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Abstract
In this paper, p-biharmonic equations involving Hardy potential and negative
exponents with a parameter λ are considered. By means of the structure and
properties of Nehari manifold, we give uniform lower bounds for Λ > 0, which is the
supremum of the set of λ. When λ ∈ (0,Λ), the above problems admit at least two
positive solutions.
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1 Introduction and preliminaries
In this paper, we consider a p-biharmonic equation with Hardy potential and negative
exponents:

⎧
⎪⎪⎨

⎪⎪⎩

�2
pu – μ

|u|p–2u
|x|2p = f (x)u–q + λg(x)uγ in Ω \ {0},

u(x) > 0 in Ω \ {0},
u = �u = 0 on ∂Ω ,

(1.1)

where 0 ∈ Ω ⊂ R
N is a bounded smooth domain with 1 < p < N

2 , �2
pu = �(|�u|p–2�u) is

the p-biharmonic operator. λ > 0 is a parameter, 0 < μ < μN ,p = ( (p–1)N(N–2p)
p2 )p, 0 < q < 1

and p – 1 < γ < p∗ – 1, where p∗ = Np
N–2p is called the critical Sobolev exponent. f (x) ≥ 0,

f (x) �≡ 0, g(x) satisfies the requirement that the set {x ∈ Ω : g(x) > 0} has positive measures,
supp f ∩ {x ∈ Ω : g(x) > 0} �= ∅ and f , g ∈ C(Ω). Biharmonic equations describe the sport
of a rigid body and the deformations of an elastic beam. For example, this type of equa-
tion provides a model for considering traveling wave in suspension bridges [5, 16, 27, 30,
36]. Various methods and tools have been adopted to deal with singular problems, such
that fixed point theorems [14], topological methods [37], Fourier and Laurent transforma-
tion [18, 19], monotone iterative methods [21], global bifurcation theory [12], and degree
theory [22, 31].

In recent years, there was much attention focused on the existence, multiplicity and
qualitative properties of solutions for p-biharmonic equations under Dirichlet boundary
conditions or Navier boundary conditions with Hardy terms [4, 15, 17, 32, 34]. Xie and
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Wang [32] studied the following p-biharmonic equation with Dirichlet boundary condi-
tions:

⎧
⎨

⎩

�2
pu – μ

|u|p–2u
|x|2p = f (x, u) in Ω ,

u = ∂u
∂n = 0 on ∂Ω ,

(1.2)

where ∂
∂n is the outer normal derivative. By using the variational method, the existence

of infinitely many solutions with positive energy levels for (1.2) was established. Huang
and Liu [15] considered the following p-biharmonic equation with Navier boundary con-
ditions:

⎧
⎨

⎩

�2
pu – μ

|u|p–2u
|x|2p = f (x, u) in Ω ,

u = �u = 0 on ∂Ω ,
(1.3)

where 1 < p < N
2 . By using invariant sets of gradient flows, the authors proved that (1.3)

possesses a sign-changing solution. Furthermore, Yang, Zhang and Liu [34] showed that
(1.3) has a positive solution, a negative solution and a sequence of sign-changing solutions
when f satisfies appropriate conditions. Bhakta [4] established the qualitative properties
of entire solutions for a noncompact problem related to p-biharmonic type equations with
Hardy terms.

On the other hand, nonlinear biharmonic equations with negative exponents have been
studied expensively [1, 6, 8, 13, 20]. Guerra [13] gave a complete description of entire
radially symmetric solutions for the following biharmonic equation:

�2u = –u–q, u > 0 in R
3,

where q > 1. Moreover, Cowan et al. [8] dealt with the regularity of the extremal solution
of the following fourth order boundary value problems:

⎧
⎪⎪⎨

⎪⎪⎩

�2u = λ

(1–u)2 in Ω ,

0 < u < 1 in Ω ,

u = ∂u
∂n = 0 on ∂Ω .

Very recently, Ansari, Vaezpour and Hesaaraki [1] considered fourth order elliptic problem
with the combinations of Hardy term and negative exponents,

⎧
⎨

⎩

�2u – λM(‖∇u‖2)�u – μ

|x|4 u = h(x)
uγ + k(x)uα in Ω ,

u = �u = 0 on ∂Ω ,
(1.4)

where Ω ⊂R
N (N ≥ 1) is a bounded C4-domain, λ and μ are positive parameters and 0 <

α < 1, 0 < γ < 1 are constants. Here M, h and k are given continuous functions satisfying
suitable hypotheses. By using the Galerkin method and the sharp angle lemma, the authors
proved that problem (1.4) has a positive solution for 0 < μ < ( N(N–4)

4 )2.
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We say that u ∈ W := W 2,p(Ω) ∩ W 1,p
0 (Ω) is a weak solution of (1.1), if for every ϕ ∈ W ,

there holds
∫

Ω

|�u|p–2�u�ϕ dx –
∫

Ω

μ

|x|2p |u|p–2uϕ dx =
∫

Ω

f (x)u–qϕ dx + λ

∫

Ω

g(x)uγ ϕ dx. (1.5)

The following Rellich inequality will be used in this paper:

∫

Ω

|�u|p dx ≥ μN ,p

∫

Ω

|u|p
|x|2p dx, ∀u ∈ W ,

and it is not achieved [9, 24]. For any u ∈ W , and 0 < μ < μN ,p. The energy functional
corresponding to (1.1) is defined by

Iλ,μ(u) =
1
p

∫

Ω

(

|�u|p –
μ

|x|2p |u|p
)

dx –
1

1 – q

∫

Ω

f (x)|u|1–q dx

–
λ

γ + 1

∫

Ω

g(x)|u|γ +1 dx. (1.6)

For μ ∈ [0,μN ,p), W is equipped with the following norm:

‖u‖p
μ =

∫

Ω

(

|�u|p –
μ

|x|2p |u|p
)

dx.

Negative exponent term u–q implies that Iλ,μ is not differential on W , therefore, critical
point theory cannot be applied to the problem (1.1) directly. We consider the following
manifold:

M =
{

u ∈ W : ‖u‖p
μ =

∫

Ω

f (x)|u|1–q dx + λ

∫

Ω

g(x)|u|γ +1 dx
}

,

and make the following splitting for M:

M+ =
{

u ∈M : (p + q – 1)‖u‖p
μ > λ(γ + q)

∫

Ω

g(x)|u|γ +1 dx
}

, (1.7)

M0 =
{

u ∈M : (p + q – 1)‖u‖p
μ = λ(γ + q)

∫

Ω

g(x)|u|γ +1 dx
}

, (1.8)

M– =
{

u ∈M : (p + q – 1)‖u‖p
μ < λ(γ + q)

∫

Ω

g(x)|u|γ +1 dx
}

. (1.9)

In this paper, we will study the dependence of problem (1.1) on q, γ , f , g and Ω and
evaluate the extremal value of λ related to multiplicity of positive solutions for problem
(1.1). Our idea comes from [7, 28, 29]. Our results improve and complement previous ones
obtained in [23, 25]. Denote ‖u‖t

t =
∫

Ω
|u|t dx and D2,p(RN ) be the closure of C∞

0 (RN ) with

respect to the norm (
∫

RN |�u|p dx)
1
p .

λ1 denotes the smallest eigenvalue for

�2
pu –

μ

|x|2p |u|p–2u = λ1|u|p–2u, x ∈ Ω \ {0}, u ∈ W , (1.10)
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and ϕ1 denotes the corresponding eigenfunction with ϕ1 > 0 in Ω [3, 10, 26, 33, 35]. The
following minimization problem will be useful in the following discussions:

Sμ = inf

{∫

RN

(

|�u|p –
μ

|x|2p |u|p
)

dx, u ∈ D2,p(
R

N)
,
∫

RN
|u|p∗

dx = 1
}

> 0, (1.11)

and Sμ is achieved by a family of functions [4, 11]. Thus, for every u ∈ W \ {0}, ‖u‖p∗ ≤
‖u‖μ

p√Sμ
. Therefore, combining with the Hölder inequality, we deduce that

∫

Ω

|u|γ +1 dx ≤
[∫

Ω

|u|(γ +1) p∗
γ +1 dx

] γ +1
p∗ (∫

Ω

1 dx
) p∗–γ –1

p∗

= |Ω|
p∗–γ –1

p∗ ‖u‖γ +1
p∗

≤ |Ω|
p∗–γ –1

p∗
(‖u‖μ

p
√

Sμ

)γ +1

, (1.12)

∫

Ω

|u|1–q dx ≤
[∫

Ω

|u|(1–q) p∗
1–q dx

] 1–q
p∗ (∫

Ω

1 dx
) p∗–1+q

p∗

= |Ω|
p∗–1+q

p∗ ‖u‖1–q
p∗

≤ |Ω|
p∗–1+q

p∗
(‖u‖μ

p
√

Sμ

)1–q

, (1.13)

and

∫

Ω

|u|1–q dx ≤
[∫

Ω

|u|(1–q) γ +1
1–q dx

] 1–q
γ +1

(∫

Ω

1 dx
) γ +q

γ +1

= |Ω| γ +q
γ +1 ‖u‖1–q

γ +1. (1.14)

Our main results are stated in the following theorems.

