof We only prove (ii), and one can get (i) in a similar way. (ii) If cl f (x) = +∞, then
the conclusion is clearly established. Without loss of generality, suppose that cl f (x) <
+∞. Since (cl f )+(u) ≤ f+(u), 
|∇f |∗(x) ≤ 
|∇ cl f |(x). Next, we prove that 
|∇f |∗(x) ≥

|∇ cl f |(x).

If 
|∇ cl f |∗(x) = 0, then cl f (x) ≤ (cl f )+(u) ≤ f+(u) for all u ∈ X \ {x}. From the definition
of 
|∇f |∗(x), one has 
|∇f |∗(x) = 0.

Next, we assume that 
|∇ cl f |∗(x) > 0. Furthermore, cl f (x) > 0. Let the sequence {un}
be such that 
|∇ cl f |∗(x) = limn→∞ (cl f (x)–(cl f )+(un))+

d(x,un) . Since 
|∇ cl f |∗(x) > 0 and cl f (x) <
+∞, the sequence {un} is bounded. There exists a subsequence {unk } of {un} such that
limnk→∞ unk = x∗. We consider two cases.

1◦ x∗ = x. From the definition of the closure hull, one has limnk→∞ cl f (unk ) ≥ cl f (x).
Thus, cl f (unk ) > 0 for large enough nk and 
|∇ cl f |(x) = limnk→∞

(cl f (x)–(cl f )(unk ))+
d(x,unk ) . For every

unk , take a point vk such that

f (vk) > 0,
∣∣f (vk) – cl f (unk )

∣∣ <
1
k

d(x, unk ), d(x, vk) ≥ k – 1
k

d(x, unk ).

Thus,


|∇f |∗(x) ≥ lim
k→∞

(cl f (x) – f (vk))+

d(x, vk)

≥ lim
nk→∞

(cl f (x) – (cl f )(unk ) – 1
k d(x, unk ))+

k–1
k d(x, unk )

= 
|∇ cl f |(x).

2◦ x∗ �= x. In this case, d(x, x∗) > 0. Since cl f (x∗) ≤ lim infnk→∞ cl f (unk ), 
|∇ cl f |(x) =
(cl f (x)–(cl f )+(x∗))+

d(x,x∗) .
Let the sequence {vk} be such that d(x∗, vk) ≤ 1

k and |f (vk) – cl f (x∗)| < 1
k . Thus


|∇f |∗(x) ≥ lim inf
k→∞

(cl f (x) – f+(vk))+

d(x, vk)

≥ lim inf
k→∞

(cl f (x) – cl f+(x∗) – 1
k )+

d(x, vk)

= lim inf
k→∞

(cl f (x) – cl f+(x∗) – 1
k )+

d(x, x∗)
d(x, x∗)
d(x, vk)

= 
|∇ cl f |(x). �

The following proposition gives some sufficient conditions for the nonemptiness of the
set [f ≤ 0].



Chao et al. Journal of Inequalities and Applications         (2019) 2019:38 Page 5 of 11

Proposition 3.3 If infX\cl[f ≤0]

|∇f |∗(x) > 0 or infX\cl[f ≤0] |∇f |∗(x) > 0, then

(i) [f ≤ 0] �= ∅, (ii) cl[f ≤ 0] = [cl f ≤ 0].

Proof Since |∇f |∗(x) ≤ 
|∇f |∗(x) for every x ∈ X \ cl[f ≤ 0], we only need to prove that the
conclusions are true under the condition infX\cl[f ≤0]


|∇f |∗(x) > 0.
(i) Let σ := infX\cl[f ≤0]


|∇f |∗(x). Suppose for contradiction that [f ≤ 0] = ∅. Thus
infX cl f (x) ≥ 0. Let x̄ ∈ dom f , then there exist σ ′ ∈ (0,σ ) and r ∈ (0, +∞) such that

cl f (x̄) ≤ inf
X

cl f (x) + σ ′r,

By virtue of the Ekeland variational principle [31], there exists x ∈ B̄r(x̄) with cl f (x) ≤
cl f (x̄) such that cl f (x) < cl f (y) + σ ′d(x, y) ≤ f (y) + σ ′d(x, y) for every y ∈ X \ {x}. Thus

|∇f |∗(x) ≤ σ ′ < σ , contradicting the assumption.

