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Abstract
Let Γ (x) denote the classical Euler gamma function. The logarithmic derivative
ψ (x) = [lnΓ (x)]′ = Γ ′(x)

Γ (x) , ψ
′(x), and ψ ′′(x) are, respectively, called the digamma,

trigamma, and tetragamma functions. In the paper, the authors survey some results
related to the function [ψ ′(x)]2 +ψ ′′(x), its q-analogs, its variants, its divided difference
forms, several ratios of gamma functions, and so on. These results include the origins,
positivity, inequalities, generalizations, completely monotonic degrees,
(logarithmically) complete monotonicity, necessary and sufficient conditions,
equivalences to inequalities for sums, applications, and the like. Finally, the authors list
several remarks and pose several open problems.
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1 Preliminaries
In order to proceed fluently and smoothly, we prepare some definitions, concepts, and
notation in this section.

1.1 Logarithmically completely monotonic functions
Recall from [55, Chapter XIII], [122, Chap. 1], and [127, Chapter IV] that an infinitely
differentiable function f (x) is said to be completely monotonic on an interval I ⊆ R if
0 ≤ (–1)n–1f (n–1)(x) < ∞ for x ∈ I and n ∈ N. A characterization of completely monotonic
functions is given by the Bernstein–Widder theorem [127, p. 160, Theorem 12a], which
states that a function f (x) on [0,∞) is completely monotonic if and only if there exists a
bounded and non-decreasing function α(t) such that the integral

f (x) =
∫ ∞

0
e–xt dα(t) (1.1)
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converges for x ∈ [0,∞). Equivalently speaking, a function f (x) is completely monotonic
on [0,∞) if and only if it is a Laplace transform of a bounded and non-decreasing measure
α(t). This is one of many reasons why mathematicians have been studying the class of
completely monotonic functions for so many years.

Recall from [122, Chap. 2] that if f : (0,∞) → [0,∞) can be written as

f (x) =
a
x

+ b +
∫ ∞

0

1
s + x

dμ(s), a, b ≥ 0,

where μ is a measure on (0,∞) such that
∫ ∞

0
1

1+s dμ(s) < ∞, then we call f a Stieltjes trans-
form.

Recall from [11, 85, 98] that a positive and infinitely differentiable function f (x) is said
to be logarithmically completely monotonic on I ⊆ R if its logarithm ln f (x) satisfies 0 ≤
(–1)k[ln f (x)](k) < ∞ for x ∈ I and k ∈N.

Definition 1.2 in [36] states that a function f : I → [0,∞) is called a Bernstein function
on I if f ′(t) is completely monotonic on I . This class of functions can be characterized by
[122, Theorem 3.2] which states that f : (0,∞) → [0,∞) is a Bernstein function if and only
if it admits the representation

f (x) = α + βx +
∫ ∞

0

(
1 – e–xt)dμ(t), (1.2)

where α,β ≥ 0 and μ is a positive measure satisfying
∫ ∞

0 min{1, t}dμ(t) < ∞.
Among the above classes of functions, there exist the following relations:
1. the set of all logarithmically completely monotonic functions on I is a strict subset of

all completely monotonic functions on I ; see [85, Theorem 1];
2. the set of all Stieltjes transforms is a strict subset of all logarithmically completely

monotonic functions on (0,∞); see [15, Theorem 1.2];
3. the reciprocal of a Bernstein function is logarithmically completely monotonic; see

[21, pp. 161–162, Theorem 3] and [122, p. 64, Proposition 5.25].
For more information on these relations, please refer to [15, 27, 85, 98, 100, 101, 108, 122]
and the closely related references therein. This is one of many reasons why mathematicians
have been studying the class of logarithmically completely monotonic functions for such
a long time.