Theorem 1.1 Assume that λ ∈ (0,Λ), where

Λ ≥ Tμ =
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p

(
1

‖f ‖∞

) p–γ –1
1–q–p

(
1

‖g‖∞

)(
Sμ

|Ω| p
N

) q+γ
p+q–1

> 0. (1.15)

Then problem (1.1) admits at least two solutions u0 ∈M+, U0 ∈M–, with ‖U0‖μ > ‖u0‖μ.

Corollary 1.2 Let Uλ,μ,ε ∈ M– be the solution of problem (1.1) with γ = ε + p – 1, where
λ ∈ (0, Tμ). Then

‖Uλ,μ,ε‖μ > Cμ,ε

(
Tμ

λ

) 1
ε



Sang and Guo Journal of Inequalities and Applications         (2019) 2019:26 Page 5 of 26

with

Cμ,ε = |Ω| 1
p
(‖f ‖∞

) 1
p+q–1

(

1 +
p + q – 1

ε

) 1
p+q–1

( |Ω| 2
N

p
√

Sμ

) 1–q
p+q–1 → ∞, as ε → 0. (1.16)

Theorem 1.3 There exists λ∗ = λ∗(N ,Ω ,μ, q,γ ) > 0 such that problem (1.1) with f = g = 1
admits at least a positive solution for every 0 < λ < λ∗ and has no solution for every λ > λ∗.

2 Some lemmas
Lemma 2.1 Assume that λ ∈ (0, Tμ), where Tμ is defined in (1.15). Then M± �= ∅ and
M0 = {0}.

Proof (i) We can choose u∗ ∈ M \ {0} such that
∫

Ω
f (x)|u∗|1–q dx > 0 and

∫

Ω
g(x) ×

|u∗|γ +1 dx > 0 from the conditions imposed on f and g . Denote

ϕμ(t) :=
1
tγ

d
dt

Iλ,μ
(
tu∗)

= tp–1–γ
∥
∥u∗∥∥p

μ
– t–q–γ

∫

Ω

f (x)
∣
∣u∗∣∣1–q dx – λ

∫

Ω

g(x)
∣
∣u∗∣∣γ +1 dx, t > 0.

Note that ϕ′
μ(t) = (p – 1 – γ )tp–2–γ ‖u∗‖p

μ + (q + γ )t–1–q–γ
∫

Ω
f (x)|u∗|1–q dx. Let ϕ′

μ(t) = 0,
we have

t := tmax =
[

(γ – p + 1)‖u∗‖p
μ

(q + γ )
∫

Ω
f (x)|u∗|1–q dx

] 1
1–q–p

. (2.1)

It is easy to check that ϕμ(t) → –∞ as t → 0+ and ϕμ(t) → –λ
∫

Ω
g(x)|u∗|γ +1 dx < 0 as

t → ∞. Furthermore, ϕμ(t) attains its maximum at tmax. By (1.12) and (1.13), we obtain

ϕμ(tmax)

=
[

(γ – p + 1)‖u∗‖p
μ

(q + γ )
∫

Ω
f (x)|u∗|1–q dx

] p–γ –1
1–q–p ∥

∥u∗∥∥p
μ

–
[

(γ – p + 1)‖u∗‖p
μ

(q + γ )
∫

Ω
f (x)|u∗|1–q dx

] –q–γ
1–q–p

∫

Ω

f (x)
∣
∣u∗∣∣1–q dx

– λ

∫

Ω

g(x)
∣
∣u∗∣∣γ +1 dx

=
(

γ – p + 1
q + γ

) p–γ –1
1–q–p (‖u∗‖p

μ)
–γ –q
1–q–p

(
∫

Ω
f (x)|u∗|1–q dx)

p–γ –1
1–q–p

–
(

γ – p + 1
q + γ

) –q–γ
1–q–p (‖u∗‖p

μ)
–γ –q
1–q–p

(
∫

Ω
f (x)|u∗|1–q dx)

p–γ –1
1–q–p

– λ

∫

Ω

g(x)
∣
∣u∗∣∣γ +1 dx

=
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p (‖u∗‖p

μ)
–γ –q
1–q–p

(
∫

Ω
f (x)|u∗|1–q dx)

p–γ –1
1–q–p

– λ

∫

Ω

g(x)
∣
∣u∗∣∣γ +1 dx
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≥
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p (‖u∗‖p

μ)
–γ –q
1–q–p

[‖f ‖∞|Ω|
p∗–1+q

p∗ ( ‖u∗‖μ

p√Sμ
)1–q]

p–γ –1
1–q–p

– λ‖g‖∞|Ω|
p∗–γ –1

p∗
(‖u∗‖μ

p
√

Sμ

)γ +1

=
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p

(
1

‖f ‖∞

) p–γ –1
1–q–p ( p

√
Sμ)

(1–q)(p–γ –1)
1–q–p

|Ω|
p∗–1+q

p∗ p–γ –1
1–q–p

∥
∥u∗∥∥γ +1

μ

– λ‖g‖∞|Ω|
p∗–γ –1

p∗
(‖u∗‖μ

p
√

Sμ

)γ +1

=
[(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p

(
1

‖f ‖∞

) p–γ –1
1–q–p ( p

√
Sμ)

(1–q)(p–γ –1)
1–q–p

|Ω|
p∗–1+q

p∗ p–γ –1
1–q–p

– λ‖g‖∞
|Ω|

p∗–γ –1
p∗

( p
√

Sμ)γ +1

]
∥
∥u∗∥∥γ +1

μ

:= A(μ,λ)
∥
∥u∗∥∥γ +1

μ

> 0. (2.2)

When A(μ,λ) = 0, we get

λ =
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p

(
1

‖f ‖∞

) p–γ –1
1–q–p

(
1

‖g‖∞

) ( p
√

Sμ)
(1–q)(p–γ –1)

1–q–p +γ +1

|Ω|
p∗–1+q

p∗ p–γ –1
1–q–p + p∗–γ –1

p∗

=
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p

(
1

‖f ‖∞

) p–γ –1
1–q–p

(
1

‖g‖∞

)[
Sμ

|Ω| 2p
N

] q+γ
p+q–1

= Tμ,

where we use the following two equalities:

(1 – q)(p – γ – 1)
1 – q – p

+ γ + 1 =
p(q + γ )
q + p – 1

,

and

(p∗ – 1 + q)(p – γ – 1)
p∗(1 – q – p)

+
p∗ – γ – 1

p∗ =
2p(q + γ )

N(q + p – 1)
.

In turn, this is also true. Hence A(μ,λ) = 0 if and only if λ = Tμ. Thus for λ ∈ (0, Tμ), we
have A(μ,λ) > 0. Moreover, by (2.2), we derive that ϕμ(tmax) > 0. Consequently, there exist
two numbers t–

μ and t+
μ such that 0 < t–

μ < tmax < t+
μ, and

ϕμ

(
t–
μ

)
= 0 = ϕμ

(
t+
μ

)
, ϕ′

μ

(
t–
μ

)
> 0 > ϕ′

μ

(
t+
μ

)
.

It follows that t–
μu∗ ∈M+, and t+

μu∗ ∈M–. In fact, if ϕμ(t) = 0, then

ϕμ(t) = tp–1–γ ‖u‖p
μ – t–q–γ

∫

Ω

f (x)|u|1–q dx – λ

∫

Ω

g(x)|u|γ +1 dx = 0,
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namely

‖tu‖p
μ =

∫

Ω

f (x)|tu|1–q dx + λ

∫

Ω

g(x)|tu|γ +1 dx.

Hence tu ∈M. Furthermore, if ϕ′
μ(t) > 0, then

(p – 1 – γ )tp–2–γ ‖u‖p
μ + (q + γ )t–1–q–γ

∫

Ω

f (x)|u|1–q dx > 0.

That is

(p – 1 – γ )‖tu‖p
μ + (q + γ )

∫

Ω

f (x)|tu|1–q dx > 0,

i.e.,

(p – 1 – γ )‖tu‖p
μ + (q + γ )

[

‖tu‖p
μ – λ

∫

Ω

g(x)|tu|γ +1 dx
]

> 0.

Note that tu ∈M, we have

(p + q – 1)‖tu‖p
μ – λ(q + γ )

∫

Ω

g(x)|tu|γ +1 dx > 0.