(ii) cl[f ≤ 0] ⊆ [cl f ≤ 0] is obvious. Next, we prove that cl[f ≤ 0] ⊇ [cl f ≤ 0].
If x /∈ cl[f ≤ 0], then


|∇f |∗(x) = sup
u

(cl f (x) – f+(u))+

d(x, u)
> 0.

Thus cl f (x) > 0. This implies that x /∈ [cl f ≤ 0]. �

The following theorem gives two global error bound criteria for the non-lower semi-
continuous functions.

Theorem 3.1
(i) If infX\cl[f ≤0] |∇f |∗(x) ≥ σ , then f+(x) ≥ σd(x, [f ≤ 0]), ∀x ∈ X .

(ii) infX\cl[f ≤0]

|∇f |∗(x) ≥ σ if and only if f+(x) ≥ σd(x, [f ≤ 0]), ∀x ∈ X .

Proof If σ ≤ 0, then the conclusions are clearly established. In the following, we assume
that σ > 0. From Proposition 3.3, one can get

[f ≤ 0] �= ∅ and cl[f ≤ 0] = [cl f ≤ 0].

From Proposition 3.2, we have

inf
X\cl[f ≤0]

|∇ cl f |∗(x) ≥ σ , inf
X\cl[f ≤0]


|∇ cl f |∗(x) ≥ σ .

By [9, Theorem 2.1], [21, Theorem 2.1], and [16, Theorem 2.1], Theorem 3.1 holds. �

The following example implies that the strong slope and the global slope cannot be used
to characterize the error bound of the non-lower semicontinuous functions.

Example 3.1 Let Q denote the set of all rational numbers and P denote the set of all irra-
tional number. Let f : R → R be defined as

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

–1, if x ≤ 0,

1, if x ∈ Q ∩ (0, +∞),

1 – x + [x], if x ∈ P ∩ (0, +∞),
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where [x] denotes the largest integer not less than x. It is easy to see that x\ cl[f ≤ 0] = [f >
0]. The function f is non-lower semicontinuous and inf[f >0]


|∇f |∗(x) = inf[f >0] |∇f |∗(x) = 0.
It follows from Theorem 3.1(ii) that f does not have a global error bound. One can eas-
ily get inf[f >0]


|∇f |(x) = inf[f >0] |∇f |(x) = 1 > 0. This implies that the strong slope and the
global slope cannot be used to characterize the error bound of the non-lower semicontin-
uous functions.

Next, we give the characterizations of local error bounds for the non-lower semicontin-
uous functions.

Theorem 3.2 Let U ⊆ [f ≤ 0], C := X \ cl[f ≤ 0], ρ > 0; and let A := B̄ρ(U) ∩ C and D :=
B2ρ(U) ∩ C. If cl[f ≤ 0] = [cl f ≤ 0], then

inf
A

f (x)
d(x, [f ≤ α])

≥ inf
D


|∇f |∗(x) ≥ inf
D

|∇f |∗(x).

Proof By Proposition 3.1(i), we only need to show the first inequality. We may assume
that the left-hand side of the inequality is finite. Thus A �= ∅, and so [f ≤ 0] �= ∅. For any
σ > infA

f (x)
d(x,[f ≤0]) , there exists x̄ ∈ A such that

f (x̄) < σd
(
x̄, [f ≤ 0]

)
.

Let r ∈ (0, d(x̄, [f ≤ 0])) such that f (x̄) < σ r. Let g(x) := f+(x). We have

cl g(x̄) < inf
X

cl g(x) + σ r.