Let f (x) be completely monotonic on (0,∞) and f (∞) = limx→∞ f (x). Recall from [32,
36, 47–51, 75, 94, 97, 102, 103, 116, 119, 120] that, if for some r ∈ R the function
xr[f (x) – f (∞)] is completely monotonic on (0,∞), but for any positive number ε > 0 the
function xr+ε[f (x)– f (∞)] is not, then the number r is called the completely monotonic de-
gree of f (x) with respect to x ∈ (0,∞); if xr[f (x) – f (∞)] is completely monotonic on (0,∞)
for all r ∈ R, then the completely monotonic degree of f (x) with respect to x ∈ (0,∞) is
said to be ∞. For convenience, the notation degx

cm[f (x)] was designed in [32] to denote
the completely monotonic degree r of f (x) with respect to x ∈ (0,∞). This notion can
help to measure completely monotonic functions more accurately and precisely. Theo-
rem 1.1 in [49], Theorem 1.3 in [50], and Proposition 1.2 in [102] can be modified as that
degx

cm[f (x)] = α > 0 if and only if

f (x) – f (∞) =
∫ ∞

0
e–xtIα(m)(t) dt, (1.3)
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where

Iα(m)(t) =
1

Γ (α)

∫ t

0
(t – s)α–1 dm(s)

is called the Riemann–Liouville fractional integral of order α for a bounded and non-
decreasing Borel measure m on [0,∞). For information on the Riemann–Liouville frac-
tional integrals, please refer to [114, 126] and the closely related references therein.

1.2 The gamma and polygamma functions and their q-analogs
The classical Euler gamma function Γ (z) can be defined by an improper integral

Γ (z) =
∫ ∞

0
tz–1e–t dt, 	(z) > 0,

or by the limit

Γ (z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z 
= 0, –1, –2, . . . .

For more information, please refer to [10, Chap. 1] and [66, 71, 90, 92]. The logarithmic
derivative of Γ (z), denoted by ψ(z) = Γ ′(z)

Γ (z) , is called the digamma function. The deriva-
tives ψ ′(z) and ψ ′′(z) are called the trigamma and tetragamma functions, respectively. As
a whole, the functions ψ (i)(z) for i ≥ 0 are called polygamma functions.

The q-analog Γq(z) of the gamma function Γ (z) can be defined for 	(z) > 0 by

Γq(z) =

⎧⎨
⎩

(1 – q)1–z ∏∞
i=0

1–qi+1

1–qi+z , 0 < q < 1;

(q – 1)1–zq(z
2)

∏∞
i=0

1–q–(i+1)

1–q–(i+z) , q > 1.

The q-digamma function ψq(z), the q-analog of the digamma function ψ(z), can be defined
by

ψq(z) =
Γ ′

q(z)
Γq(z)

=

⎧⎨
⎩

– ln(1 – q) + ln q
∑∞

k=0
qk+z

1–qk+z , 0 < q < 1;

– ln(q – 1) + ln q(z – 1
2 –

∑∞
k=0

1
qk+z–1 ), q > 1.

These functions satisfy the relations

Γq(z) = q(z–1
2 )Γ1/q(z), lim

q→1± Γq(z) = Γ (z), lim
q→1± ψq(z) = ψ(z).

The proofs of the above two limits can be found in [9, Appendix A], [10, pp. 493–496],
and [46, Appendix B]. The functions ψ

(k)
q (z), the q-analogs of the polygamma functions

ψ (k)(z), for k ≥ 0, are called the q-polygamma functions.
Equation (1.11) in [42] and its corrected version [43] read

ψq(x) = – ln(1 – q) –
∫ ∞

0

e–xt

1 – e–t dγq(t), 0 < q < 1, x > 0, (1.4)
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where

γq(t) =

⎧⎨
⎩

– ln q
∑∞

k=1 δ(t + k ln q), 0 < q < 1,

t, q = 1,

and δ(t) represents the Dirac delta function, that is, dγq(t) is a discrete measure with pos-
itive masses | ln q| at the positive points k| ln q| for k ∈N. Accordingly, we obtain

∫ ∞

0
e–xt dγq(t) = –

qx ln q
1 – qx and

∫ ∞

0
te–xt dγq(t) =

qx(ln q)2

(1 – qx)2

for 0 < q < 1 and x > 0. Differentiating (1.4) with respect to x yields

ψ (k)
q (x) = (–1)k+1

∫ ∞

0

tke–xt

1 – e–t dγq(t), 0 < q < 1, k ∈N.