Thus tu ∈M+. By a similar argument, if ϕμ(t) = 0 and ϕ′
μ(t) < 0, then tu ∈M–. Therefore,

both M+ and M– are non-empty sets for every λ ∈ (0, Tμ).
(ii) We claim thatM0 = {0}. Otherwise, we suppose that there exists u∗ ∈M0 and u∗ �= 0.

Since u∗ ∈M0, we have

(p + q – 1)‖u∗‖p
μ = λ(γ + q)

∫

Ω

g(x)|u∗|γ +1 dx,

moreover

0 = ‖u∗‖p
μ –

∫

Ω

f (x)u1–q
∗ dx – λ

∫

Ω

g(x)uγ +1
∗ dx

= ‖u∗‖p
μ –

∫

Ω

f (x)u1–q
∗ dx –

p + q – 1
γ + q

‖u∗‖p
μ

=
γ – p + 1

γ + q
‖u∗‖p

μ –
∫

Ω

f (x)u1–q
∗ dx.

For λ ∈ (0, Tμ) and u∗ �= 0, combining with (2.2), we deduce that

0 < A(μ,λ)‖u∗‖γ +1
μ

≤
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p (‖u∗‖p

μ)
–γ –q
1–q–p

( γ –p+1
q+γ

‖u∗‖p
μ)

p–γ –1
1–q–p

–
(

q + p – 1
q + γ

)

‖u∗‖p
μ = 0,

which is a contradiction, Thus u∗ = 0. That is, M0 = {0}. �

The gap structure in M is embodied in the following lemma.
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Lemma 2.2 Assume that λ ∈ (0, Tμ), then

‖U‖μ > Mμ(λ) > Mμ,0 > ‖u‖μ,

‖U‖γ +1 > Nμ(λ) > Nμ,0 > ‖u‖γ +1, ∀u ∈M+, U ∈M–,

where

Mμ,0 =
[

γ + q
γ – p + 1

‖f ‖∞
|Ω|

p∗–1+q
p∗

( p
√

Sμ)1–q

] 1
p+q–1

,

Mμ(λ) =
[

p + q – 1
λ(γ + q)

1
‖g‖∞

( p
√

Sμ)γ +1

|Ω|
p∗–1–γ

p∗

] 1
γ +1–p

,

Nμ,0 =
[

γ + q
γ – p + 1

‖f ‖∞
|Ω|

γ +q
γ +1 + (p∗–1–γ )p

p∗(γ +1)

Sμ

] 1
p+q–1

,

Nμ(λ) =
[

p + q – 1
λ(γ + q)

1
‖g‖∞

Sμ

|Ω|p( p∗–1–γ

p∗(γ +1) )

] 1
γ +1–p

.

Proof If u ∈M+ ⊂M, then

0 < (p + q – 1)‖u‖p
μ – λ(γ + q)

∫

Ω

g(x)|u|γ +1 dx

= (p + q – 1)‖u‖p
μ – (γ + q)

[

‖u‖p
μ –

∫

Ω

f (x)|u|1–q dx
]

= (p – γ – 1)‖u‖p
μ + (γ + q)

∫

Ω

f (x)|u|1–q dx.

We obtain from (1.13) that

(γ – p + 1)‖u‖p
μ < (γ + q)

∫

Ω

f (x)|u|1–q dx

≤ (γ + q)‖f ‖∞|Ω|
p∗–1+q

p∗
(‖u‖μ

p
√

Sμ

)1–q

,

which leads to

‖u‖μ <
[

γ + q
γ – p + 1

‖f ‖∞
|Ω|

p∗–1+q
p∗

( p
√

Sμ)1–q

] 1
p+q–1

= Mμ,0.

By (1.12) and (1.14), we have

(γ – p + 1)‖u‖p
γ +1

Sμ

|Ω|p( p∗–1–γ

p∗(γ +1) )

≤ (γ – p + 1)
Sμ

|Ω|p
p∗–1–γ

p∗(γ +1)

[

|Ω|
p∗–1–γ

p∗
(‖u‖μ

p
√

Sμ

)γ +1] p
γ +1
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= (γ – p + 1)‖u‖p
μ

< (γ + q)
∫

Ω

f (x)|u|1–q dx

≤ (γ + q)‖f ‖∞|Ω| γ +q
γ +1 ‖u‖1–q

γ +1,

which implies that

‖u‖γ +1 <
[

γ + q
γ – p + 1

‖f ‖∞
|Ω|

γ +q
γ +1 + (p∗–1–γ )p

p∗(γ +1)

Sμ

] 1
p+q–1

= Nμ,0.

If U ∈M– ⊂M, combining with (1.12), we derive that

(p + q – 1)‖U‖p
μ < λ(γ + q)

∫

Ω

g(x)|U|γ +1 dx

≤ λ(γ + q)‖g‖∞|Ω|
p∗–γ –1

p∗
(‖U‖μ

p
√

Sμ

)γ +1

,

which leads to

‖U‖μ >
[

p + q – 1
λ(γ + q)

1
‖g‖∞

( p
√

Sμ)γ +1

|Ω|
p∗–1–γ

p∗

] 1
γ +1–p

= Mμ(λ).

Furthermore

(p + q – 1)‖U‖p
γ +1

Sμ

|Ω|p( p∗–1–γ

p∗(γ +1) )

≤ (p + q – 1)
Sμ

|Ω|p
p∗–1–γ

p∗(γ +1)

[

|Ω|
p∗–1–γ

p∗
(‖U‖μ

p
√

Sμ

)] p
γ +1

= (p + q – 1)‖U‖p
μ

< λ(γ + q)
∫

Ω

g(x)|U|γ +1 dx

≤ λ(γ + q)‖g‖∞‖U‖γ +1
γ +1,

which means that

‖U‖γ +1 >
[

p + q – 1
λ(γ + q)

1
‖g‖∞

Sμ

|Ω|p( p∗–1–γ

p∗(γ +1) )

] 1
γ +1–p

= Nμ(λ).

Therefore

λ = Tμ =
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p

(
1

‖f ‖∞

) p–γ –1
1–q–p

(
1

‖g‖∞

)(
Sμ

|Ω| 2p
N

) q+γ
p+q–1
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⇔ Mμ(λ) =
[

p + q – 1
λ(γ + q)

1
‖g‖∞

( p
√

Sμ)γ +1

|Ω|
p∗–1–γ

p∗

] 1
γ +1–p

= λ
– 1

γ +1–p

[
p + q – 1

γ + q
1

‖g‖∞

( p
√

Sμ)γ +1

|Ω|
p∗–1–γ

p∗

] 1
γ +1–p

=
(

q + γ

q + p – 1

) 1
γ +1–p

(
q + γ

γ – p + 1

) 1
p+q–1 (‖f ‖∞

) 1
p+q–1

(‖g‖∞
) 1

γ +1–p

× |Ω| 2p
N

q+γ
(q+p–1)(γ +1–p)

(Sμ)
q+γ

(p+q–1)(γ +1–p)

[
p + q – 1

γ + q
1

‖g‖∞

( p
√

Sμ)γ +1

|Ω|
p∗–1–γ

p∗

] 1
γ +1–p

=
(

q + γ

γ – p + 1

) 1
p+q–1 (‖f ‖∞

) 1
p+q–1 |Ω|

2p
N

q+γ
(γ –p+1)(p+q–1) – p∗–1–γ

p∗

( p
√

Sμ)p q+γ
(γ –p+1)(p+q–1) – γ +1

γ +1–p

=
[

γ + q
γ – p + 1

‖f ‖∞
|Ω|

p∗–1+q
p∗

( p
√

Sμ)1–q

] 1
p+q–1

= Mμ,0,

where we have used the following facts:

2p
N

q + γ

(γ – p + 1)(p + q – 1)
–

p∗ – 1 – γ

p∗(γ – p + 1)

=
2p(p∗ – p)

2pp∗
q + γ

(γ – p + 1)(p + q – 1)
–

p∗ – 1 – γ

p∗(γ – p + 1)

=
(γ – p + 1)(p∗ + q – 1)

p∗(γ – p + 1)(p + q – 1)
,

and

p
q + γ

(γ – p + 1)(p + q – 1)
–

γ + 1
γ + 1 – p

=
pq – qγ + γ – p – q + 1
(γ – p + 1)(p + q – 1)

=
1 – q

p + q – 1
.

Similarly

λ = Tμ =
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p

(
1

‖f ‖∞

) p–γ –1
1–q–p

(
1

‖g‖∞

)[
Sμ

|Ω| 2p
N

] q+γ
p+q–1

.