By virtue of the Ekeland variational principle [31], there exists x̂ ∈ B̄r(x̄) such that cl g(x̂) ≤
cl g(x̄) and cl g(x̂) < cl g(y) + σd(x̂, y) for every y ∈ X \ {x̂}. Note that r < d(x̄, [f ≤ 0]) ≤
d(x̄, U) ≤ ρ . For x ∈ B̄r(x̄) ⊂ B2ρ(U), we have cl f (x) > 0 since cl[f ≤ 0] = [cl f ≤ 0]. Thus
x̂ ∈ D. Furthermore,

0 < cl f (x̂) < f+(y) + σd(x̂, y), ∀y ∈ X \ {x̂}.

One can get 
|∇f |∗(x̂) ≤ σ . Thus infD

|∇f |∗(x) ≤ σ , and the conclusion follows. �

As a special case of Theorem 3.2 that U is singleton, some characterizations of the local
error bounds are obtained as follows.

Corollary 3.1 Let C := X \ cl[f ≤ 0], x̄ ∈ [f ≤ 0], ρ > 0, and D := B2ρ(x̄) ∩ C. Assume that
cl[f ≤ 0] = [cl f ≤ 0]. If infD |∇f |∗(x) ≥ σ or infD


|∇f |∗α(x) ≥ σ , then f+(x) ≥ σd(x, [f ≤ α]),
∀x ∈ Bρ(x̄), that is, f has a local error bound at x̄.

4 The convex case
In this section, we focus our discussion on the convex case. We show that the strong slope
and the global slope could be used to characterize the error bound of the non-lower semi-
continuous convex functions under mild assumptions. Throughout this section, let X = Rn

be the n-dimensional Euclidean space with Euclidean norm ‖ · ‖ and f : Rn → R ∪ {+∞}
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be a non-lower semicontinuous convex function. Let ri(dom f ) denote the relative inte-
rior of the set dom f . It is well known from convex analysis (see, for example, [32]) that
cl f (x) = f (x) for all x ∈ ri(dom f ).

Proposition 4.1 If x ∈ X \ cl[f ≤ 0], then


|∇f |(x) = |∇f |(x) and 
|∇f |∗(x) = |∇f |∗(x).

Proof According to Proposition 3.1, we only need to show that 
|∇f |∗(x) ≤ |∇f |∗(x) and

|∇f |(x) ≤ |∇f |(x) for all x ∈ X \ cl[f ≤ 0]. We only show that 
|∇f |∗(x) ≤ |∇f |∗(x) for all
x ∈ X \ cl[f ≤ 0]. Similarly, one can show that 
|∇f |(x) ≤ |∇f |(x) for all x ∈ X \ cl[f ≤ 0].

Let x ∈ X \ cl[f > 0]. If 
|∇f |∗(x) = 0, then |∇f |∗(x) = 0. Next, we assume that 
|∇f |∗(x) >
0. Let λ ∈ (0, 1). For any y(�= x) such that f (y) ≤ cl f (x), one has

(cl f (x) – f+(y))+

‖x – y‖ ≤ (cl f (x) – cl f (y))+

‖x – y‖

≤ (cl f (x) – cl f (λx + (1 – λ)y))+

‖x – (λx + (1 – λ)y)‖

≤ lim
λ↑1

(cl f (x) – cl f (λx + (1 – λ)y))+

‖x – (λx + (1 – λ)y)‖ .

Let {zλ}λ∈(0,1) be such that

f (zλ) = cl f
(
λx + (1 – λ)y

)
+ ◦(‖x – zλ‖

)
as λ ↑ 1,

and

‖x – zλ‖ =
∥∥x –

(
λx + (1 – λ)y

)∥∥ + ◦(‖x – zλ‖
)

as λ ↑ 1.

Thus

(cl f (x) – f+(y))+

‖x – y‖ ≤ lim
λ↑1

(cl f (x) – f (zλ) + ◦(‖x – zλ‖))+

‖x – zλ‖ + ◦(‖x – zλ‖)

= lim
λ↑1

(cl f (x) – f (zλ))+

‖x – zλ‖ ≤ lim sup
z→x

(cl f (x) – f (z))+

‖x – z‖ = |∇f |∗(x).