In [26, p. 1245, Theorem 4.4, (4.15)], [67, Lemma 2.3 and Remark 2.1], [64, Theorem 7.2,
(7.5)], and [106, p. 152, Theorem 4.22, (4.20)], the identity

ψ (k–1)
q (x) – ψ (k–1)

q (x + 1) = (ln q)
dk–1

dxk–1

(
qx

1 – qx

)
, 0 < q < 1

was presented for x ∈ (0,∞) and k ∈ N. One can also find this knowledge in [25, 41, 42,
56, 64, 67, 73, 105] and the closely related references therein.

1.3 Divided differences
The divided difference f [x1, x2, . . . , xn] of a function f (x) on n points x1, x2, . . . , xn is defined
by f [x1] ≡ f (x1) and

f [x1, x2, . . . , xn] =
f [x1, . . . , xn–1] – f [x2, . . . , xn]

x1 – xn

for n ≥ 2. In particular, for n = 2,

f [x1, x2] =
f (x1) – f (x2)

x1 – x2
=

1
x1 – x2

∫ x2

x1

f ′(t) dt, (1.5)

if f is differentiable. See [1, p. 877, 2.5.14] and [59, p. 23]. On taking f (x) = ψ (i)(x) in (1.5),
the divided differences of the polygamma functions are

ψ (i)[x1, x2] =
ψ (i)(x1) – ψ (i)(x2)

x1 – x2
=

1
x1 – x2

∫ x2

x1

ψ (i+1)(u) du

for x1, x2 ∈ (0,∞). By the way, we note that

A(a, b; f ) =
1

b – a

∫ b

a
f (t) dt

is called the arithmetic mean of the function f on the interval [a, b]; see [18, p. 368] and
[117].
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2 Three origins
The topic we are about to discuss in this paper have three main origins, as discussed now.

2.1 The first origin
Let s, t ∈R and define

zs,t(x) = Ws,t(x) – x =

⎧⎨
⎩

[ Γ (x+s)
Γ (x+t) ]1/(s–t) – x, s 
= t,

eψ(x+s) – x, s = t,
(2.1)

for x ∈ (– min{s, t},∞). The monotonicity and convexity of zs,t(x) have been studied for a
long time. An easy computation yields

z′′
s,t(x)

zs,t(x) + x
=

[
ψ(x + t) – ψ(x + s)

t – s

]2

+
ψ ′(x + t) – ψ ′(x + s)

t – s
� 	s,t(x) (2.2)

for s 
= t and t – s 
= ±1. In [23, pp. 243–245], by using the representation

ψ(x + 1) = –γ +
∞∑

k=1

(
1
k

–
1

x + k

)

and the elementary algebraic inequality

1
ab

+
1

cd
>

1
ac

+
1

bd

for a ≤ b < c ≤ d, the positivity for 0 < |t – s| < 1 and negativeness for |t – s| > 1 of the
function 	s,t(x) were proved. Consequently, it was proved in [23, Theorem 1] that the
function zs,t(x) is

1. convex and decreasing for |t – s| < 1, or
2. concave and increasing for |t – s| > 1.

Hereafter, several alternative proofs for [23, Theorem 1] were supplied in [19, 30, 31, 88,
99]. The differences among [19, 23, 30, 31, 88, 99] are the manners of and the approaches
to coping with the positivity or negativity of the function 	s,t(x). For more information,
please refer to the expository articles [64, 69, 106, 107] and the references therein.

We note that, since

ln Ws,t(x) =
lnΓ (x + s) – lnΓ (x + t)

s – t
=

1
s – t

∫ s

t
ψ(x + u) du,

the function 1
Ws,t (x) is logarithmically completely monotonic on (– min{s, t},∞).