⇔ Nμ(λ) =
[

p + q – 1
λ(γ + q)

1
‖g‖∞

Sμ

|Ω|p( p∗–1–γ

p∗(γ +1) )

] 1
γ +1–p

= λ
– 1

γ +1–p

[
p + q – 1
λ(γ + q)

1
‖g‖∞

Sμ

|Ω|p( p∗–1–γ

p∗(γ +1) )

] 1
γ +1–p

=
(

q + γ

q + p – 1

) 1
γ +1–p

(
q + γ

γ – p + 1

) 1
p+q–1 (‖f ‖∞

) 1
p+q–1

(‖g‖∞
) 1

γ +1–p

× |Ω| 2p
N

q+γ
(q+p–1)(γ +1–p)

(Sμ)
q+γ

(p+q–1)(γ +1–p)

[
p + q – 1
λ(γ + q)

1
‖W‖∞

Sμ

|Ω|p( p∗–1–γ

p∗(γ +1) )

] 1
γ +1–p
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=
(

q + γ

γ – p + 1

) 1
p+q–1 (‖f ‖∞

) 1
p+q–1 |Ω|

2p
N

q+γ
(γ –p+1)(p+q–1) –p p∗–1–γ

p∗(γ +1)(γ +1–p)

(Sμ)
q+γ

(γ –p+1)(p+q–1) – 1
γ +1–p

=
[

γ + q
γ – p + 1

‖f ‖∞
|Ω|

γ +q
γ +1 + (p∗–1–γ )p

p∗(γ +1)

Sμ

] 1
p+q–1

= Nμ,0,

where we have applied the following equalities:

2p
N

q + γ

(γ – p + 1)(p + q – 1)
– p

p∗ – 1 – γ

p∗(γ + 1)(γ + 1 – p)

=
2p(p∗ – p)

2pp∗
q + γ

(γ – p + 1)(p + q – 1)
–

p∗ – 1 – γ

p∗(γ – p + 1)

=
γ + q
γ + 1

+ p
p∗ – 1 – γ

p∗(γ + 1)
,

and

q + γ

(γ – p + 1)(p + q – 1)
–

1
γ + 1 – p

=
q + γ – (p + q – 1)

(γ – p + 1)(p + q – 1)
=

1
p + q – 1

.

Consequently, Mμ(λ) = Mμ,0 if and only if λ = Tμ and Nμ(λ) = Nμ,0 if and only if λ = Tμ

respectively. This completes the proof of Lemma 2.2. �

Lemma 2.3 Assume that λ ∈ (0, Tμ). Then M– is a closed set in W -topology.

Proof We choose a sequence {Un} such that {Un} ⊂M– and Un → U0 with U0 ∈ W . Then

‖U0‖p
μ = lim

n→∞‖Un‖p
μ

= lim
n→∞

[∫

Ω

f (x)|Un|1–q dx + λ

∫

Ω

g(x)|Un|γ +1 dx
]

=
∫

Ω

f (x)|U0|1–q dx + λ

∫

Ω

g(x)|U0|γ +1 dx,

and

(p + q – 1)‖U0‖p
μ – λ(γ + q)

∫

Ω

g(x)|U0|γ +1 dx

= lim
n→∞

[

(p + q – 1)‖Un‖p
μ – λ(γ + q)

∫

Ω

g(x)|Un|γ +1 dx
]

≤ 0.

Hence U0 ∈M– ∪M0. By Lemma 2.2, we have

‖U0‖μ = lim
n→∞‖Un‖μ ≥ Mμ,0 > 0,

that is, U0 �= 0. Combining with Lemma 2.1, we obtain U0 /∈ M0. Thus U0 ∈ M–. There-
fore M– is a closed set in W -topology for every λ ∈ (0, Tμ). �
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Lemma 2.4 For u ∈ M±, there exist a number ε > 0 and a continuous function g̃(h) > 0
with h ∈ W and ‖h‖ < ε such that

g̃(0) = 1, g̃(h)(u + h) ∈M±, ∀h ∈ W ,‖h‖ < ε.

Proof We only prove the case that M+. Define a function F̃ : W ×R
+ →R by:

F̃(h, s) = sp–1+q‖u + h‖p
μ –

∫

Ω

f (x)|u + h|1–q dx – λsγ +q
∫

Ω

g(x)|u + h|γ +1 dx.

Note that u ∈M+, we obtain

F̃(0, 1) = ‖u‖p
μ –

∫

Ω

f (x)|u|1–q dx – λ

∫

Ω

g(x)|u|γ +1 dx = 0,

and

F̃s(0, 1) = (p – 1 + q)‖u‖p
μ – (q + γ )λ

∫

Ω

g(x)|u|γ +1 dx > 0. (2.3)

At (0, 1), using the implicit function theorem, we know that there exists ε > 0 such that for
h ∈ W and ‖h‖ < ε, the equation F̃(h, s) = 0 has a unique continuous solution s = g̃(h) > 0.
Hence g̃(0) = 1 and

0 = g̃(h)p–1+q‖u + h‖p
μ –

∫

Ω

f (x)|u + h|1–q dx – λ̃g(h)γ +q
∫

Ω

g(x)|u + h|γ +1 dx

=
‖̃g(h)(u + h)‖p

μ –
∫

Ω
f (x)|̃g(h)(u + h)|1–q dx – λ

∫

Ω
g(x)|̃g(h)(u + h)|γ +1 dx

g̃(h)1–q ,

i.e.,

g̃(h)(u + h) ∈M, ∀h ∈ W ,‖h‖ < ε,

and

F̃s
(
h, g̃(h)

)
= (p – 1 + q)̃g(h)p+q–2‖u + h‖p

μ – (q + γ )λ̃g(h)γ +q–1
∫

Ω

g(x)|u + h|γ +1 dx

=
(p – 1 + q)‖̃g(h)(u + h)‖p

μ – (q + γ )λ
∫

Ω
g(x)|̃g(h)(u + h)|γ +1 dx

g̃2–q(h)
,

together with (2.3), these imply that we can choose ε > 0 small enough (ε < ε) such that
for every h ∈ W and ‖h‖ < ε

(p – 1 + q)
∥
∥̃g(h)(u + h)

∥
∥p

μ
– (q + γ )λ

∫

Ω

g(x)
∣
∣̃g(h)(u + h)

∣
∣γ +1 dx > 0,

that is,

g̃(h)(u + h) ∈M+, ∀h ∈ W ,‖h‖ < ε.

This completes the proof of Lemma 2.3. �
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3 Proof of Theorem 1.1
For every u ∈M, by (1.13), we have

Iλ,μ(u) =
1
p
‖u‖p

μ –
1

1 – q

∫

Ω

f (x)|u|1–q dx –
λ

γ + 1

∫

Ω

g(x)|u|γ +1 dx

=
1
p
‖u‖p

μ –
1

1 – q

∫

Ω

f (x)|u|1–q dx –
1

γ + 1

[

‖u‖p
μ –

∫

Ω

f (x)u1–q dx
]

=
(

1
p

–
1

γ + 1

)

‖u‖p
μ –

(
1

1 – q
–

1
γ + 1

)∫

Ω

f (x)u1–q dx

≥
(

1
p

–
1

γ + 1

)

‖u‖p
μ –

(
1

1 – q
–

1
γ + 1

)

‖f ‖∞
|Ω|

p∗–1+q
p∗

( p
√

Sμ)1–q
‖u‖1–q

μ

:= K
(‖u‖μ

)
. (3.1)

Let

K′(‖u‖μ

)
=

(

1 –
p

γ + 1

)

‖u‖p–1
μ –

(

1 –
1 – q
γ + 1

)

‖f ‖∞
|Ω|

p∗–1+q
p∗

( p
√

Sμ)1–q
‖u‖–q

μ = 0.

We have

‖u‖μ :=
(‖u‖μ

)

min =
[ (1 – 1–q

γ +1 )‖f ‖∞ |Ω|
p∗–1+q

p∗
( p√Sμ)1–q

1 – p
γ +1

] 1
p+q–1

.

Since K′′(‖u‖μ) > 0 for all ‖u‖μ > 0 with K(‖u‖μ) → 0 as ‖u‖μ → 0 and K(‖u‖μ) → ∞ as
‖u‖μ → ∞. Therefore K(u) attains its minimum at (‖u‖μ)min, and

K
((‖u‖μ

)

min

)
=

(
1
p

–
1

γ + 1

)[ (1 – 1–q
γ +1 )‖f ‖∞ |Ω|

p∗–1+q
p∗

( p√Sμ)1–q

1 – p
γ +1

] p
p+q–1

–
(

1
1 – q

–
1

γ + 1

)

‖f ‖∞
|Ω|

p∗–1+q
p∗

( p
√

Sμ)1–q

[ (1 – 1–q
γ +1 )‖f ‖∞ |Ω|

p∗–1+q
p∗

( p√Sμ)1–q

1 – p
γ +1

] 1–q
p+q–1

.