Thus


|∇f |∗(x) = sup
y�=x

(cl f (x) – f+(y))+

‖x – y‖ ≤ |∇f |∗(x).

The proof is completed. �

Lemma 4.1 If [f ≤ 0] �= ∅, η := infcl(dom f )\ri(dom f ) cl f (x) > 0, and β ∈ (0,η), then

inf
[f =β]


|∇f |∗(x) ≤ inf
[f >β]


|∇f |∗(x).
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Proof Assume that inf[f =β]

|∇f |∗(x) > 0 and inf[f >β]


|∇f |∗(x) < +∞, thus β > infX f . For
any fixed σ ∈ (inf[f >β]


|∇f |∗(x), +∞). Let x̄ ∈ [f > β] and σ > 
|∇f |∗(x̄). Let

g(y) := f (y) + σ‖y – x̄‖ + δ
(
y|[f ≤ β]

)
,

where δ(y|[f ≤ β]) is the indicator function of the set [f ≤ β].
We claim that g(y) > cl f (x̄) for all y �= x̄. Suppose for a contradiction that there exists ŷ ∈

[f ≤ β] such that f (ŷ) + σ‖ŷ – x̄‖ + δ(ŷ|[f ≤ β]) ≤ cl f (x̄). Since β ∈ (0,η), then ŷ ∈ ri(dom f ).
By [32, Theorem 6.1], one has λŷ + (1 – λ)x̄ ∈ ri(dom f ). By [32, Theorem 10.1], one has
cl f (ŷ) = f (ŷ) and cl f (λŷ + (1 – λ)x̄) = f (λŷ + (1 – λ)x̄) for all λ ∈ (0, 1). Since lim infλ↓0 f (λŷ +
(1 – λ)x̄) ≥ cl f (x̄), then f (λŷ + (1 – λ)x̄) > 0 for sufficiently small λ ∈ (0, 1). If λ ∈ (0, 1) is
sufficiently small, then


|∇f |∗(x̄) ≥ (cl f (x̄) – f+(λŷ + (1 – λ)x̄))+

‖x̄ – (λŷ + (1 – λ)x̄)‖

=
(cl f (x̄) – f (λŷ + (1 – λ)x̄))+

‖x̄ – (λŷ + (1 – λ)x̄))‖ ≥ (cl f (x̄) – f (ŷ))+

‖x̄ – ŷ)‖ ≥ σ

a contradiction, where the second inequality follows from f (λŷ + (1 – λ)x̄) = cl f (λŷ + (1 –
λ)x̄) ≤ λ cl f (x̄) + (1 – λ) cl f (ŷ) and cl f (ŷ) = f (ŷ).

Let ε ∈ (0,σ – 
|∇f |∗(x̄)) and ȳ ∈ [f ≤ β]. Since g(y) > cl f (x̄) for all y �= x̄, there exists
r̄ε > 0 such that

cl g(ȳ) ≤ inf cl g(y) + εr̄ε .

By virtue of the Ekeland variational principle [31], there exists yε such that

cl g(y) + ε‖y – yε‖ > cl g(yε) for all y �= yε .

Thus yε ∈ [f ≤ β] ⊆ ri(dom f ) and

f (y) + σ‖y – x̄‖ ≥ f (yε) + σ‖yε – x̄‖ – ε‖y – yε‖ for all y ∈ [f ≤ β]. (1)