We guess that the function Ws,t(x) is a Bernstein function on (– min{s, t},∞).

2.2 The second origin
In [3, p. 208, (4.39)], to show that the double inequality

(n – 1)! exp

[
α

x
– nψ(x)

]
<

∣∣ψ (n)(x)
∣∣ < (n – 1)! exp

[
β

x
– nψ(x)

]
(2.3)
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for x > 0 and n ∈N is valid if and only if α ≤ –n and β ≥ 0, a single-sided inequality,

	(x) �
[
ψ ′(x)

]2 + ψ ′′(x)

>
p(x)

900x4(x + 1)10 =
1

2x4 –
1
x3 +

34
15x2 –

14
3x

+
14

3(x + 1)

+
12

5(x + 1)2 +
17

15(x + 1)3 +
9

20(x + 1)4 +
1

10(x + 1)5

–
7

180(x + 1)6 –
1

30(x + 1)7 –
1

90(x + 1)8 +
1

900(x + 1)10 , x > 0, (2.4)

was established, where

p(x) = 75x10 + 900x9 + 4840x8 + 15,370x7 + 31,865x6 + 45,050x5

+ 44,101x4 + 29,700x3 + 13,290x2 + 3600x + 450.

By the way, by the same technique as in [3, p. 208, (4.39)], an upper bound

	(x) <
36 + 180x + 408x2 + 504x3 + 352x4 + 132x5 + 21x6

36x4(1 + x)6

=
1
x4 –

1
x3 +

7
3x2 –

5
x

+
5

x + 1
+

8
3(x + 1)2

+
4

3(x + 1)3 +
7

12(x + 1)4 +
1

6(x + 1)5 +
1

36(x + 1)6 , x > 0, (2.5)

was claimed in [72].
The double inequality (2.3) can be restated as follows: the double inequality

exp

[
α

x
– ψ(x)

]
< n

√
|ψ (n)(x)|
(n – 1)!

< exp

[
β

x
– ψ(x)

]

for x > 0 and n ∈N is valid if and only if α ≤ –1 and β ≥ 0.

2.3 The third origin
In [13, Lemma 1.1], a weaker inequality,

	(x) > 0, x > 0, (2.6)

than (2.4) was recovered. The sketch of the proof for (2.6) is as follows. By virtue of (3.2),
one can find

	(x) – 	(x + 1) =
2
x2

[
ψ ′(x) –

1
x

–
1

2x2

]
> 0, x > 0.

This implies the inequality (2.6). In fact, since (5.1), this also implies complete monotonic-
ity of 	(x) on (0,∞).

2.4 A connection between three origins
It is easy to observe that lims,t→0 	s,t(x) = 	(x). Conversely, it is also obvious that the func-
tion 	s,t(x) is a divided difference form of the function 	(x).
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3 Generalizations of the second and third origins
We now begin to collect some generalizations related to the second and third origins.

3.1 Some basic tools
One of the difficulties to generalize the above results is how to meaningfully compute
any high order derivatives of the term [ψ ′(x)]2. If differentiating this term directly and
consecutively, the derivatives would become more and more complicated and one cannot
read a very useful message from these derivatives.

To overcome the above-mentioned difficulty and to generalize the above three original
results, we will employ mathematical induction and the following basic, well-known, and
very effectual tools.

1. Let f (x) be defined on an infinite interval I whose right endpoint is ∞. If

lim
x→∞ f (x) = ε and f (x) – f (x + ε) > 0 (3.1)

for some given ε > 0, then f (x) > ε on I . See [13, Lemma 1.1], [30, Lemma 1], [28,
p. 223, Lemma 2.1], [29, p. 107, Lemma 4], [62, p. 526, Lemma 2.1], [88, p. 1981,
Lemma 2.5], [100, p. 2155, Lemma 1], [108, Lemma 2.1], [38, 89, 107] and closely
related references therein. This has been summarized in [76, Remark 1, Theorem 3]
which states that a function f (x) on an infinite interval I whose right endpoint is ∞ is
completely monotonic on I if and only if
(a) there exist positive numbers ε such that the differences