By (3.1), we deduce that

lim‖u‖μ→∞ Iλ,μ(u) ≥ lim‖u‖μ→∞K
(‖u‖μ

)
= ∞,

namely, Iλ,μ(u) is coercive on M. Combining with (3.1), we have

Iλ,μ(u) ≥K(u) ≥K
((‖u‖μ

)

min

)
. (3.2)

Thus Iλ,μ(u) is bounded below on M. According to Lemma 2.3, if λ ∈ (0, Tμ), then
M+ ∪M0 and M– are two closed sets in M. Therefore, we apply the Ekeland variational
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principle [2] to derive a minimizing sequence {un} ⊂M+ ∪M0 satisfying:

(i) Iλ,μ(un) < inf
M+∪M0

Iλ,μ(u) +
1
n

;

(ii) Iλ,μ(u) ≥ Iλ,μ(un) –
1
n

‖u – un‖, ∀u ∈M+ ∪M0.

Assume that un ≥ 0 on Ω \ {0}. Note that Iλ,μ(u) is bounded below on M. By (3.2), we
get

K
((‖un‖μ

)

min

) ≤ Iλ,μ(un) < inf
M+∪M0

Iλ,μ(u) +
1
n

≤ C1, (3.3)

for n large enough and a positive constant C1. Hence {un} is bounded in M. Let us, for a
subsequence, suppose that

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u0 in W ,

un(x) → u0(x) a.e. in Ω ,

un → u0 in L1–q(Ω) and Lγ +1(Ω).

For every u ∈M+, we deduce from p > 1 that

Iλ,μ(u) =
1
p
‖u‖p

μ –
1

1 – q

∫

Ω

f (x)|u|1–q dx –
λ

γ + 1

∫

Ω

g(x)|u|γ +1 dx

=
1
p
‖u‖p

μ –
1

1 – q

[

‖u‖p
μ – λ

∫

Ω

g(x)|u|γ +1 dx
]

–
λ

γ + 1

∫

Ω

g(x)|u|γ +1 dx

=
(

1
p

–
1

1 – q

)

‖u‖p
μ +

(
1

1 – q
–

1
γ + 1

)

λ

∫

Ω

g(x)|u|γ +1 dx

<
(

1
p

–
1

1 – q

)

‖u‖p
μ +

(
1

1 – q
–

1
γ + 1

)
p + q – 1

γ + q
‖u‖p

μ

=
p + q – 1

γ + q

(
1

γ + 1
–

1
p

)

‖u‖p
μ < 0,

which implies that infM+ Iλ,μ(u) < 0. For λ ∈ (0, Tμ), it follows from Lemma 2.1 that M0 =
{0}. Thus un ∈M+ for n large enough and infM+∪M0 Iλ,μ(u) = infM+ Iλ,μ(u) < 0. Therefore

Iλ,μ(u0) ≤ lim inf
n→∞ Iλ,μ(un) = inf

M+∪M0
Iλ,μ < 0,

i.e., u0 ≥ 0 and u0 �= 0.
In the following, we prove that, when λ ∈ (0, Tμ),

(p + q – 1)
∫

Ω

f (x)u1–q
0 dx > λ(γ – q + 1)

∫

Ω

g(x)uγ +1
0 dx. (3.4)

For {un} ⊂M+, we have

(p + q – 1)
∫

Ω

f (x)u1–q
0 dx – λ(γ – p + 1)

∫

Ω

g(x)uγ +1
0 dx
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= lim
n→∞

[

(p + q – 1)
∫

Ω

f (x)u1–q
n dx – λ(γ – p + 1)

∫

Ω

g(x)uγ +1
n dx

]

= lim
n→∞

{

(p + q – 1)
[

‖un‖p
μ – λ

∫

Ω

g(x)uγ +1
n dx

]

– λ(γ – p + 1)
∫

Ω

g(x)uγ +1
n dx

}

= lim
n→∞

[

(p + q – 1)‖un‖p
μ – λ(γ + q)

∫

Ω

g(x)uγ +1
n dx

]

≥ 0.

We suppose that

(p + q – 1)
∫

Ω

f (x)u1–q
0 dx – λ(γ – p + 1)

∫

Ω

g(x)uγ +1
0 dx = 0. (3.5)

It follows from un ∈M, the weak lower semi-continuity of the norm and (3.5) that

0 = lim
n→∞

[

‖un‖p
μ –

∫

Ω

f (x)u1–q
n dx – λ

∫

Ω

g(x)uγ +1
n dx

]

≥ ‖u0‖p
μ –

∫

Ω

f (x)u1–q
0 dx – λ

∫

Ω

g(x)uγ +1
0 dx

=

⎧
⎨

⎩

‖u0‖p
μ – λ

γ +q
p+q–1

∫

Ω
g(x)uγ +1

0 dx,

‖u0‖p
μ – λ

γ +q
γ –p+1

∫

Ω
f (x)u1–q

0 dx.

Hence, for every λ ∈ (0, Tμ) and u0 �= 0, combining with (2.2), we obtain

0 < A(μ,λ)‖u0‖γ +1
μ

≤
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p (‖u0‖p

μ)
–γ –q
1–q–p

(
∫

Ω
f (x)|u0|1–q dx)

p–γ –1
1–q–p

– λ

∫

Ω

g(x)|u0|γ +1 dx

≤
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p (‖u0‖p

μ)
–γ –q
1–q–p

( γ –p+1
q+γ

‖u0‖p
μ)

p–γ –1
1–q–p

–
p + q – 1

γ + q
‖u0‖p

μ = 0,

which is a contradiction. In view of (3.4), we get

(p + q – 1)
∫

Ω

f (x)u1–q
n dx – λ(γ – p + 1)

∫

Ω

g(x)uγ +1
n dx ≥ C2 (3.6)

for n large enough and some positive constant C2. Since un ∈M, we have

(p + q – 1)‖un‖p
μ – λ(γ + q)

∫

Ω

g(x)uγ +1
n dx ≥ C2 > 0. (3.7)

Set φ ∈Mwith φ ≥ 0. Using Lemma 2.4, there exists g̃n(t) such that g̃n(0) = 1 and g̃n(t)(un +
tφ) ∈M+. Thus

‖un‖p
μ –

∫

Ω

f (x)u1–q
n dx – λ

∫

Ω

g(x)uγ +1
n dx = 0

and

g̃p
n(t)‖un + tφ‖p

μ – g̃1–q
n (t)

∫

Ω

f (x)(un + tφ)1–q dx – λ̃gγ +1
n (t)

∫

Ω

g(x)(un + tφ)γ +1 dx = 0.
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Therefore

0 =
[
g̃p

n (t) – 1
]‖un + tφ‖p

μ +
(‖un + tφ‖p

μ – ‖un‖p
μ

)

–
[
g̃1–q

n (t) – 1
]
∫

Ω

f (x)(un + tφ)1–q dx

–
∫

Ω

f (x)
[
(un + tφ)1–q – u1–q

n
]

dx – λ
[
g̃γ +1

n (t) – 1
]
∫

Ω

g(x)(un + tφ)γ +1 dx

– λ

∫

Ω

g(x)
[
(un + tφ)γ +1 – uγ +1

n
]

dx

≤ [
g̃p

n (t) – 1
]‖un + tφ‖p

μ +
(‖un + tφ‖p

μ – ‖un‖p
μ

)

–
[
g̃1–q

n (t) – 1
]
∫

Ω

f (x)(un + tφ)1–q dx

– λ
[
g̃γ +1

n (t) – 1
]
∫

Ω

g(x)(un + tφ)γ +1 dx – λ

∫

Ω

g(x)
[
(un + tφ)γ +1 – uγ +1

n
]

dx.

Dividing by t > 0 and letting t → 0, we have

0 ≤ p̃g ′
n(0)‖un‖p

μ + p
∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx

– (1 – q)̃g ′
n(0)

∫

Ω

f (x)u1–q
n dx

– λ(γ + 1)̃g ′
n(0)

∫

Ω

g(x)uγ +1
n dx – λ(γ + 1)

∫

Ω

g(x)uγ
n φ dx

= g̃ ′
n(0)

[

p‖un‖p
μ – (1 – q)

∫

Ω

g(x)uγ +1
n dx

]

+ p
∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx

– λ(γ + 1)
∫

Ω

g(x)uγ
n φ dx

= g̃ ′
n(0)

[

(p + q – 1)‖un‖p
μ – λ(γ + q)

∫

Ω

g(x)uγ +1
n dx

]

+ p
∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx – λ(γ + 1)
∫

Ω

g(x)uγ
n φ dx, (3.8)

where g̃ ′
n(0) denotes the right derivative of g̃n(t) at zero. If it does not exist, g̃ ′

n(0) should
be replaced by limk→∞ g̃n(tk )–̃gn(0)

tk
for some sequence {tk}∞k=1 with limk→∞ tk = 0 and tk > 0.