We claim that f (yε) = β . Indeed, we may assume, for contradiction, that f (yε) < β . Let zε

be a point in the open segment (x̄, yε) with f (zε) = β > 0. Then zε ∈ ri(dom f ). Writing (1)
for y := zε yields

f (zε) – f (yε) ≥ σ
(‖yε – x̄‖ – ‖zε – x̄‖) – ε‖zε – yε‖ = (σ – ε)‖zε – yε‖,

where the equality follows from zε ∈ (x̄, yε). For λ ∈ (0, 1) is sufficiently small, one has


|∇f |∗(x̄) ≥ (cl f (x̄) – f+(zε))+

‖x̄ – zε‖
≥ (cl f (zε) – f+((1 – λ)zε + λyε))+

‖zε – ((1 – λ)zε + λyε)‖

=
(cl f (zε) – f ((1 – λ)zε + λyε))+

‖zε – ((1 – λ)zε + λyε)‖
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≥ (f (zε) – f (yε))+

‖zε – yε‖ ≥ σ – ε,

a contradiction. Thus f (yε) = β .
Now, we derive from (1) again that

f (yε) – f (y) ≤ σ
(‖y – x̄‖ – ‖yε – x̄‖) + ε‖y – yε‖ ≤ (σ + ε)‖y – yε‖ for all y ∈ [f ≤ β].

Thus


|∇f |∗(yε) = sup
y

(f (yε) – f+(y))+

‖yε – y‖ ≤ σ + ε,

which shows that inf[f =β]

|∇f |∗(x̄) ≤ σ . Thus inf[f =β]


|∇f |∗(x̄) ≤ inf[f >β]

|∇f |∗(x). �

Proposition 4.2 If [f ≤ 0] �= ∅ and infcl(dom f )\ri(dom f ) cl f (x) > 0, then

inf
X\cl[f ≤0]

|∇f |(x) = inf
X\cl[f ≤0]


|∇f |(x)

= inf
X\cl[f ≤0]


|∇f |∗(x) = inf
X\cl[f ≤0]

|∇f |∗(x).

Proof By Proposition 4.1, we only need to prove

inf
X\cl[f ≤0]


|∇f |(x) = inf
X\cl[f ≤0]


|∇f |∗(x).

By Lemma 4.1, we have

inf
[f >β]


|∇f |(x) ≥ inf
[f >β]


|∇f |∗(x) ≥ inf
[f =β]


|∇f |∗(x)

≥ inf
[f ≤β]\cl[f ≤0]


|∇f |∗(x) = inf
[f ≤β]\cl[f ≤0]


|∇f |(x),

where the equality follows from [f ≤ β] ⊆ ri(dom f ). Thus

inf
X\cl[f ≤0]


|∇f |(x) = min
{

inf
[f ≤β]\cl[f ≤0]


|∇f |(x), inf
[f >β]\cl[f ≤0]


|∇f |(x)
}

= inf
[f ≤β]\cl[f ≤0]


|∇f |(x),

and

inf
X\cl[f ≤0]


|∇f |∗(x) = min
{

inf
[f ≤β]\cl[f ≤0]


|∇f |∗(x), inf
[f >β]\cl[f ≤0]


|∇f |∗(x)
}

= inf
[f ≤β]\cl[f ≤0]


|∇f |∗(x).

The above three formulas imply that

inf
X\cl[f ≤0]


|∇f |(x) = inf
X\cl[f ≤0]


|∇f |∗(x). �

By Theorem 3.1 and Proposition 4.2, we have the following result, which gives charac-
terizations of global error bounds for the non-lower semicontinuous convex functions.
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Theorem 4.1 Assume that infcl(dom) f \ri(dom) f cl f > 0. Then the following statements are
equivalent:

(i) f+(x) ≥ σd(x, [f ≤ 0]), ∀x ∈ X .
(ii) infX\cl[f ≤0]


|∇f |(x) ≥ σ .
(iii) infX\cl[f ≤0] |∇f |(x) ≥ σ .
(iv) infX\cl[f ≤0]


|∇f |∗(x) ≥ σ .
(v) infX\cl[f ≤0] |∇f |∗(x) ≥ σ .

5 Conclusions
In this paper, we establish some necessary and/or sufficient conditions of global and local
error bounds for the non-lower semicontinuous functions. We also emphasize the special
case of convex functions defined on Euclidean space. We get several necessary and suffi-
cient conditions of global error bounds for convex functions defined on Euclidean space.
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