Combining with (3.7) and (3.8), we have g̃ ′
n(0) �= –∞. Now we prove that g̃ ′

n(0) �= +∞.
Otherwise, we suppose that g̃ ′

n(0) = +∞. Note that g̃n(t) > g̃n(0) = 1 for n large enough, and

∣
∣̃gn(t) – 1

∣
∣ · ‖un‖ + t̃gn(t)‖φ‖ ≥ ∥

∥
[
g̃n(t) – 1

]
un + t̃gn(t)φ

∥
∥

=
∥
∥̃gn(t)(un + tφ) – un

∥
∥. (3.9)

Using condition (ii) with u = g̃n(t)(un + tφ) ∈M+, we deduce that

[
g̃n(t) – 1

] · ‖un‖
n

+ t̃gn(t)
‖φ‖

n
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≥ 1
n

∥
∥̃gn(t)(un + tφ) – un

∥
∥

≥ Iλ,μ(un) – Iλ,μ
(
g̃n(t)(un + tφ)

)

=
1
p
‖un‖p

μ –
1

1 – q

∫

Ω

f (x)|un|1–q dx –
λ

γ + 1

∫

Ω

g(x)|un|γ +1 dx –
1
p

g̃p
n(t)‖un + tφ‖p

μ

+
1

1 – q

∫

Ω

f (x)
∣
∣̃gn(un + tφ)

∣
∣1–q dx +

λ

γ + 1

∫

Ω

g(x)
∣
∣̃gn(un + tφ)

∣
∣γ +1 dx

=
1
p
‖un‖p

μ –
1

1 – q

[

‖un‖p
μ – λ

∫

Ω

g(x)|un|γ +1 dx
]

–
λ

γ + 1

∫

Ω

g(x)|un|γ +1 dx

–
1
p

g̃p
n (t)‖un + tφ‖p

μ +
1

1 – q

[

g̃p
n(t)‖un + tφ‖p

μ – λ

∫

Ω

g(x)|un + tφ|γ +1 dx
]

+
λ

γ + 1
g̃γ +1

n (t)
∫

Ω

g(x)|un + tφ|γ +1 dx

=
(

1
p

–
1

1 – q

)

‖un‖p
μ +

(
1

1 – q
–

1
γ + 1

)

λ

∫

Ω

g(x)|un|γ +1 dx

+
(

1
1 – q

–
1
p

)

g̃p
n(t)‖un + tφ‖p

μ

–
(

1
1 – q

–
1

γ + 1

)

λ̃gγ +1
n (t)

∫

Ω

g(x)|un + tφ|γ +1 dx

=
(

1
1 – q

–
1
p

)
(‖un + tφ‖p

μ – ‖un‖p
μ

)
+

(
1

1 – q
–

1
p

)
[
g̃p

n(t) – 1
]‖un + tφ‖p

μ

–
(

1
1 – q

–
1

γ + 1

)

λ̃gγ +1
n (t)

∫

Ω

g(x)
[
(un + tφ)γ +1 – uγ +1

n
]

dx

–
(

1
1 – q

–
1

γ + 1

)

λ
[
g̃γ +1

n (t) – 1
]
∫

Ω

g(x)uγ +1
n dx.

Dividing by t > 0 and letting t → 0, we obtain

g̃ ′
n(0) · ‖un‖

n
+

‖φ‖
n

≥
(

1
1 – q

–
1
p

)

· p
∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx

+
(

1
1 – q

–
1
p

)

· p̃g ′
n(0)‖un‖p

μ

– λ

(
1

1 – q
–

1
γ + 1

)

(γ + 1)
∫

Ω

g(x)uγ
n φ dx

– λ

(
1

1 – q
–

1
γ + 1

)

(γ + 1)̃g ′
n(0)

∫

Ω

g(x)uγ +1
n dx

=
p – 1 + q

1 – q

∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx +
p – 1 + q

1 – q
g̃ ′

n(0)‖un‖p
μ

– λ
γ + q
1 – q

∫

Ω

g(x)uγ
n φ dx – λ

γ + q
1 – q

g̃ ′
n(0)

∫

Ω

g(x)uγ +1
n dx

=
g̃ ′

n(0)
1 – q

[

(p – 1 + q)‖un‖p
μ – λ(γ + q)

∫

Ω

g(x)uγ +1
n dx

]

+
p – 1 + q

1 – q

∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx – λ
γ + q
1 – q

∫

Ω

g(x)uγ
n φ dx,
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that is,

‖φ‖
n

≥ g̃ ′
n(0)

1 – q

[

(p – 1 + q)‖un‖p
μ – λ(γ + q)

∫

Ω

g(x)uγ +1
n dx –

(1 – q)‖un‖
n

]

+
p – 1 + q

1 – q

∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx

– λ
γ + q
1 – q

∫

Ω

g(x)uγ
n φ dx, (3.10)

which is not true since g̃ ′
n(0) = +∞ and

(p – 1 + q)‖un‖p
μ – λ(γ + q)

∫

Ω

g(x)uγ +1
n dx –

(1 – q)‖un‖
n

≥ C2 –
(1 – q)C3

n
> 0.

It follows from (3.7), (3.8) and (3.10) that

∣
∣̃g ′

n(0)
∣
∣ ≤ C4

for n sufficiently large and a suitable positive constant C4.
In the following, we prove that u0 ∈ M+ is a solution of problem (1.1). By (3.9) and

condition (ii) again, we have

1
n

[∣
∣̃gn(t) – 1

∣
∣ · ‖un‖ + t̃gn(t)‖φ‖]

≥ 1
n

∥
∥̃gn(t)(un + tφ) – un

∥
∥

≥ Iλ,μ(un) – Iλ,μ
(
g̃n(t)(un + tφ)

)

=
1
p
‖un‖p

μ –
1

1 – q

∫

Ω

f (x)|un|1–q dx –
λ

γ + 1

∫

Ω

g(x)|un|γ +1 dx –
1
p

g̃p
n(t)‖un + tφ‖p

μ

+
1

1 – q

∫

Ω

f (x)
∣
∣̃gn(un + tφ)

∣
∣1–q dx +

λ

γ + 1

∫

Ω

g(x)
∣
∣̃gn(un + tφ)

∣
∣γ +1 dx

= –
g̃p

n (t) – 1
p

‖un‖p
μ –

g̃p
n(t)
p

(‖un + tφ‖p
μ – ‖un‖p

μ

)

+
g̃1–q

n (t) – 1
1 – q

∫

Ω

f (x)(un + tφ)1–q dx

+
1

1 – q

∫

Ω

f (x)
[
(un + tφ)1–q – u1–q

n
]

dx +
λ(̃gγ +1

n (t) – 1)
γ + 1

∫

Ω

g(x)(un + tφ)γ +1 dx

+
λ

γ + 1

∫

Ω

g(x)
[
(un + tφ)γ +1 – uγ +1

n
]

dx.

Dividing by t > 0 and letting t → 0+, we derive that

1
n

[∣
∣̃g ′

n(0)
∣
∣ · ‖un‖ + ‖φ‖]

≥ –̃g ′
n(0)‖un‖p

μ –
∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx + g̃ ′
n(0)

∫

Ω

f (x)u1–q
n dx

+ λ̃g ′
n(0)

∫

Ω

g(x)uγ +1
n dx + λ

∫

Ω

g(x)uγ
n φ dx
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+ lim inf
t→0+

1
1 – q

∫

Ω

f (x)[(un + tφ)1–q – u1–q
n ]

t
dx

= –̃g ′
n(0)

[

‖un‖p
μ –

∫

Ω

f (x)u1–q
n dx – λ

∫

Ω

g(x)uγ +1
n dx

]

–
∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx + λ

∫

Ω

g(x)uγ
n φ dx

+ lim inf
t→0+

1
1 – q

∫

Ω

f (x)[(un + tφ)1–q – u1–q
n ]

t
dx.

Noting f (x)[(un + tφ)1–q – u1–q
n ] ≥ 0, for every x ∈ Ω and t > 0, together with the Fatou

lemma, we find that

lim inf
t→0+

[
f (x)[(un + tφ)1–q – u1–q

n ]
t

]

is integrable, and

∫

Ω

f (x)u–q
n φ dx

≤ lim inf
t→0+

1
1 – q

∫

Ω

f (x)[(un + tφ)1–q – u1–q
n ]

t
dx

≤ |̃g ′
n(0)|‖un‖ + ‖φ‖

n
+

∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx

– λ

∫

Ω

g(x)uγ
n φ dx

≤ C3C4 + ‖φ‖
n

+
∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx – λ

∫

Ω

g(x)uγ
n φ dx.

Applying the Fatou lemma again, we have

∫

Ω

f (x)u–q
0 φ dx

=
∫

Ω

[
lim inf

n→∞ f (x)u–q
n φ

]
dx ≤ lim inf

n→∞

∫

Ω

f (x)u–q
n φ dx

≤ lim inf
n→∞

[
C3C4 + ‖φ‖

n
+

∫

Ω

(

|�un|p–2�un�φ – μ
|un|p–2unφ

|x|2p

)

dx

– λ

∫

Ω

g(x)uγ
n φ dx

]

=
∫

Ω

(

|�u0|p–2�u0�φ – μ
|u0|p–2u0φ

|x|2p

)

dx – λ

∫

Ω

g(x)uγ
0 φ dx.

Since
∫

Ω
u–q

0 ϕ1 dx < ∞, we have u0 > 0 a.e. in Ω . For every φ ∈M and φ ≥ 0, we have

∫

Ω

(

|�u0|p–2�u0�φ – μ
|u0|p–2u0φ

|x|2p

)

dx –
∫

Ω

f (x)u–q
0 φ dx

– λ

∫

Ω

g(x)uγ
0 φ dx ≥ 0. (3.11)
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Set φ = u0 in (3.11), we derive that

‖u0‖p
μ =

∫

Ω

(

|�u0|p – μ
|u0|p
|x|2p

)

dx ≥
∫

Ω

f (x)u1–q
0 dx + λ

∫

Ω

g(x)uγ +1
0 dx.

Furthermore

‖u0‖p
μ ≤ lim inf

n→∞ ‖un‖p
μ ≤ lim sup

n→∞
‖un‖p

μ

= lim sup
n→∞

[∫

Ω

f (x)u1–q
n dx + λ

∫

Ω

g(x)uγ +1
n dx

]

=
∫

Ω

f (x)u1–q
0 dx + λ

∫

Ω

g(x)uγ +1
0 dx. (3.12)

Hence

‖u0‖p
μ =

∫

Ω

f (x)u1–q
0 dx + λ

∫

Ω

g(x)uγ +1
0 dx. (3.13)

Therefore un → u0 in M and u0 ∈M. By (3.4), we have

(p + q – 1)‖u0‖p
μ – λ(γ + q)

∫

Ω

g(x)uγ +1
0 dx

= (p + q – 1)
[∫

Ω

f (x)u1–q
0 dx + λ

∫

Ω

g(x)uγ +1
0 dx

]

– λ(γ + q)
∫

Ω

g(x)uγ +1
0 dx

= (p + q – 1)
∫

Ω

f (x)u1–q
0 dx – λ(γ – 1)

∫

Ω

g(x)uγ +1
0 dx > 0,

i.e., u0 ∈M+.
Next, we only need to show that u0 is a positive weak solution of problem (1.1). Define

Φ = (u0 + εφ)+, φ ∈ W , ε > 0.

Substituting Φ into (3.11), combining with (3.12), we deduce that

0 ≤
∫

Ω

[

|�u0|p–2�u0�Φ – μ
|u0|p–2u0Φ

|x|2p – f (x)u–q
0 Φ – λg(x)uγ

0 Φ

]

dx

=
∫

Ω1

[

|�u0|p–2�u0�Φ – μ
|u0|p–2u0Φ

|x|2p – f (x)u–q
0 Φ – λg(x)uγ

0 Φ

]

dx

+
∫

Ω2

[

|�u0|p–2�u0�Φ – μ
|u0|p–2u0Φ

|x|2p – f (x)u–q
0 Φ – λg(x)uγ

0 Φ

]

dx

=
∫

Ω

[

|�u0|p–2�u0�(u0 + εφ) – μ
|u0|p–2u0(u0 + εφ)

|x|2p – f (x)u–q
0 (u0 + εφ)

– λg(x)uγ
0 (u0 + εφ)

]

dx

–
∫

Ω2

[

|�u0|p–2�u0�(u0 + εφ) – μ
|u0|p–2u0(u0 + εφ)

|x|2p – f (x)u–q
0 (u0 + εφ)

– λg(x)uγ
0 (u0 + εφ)

]

dx
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=
∫

Ω

[

|�u0|p – μ
|u0|p
|x|2p – f (x)u1–q

0 – λg(x)uγ +1
0

]

dx

+ ε

∫

Ω

[

|�u0|p–2�u0�φ – μ
|u0|p–2u0φ

|x|2p – f (x)u–q
0 φ – λg(x)uγ

0 φ

]

dx

–
∫

Ω2

[

|�u0|p + ε|�u0|p–2�u0�φ – μ
|u0|p–2u0(u0 + εφ)

|x|2p

]

dx

–
∫

Ω2

[
–f (x)u–q

0 (u0 + εφ) – λg(x)uγ +1
0 – ελg(x)uγ

0 φ
]

dx

≤ ε

∫

Ω

[

|�u0|p–2�u0�φ – μ
|u0|p–2u0φ

|x|2p – f (x)u–q
0 φ – λg(x)uγ

0 φ

]

dx

– ε

∫

Ω2

|�u0|p–2�u0�φ dx + λ‖g‖∞
∫

Ω2

|εφ|γ +1 dx + ελ

∫

Ω2

g(x)uγ
0 φ dx

= ε

∫

Ω

[

|�u0|p–2�u0�φ – μ
|u0|p–2u0φ

|x|2p – f (x)u–q
0 φ – λg(x)uγ

0 φ

]

dx

– ε

∫

Ω2

|�u0|p–2�u0�φ dx + ελεγ ‖g‖∞
∫

Ω2

|φ|γ +1 dx + ελ

∫

Ω2

g(x)uγ
0 φ dx,

where Ω1 = {x|u0(x) + εφ(x) > 0, x ∈ Ω} and Ω2 = {x|u0(x) + εφ(x) ≤ 0, x ∈ Ω}. Since the
measure of Ω2 tends to zero as ε → 0, we have

∫

Ω2
|�u0|p–2�u0�φ dx → 0 as ε → 0. By

the same arguments, we have λεγ ‖g‖∞
∫

Ω2
|φ|γ +1 dx −→ 0 and λ

∫

Ω2
g(x)uγ

0 φ dx −→ 0 as
ε → 0. Dividing by ε and taking the limit for ε → 0, we deduce that

∫

Ω

[

|�u0|p–2�u0�φ – μ
|u0|p–2u0φ

|x|2p – f (x)u–q
0 φ – λg(x)uγ

0 φ

]

dx ≥ 0.

Therefore u0 is a positive weak solution of problem (1.1).
We adopt the Ekeland variational principle again to derive a minimizing sequence Un ⊂

M– for the minimization problem infM– Iλ,μ such that for Un ∈ M, Un ⇀ U0 weakly in
M and pointwise a.e. in Ω . By similar arguments to those in (3.4) and (3.6), for λ ∈ (0, Tμ),
we have

(p + q – 1)
∫

Ω

f (x)|U0|1–q dx – λ(γ – p + 1)
∫

Ω

g(x)|U0|γ +1 dx < 0, (3.14)

which leads to

(p + q – 1)
∫

Ω

f (x)|Un|1–q dx – λ(γ – p + 1)
∫

Ω

g(x)|Un|γ +1 dx ≤ –C5,

for n large enough and a positive constant C5. Therefore U0 > 0 is the positive weak solu-
tion of problem (1.1). Furthermore U0 ∈M. By (3.14), we obtain

(p + q – 1)‖U0‖p
μ – (q + γ )λ

∫

Ω

g(x)Uγ +1
0 dx

= (p + q – 1)
[∫

Ω

f (x)U1–q
0 dx + λ

∫

Ω

g(x)Uγ +1
0 dx

]

– λ(γ + q)
∫

Ω

g(x)Uγ +1
0 dx

= (p + q – 1)
∫

Ω

f (x)U1–q
0 dx – λ(γ – p + 1)

∫

Ω

g(x)Uγ +1
0 dx < 0,
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i.e., U0 ∈M–. According to Lemma 2.2, we know that problem (1.1) has at least two posi-
tive weak solutions u0 ∈M+ and U0 ∈M– with ‖U0‖μ > ‖u0‖μ for every λ ∈ (0, Tμ). This
completes the proof of Theorem 1.1.

4 Proof of Corollary 1.2
For every U ∈M–, by Lemma 2.2, we deduce that

‖U‖μ > Mμ(λ)

=
[

p + q – 1
λ(γ + q)

1
‖g‖∞

( p
√

Sμ)γ +1

|Ω|
p∗–1–γ

p∗

] 1
γ +1–p

=
(

1
λ

) 1
γ +1–p

(
p + q – 1

γ + q

) 1
γ +1–p

(
1

‖g‖∞

) 1
γ +1–p ( p

√
Sμ)

γ +1
γ +1–p

|Ω|
p∗–1–γ

p∗(γ +1–p)

= (Tμ)– 1
γ +1–p

(
p + q – 1

γ + q

) 1
γ +1–p

(
1

‖g‖∞

) 1
γ +1–p ( p

√
Sμ)

γ +1
γ +1–p

|Ω|
p∗–1–γ

p∗(γ +1–p)

(
Tμ

λ

) 1
γ +1–p

.

Combining with the definition of Tμ, we have

‖U‖μ >
(

q + γ

q + p – 1

) 1
γ +1–p

(
q + γ

γ – p + 1

) 1
p+q–1 (‖f ‖∞

) 1
p+q–1

(‖g‖∞
)γ –p+1 |Ω| 2p

N
q+γ

p+q–1
1

γ +1–p

S
q+γ

p+q–1
1

γ +1–p
μ

×
(

p + q – 1
γ + q

) 1
γ +1–p

(
1

‖g‖∞

) 1
γ +1–p ( p

√
Sμ)

γ +1
γ +1–p

|Ω|
p∗–1–γ

p∗(γ +1–p)

(
Tμ

λ

) 1
γ +1–p

=
(

q + γ

γ – p + 1

) 1
p+q–1 (‖f ‖∞

) 1
p+q–1

( |Ω|
2p
N

q+γ
p+q–1

1
γ +1–p – p∗–1–γ

p∗(γ +1–p)

( p
√

Sμ)p· q+γ
p+q–1

1
γ +1–p – γ +1

γ +1–p

)(
Tμ

λ

) 1
γ +1–p

= |Ω| 1
p

(
q + γ

γ – p + 1

) 1
p+q–1 (‖f ‖∞

) 1
p+q–1

( |Ω| 2
N

p
√

Sμ

) 1–q
p+q–1

(
Tμ

λ

) 1
γ +1–p

= |Ω| 1
p
(‖f ‖∞

) 1
p+q–1

(

1 +
p + q – 1
γ – p + 1

) 1
p+q–1

( |Ω| 2
N

p
√

Sμ

) 1–q
p+q–1

(
Tμ

λ

) 1
γ +1–p

,

where we adopted the following facts:

2p
N

q + γ

p + q – 1
1

γ + 1 – p
–

p∗ – 1 – γ

p∗(γ + 1 – p)

=
p∗ – 1 + q

p∗(p + q – 1)
=

Np
N–2p + q – 1

Np
N–2p (p + q – 1)

=
N(p + q – 1) + 2p(1 – q)

Np(p + q – 1)
=

1
p

+
2
N

· 1 – q
p + q – 1

,

p · q + γ

p + q – 1
1

γ + 1 – p
–

γ + 1
γ + 1 – p

=
(1 – q)(γ + 1 – p)

(p + q – 1)(γ + 1 – p)
=

1 – q
p + q – 1

.
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Let Uλ,μ,ε ∈ M– be the solution of problem (1.1) with γ = ε + p – 1, where λ ∈ (0, Tμ).
Then

‖Uλ,μ,ε‖μ > Cμ,ε

(
Tμ

λ

) 1
ε

,

where Cμ,ε is given in (1.16). This completes the proof of Corollary 1.2.

5 Proof of Theorem 1.3
For simplicity, we consider problem (1.1) with f = g = 1,

⎧
⎪⎪⎨

⎪⎪⎩

�2
pu – μ

|u|p–2u
|x|2p = u–q + λuγ in Ω \ {0},

u(x) > 0 in Ω \ {0},
u = �u = 0 on ∂Ω .

(5.1)

Let us define

λ∗ = λ∗(N ,Ω ,μ, q,γ ) = sup
{
λ > 0 : problem (5.1) has a positive solution

}
.

Using Theorem 1.1, we provide uniform estimates for λ∗(N ,Ω ,μ, q,γ ).

Lemma 5.1 For 1 < p < N
2 , 0 < μ < μN ,p, 0 < q < 1 < γ < p∗ – 1 and Ω ∈U, where U = {Ω ∈

R
N : Ω is an open and bounded domain}, we have

0 < λ– ≤ λ∗ ≤ λ+ < ∞,

where

λ– =
(

q + p – 1
q + γ

)(
γ – p + 1

q + γ

) p–γ –1
1–q–p

[
Sμ

|Ω| 2p
N

] q+γ
p+q–1

and

λ+ = λ
γ +q

q–1+p
1

(
γ – p + 1

γ + q

) γ –p+1
q+p–1 –1 + p + q

γ + q
+

1
2

.

Proof (1) Assume that λ ∈ (0,λ–), then problem (5.1) has at least two solutions. By the
definition of λ∗, we have λ∗ ≥ λ– > 0.

(2) Assume that (5.1) has a positive solution u. Integrating over Ω by multiplying (5.1)
by ϕ1, we obtain

λ1

∫

Ω

|u|p–2uϕ1 dx =
∫

Ω

(

�2
pu – μ

|u|p–2u
|x|2p

)

ϕ1 dx =
∫

Ω

u–qϕ1 dx + λ

∫

Ω

uγ ϕ1 dx. (5.2)

We claim that there exists λ+ > 0 such that

t–q + λ+tγ > λ1tp–1, ∀t > 0. (5.3)
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In fact, letting

Fλ(t) = t–q + λtγ – λ1tp–1 = tγ
(
t–q–γ + λ – λ1t–γ +p–1) := tγ · Gλ(t), t > 0. (5.4)

We have

G′
λ(t) = (–γ – q)t–γ –q–1 + λ1(γ – p + 1)t–γ +p–2 = 0,

i.e.,

t := tmin =
(

γ + q
λ1(γ – p + 1)

) 1
q–1+p

.

Then Gλ(t) attains minimum at tmin, and

Gλ(tmin) = λ + λ
γ +q

q–1+p
1

(
γ – p + 1

γ + q

) γ –p+1
q+p–1 1 – p – q

γ + q
.

We may choose λ = λ
γ +q

q–1+p
1 ( γ –p+1

γ +q )
γ –p+1
q+p–1 –1+p+q

γ +q + 1
2 = λ+ > 0 such that

Gλ+ (t) ≥ Gλ+ (tmin) =
1
2

> 0, for t > 0.

Therefore

Fλ+ (t) = tγ · Gλ+ (t) > 0 for t > 0.

Using (5.3) with t = u, we have

∫

Ω

u–qϕ1 dx + λ+
∫

Ω

uγ ϕ1 dx ≥ λ1

∫

Ω

|u|p–2uϕ1 dx. (5.5)

Combining with (5.2) and (5.5), we obtain λ ≤ λ+. Since λ is arbitrary, we have λ∗ ≤
λ+ < ∞. �

Proof of Theorem 1.3 We only prove the case that 0 < λ < λ∗. By the definition of λ∗, there
exists λ ∈ (λ,λ∗) such that the problem

�2
pu – μ

|u|p–2u
|x|2p = u–q + λuγ

has a positive solution, denoted by uλ. It follows that

�2
puλ – μ

|uλ|p–2uλ

|x|2p = u–q
λ

+ λuγ

λ
≥ u–q

λ
+ λuγ

λ
.

Hence uλ is an upper solution of (5.1). Note that limt→0+ Gλ(t) = ∞, we can take ε > 0 small
enough with εϕ1 < uλ and Gλ(εϕ1) ≥ 0. Thus

Fλ(εϕ1) = (εϕ1)γ Gλ(εϕ1) ≥ 0, for all λ > 0,
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i.e.,

λ1(εϕ1)p–1 ≤ (εϕ1)–q + λ(εϕ1)γ , for all λ > 0. (5.6)

Combining with (1.10) and (5.6), we obtain

�2
p(εϕ1) – μ

|(εϕ1)|p–2(εϕ1)
|x|2p = εp–1

(

�2
pϕ1 – μ

|ϕ1|p–2ϕ1

|x|2p

)

= εp–1λ1|ϕ1|p–1 = λ1(εϕ1)p–1 ≤ (εϕ1)–q + λ(εϕ1)γ ,

namely, εϕ1 is a lower solution of (5.1). Note that �2
p – μ

|x|2p is monotone, then problem
(5.1) has a positive solution uλ with εϕ1 ≤ uλ ≤ uλ. �

6 Conclusions
In this paper, we study a class of p-biharmonic equations with Hardy potential and negative
exponents. We establish the dependence of the above problem on q, γ , f , g and Ω and
evaluate the extremal value of λ related to the multiplicity of positive solutions for this
problem.
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