(–1)i[f (x) – f (x + ε)
](i) = (–1)i[f (i)(x) – f (i)(x + ε)

]

are nonnegative for all integers i ≥ 0 on I ;
(b) the limits

lim
x→∞

[
(–1)if (i)(x)

]
= (–1)i lim

x→∞ f (i)(x) = εi ≥ 0

exist for all integers i ≥ 0.
Since the gamma function Γ (x) and polygamma functions ψ (i)(x) for i ≥ 0 are of

the recurrent period 1, that is, the recurrence relations Γ (x + 1) = xΓ (x) and (3.2)
hold, when dealing with some problems related to the gamma and polygamma
functions Γ (x) and ψ (i)(x), one can select ε = 1 for possibly simplifying computation.

2. For x > 0, n ∈N, and r > 0, we have

ψ (n–1)(x + 1) = ψ (n–1)(x) +
(–1)n–1(n – 1)!

xn , (3.2)

ψ (n)(x) = (–1)n+1
∫ ∞

0

tn

1 – e–t e–xt dt, (3.3)

and

1
xr =

1
Γ (r)

∫ ∞

0
tr–1e–xt dt. (3.4)

See [1, pp. 255–260] or other monographs and handbooks for special functions.
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3. A product of finitely many completely monotonic functions on an interval I is also
completely monotonic on I . See [122, Corollary 1.6].

3.2 Complete monotonicity
In [40, Theorem 1], the function

f1(x) = 	(x) –
p(x)

900x4(x + 1)10 ,

which was constructed from the inequality (2.4), was proved to be completely monotonic
on (0,∞).

Sketch of the proof Making use of (3.2) yields

f1(x) – f1(x + 1) =
2
x2

[
ψ ′(x) –

Q21(x)
1800x2(1 + x)10(2 + x)10

]
� 2

x2 H1(x),

where Q21(x) is a polynomial of degree 21 with positive coefficients. Employing (3.3) and
(3.4), one can prove that H1(x) is a completely monotonic function on (0,∞). Hence, the
function f1(x) – f1(x + 1) is completely monotonic on (0,∞). As a result, it follows that

(–1)k[f1(x) – f1(x + 1)
](k) = (–1)kf (k)

1 (x) – (–1)kf (k)
1 (x + 1) ≥ 0

and, by (3.1), that

(–1)kf (k)
1 (x) ≥ (–1)kf (k)

1 (x + 1) ≥ (–1)kf (k)
1 (x + 2) ≥ · · ·

≥ (–1)kf (k)
1 (x + m) ≥ · · · ≥ lim

m→∞
[
(–1)kf (k)

1 (x + m)
]

= 0

for k ≥ 0 on (0,∞). The required result is thus proved. �

3.3 A double inequality and complete monotonicity
The double inequality constituted by (2.4) and (2.5) was simplified in [136, Theorem 1] as

1
x4 –

2
x3 +

37
12x2 –

25
6x

+
25

6(x + 1)
+

13
12(x + 1)2

=
x2 + 12

12x4(x + 1)2 < 	(x)

<
x + 12

12x4(x + 1)
=

1
x4 –

23
12x3 +

17
6x2 –

15
4x

+
15

4(x + 1)
+

11
12(x + 1)2

on (0,∞). More strongly, the functions

f2(x) = 	(x) –
x2 + 12

12x4(x + 1)2 and f3(x) =
x + 12

12x4(x + 1)
– 	(x), (3.5)

were proved in [136, Theorem 2] to be completely monotonic on (0,∞).
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Sketch of the proof By (3.2), we can obtain

f2(x) – f2(x + 1) =
2
x2

[
ψ ′(x) –

Q7(x)
6x2(1 + x)4(2 + x)2

]
� 2

x2 H2(x)

and

f3(x) – f3(x + 1) =
2
x2

[
Q6(x)

24x2(x + 1)4(x + 2)
– ψ ′(x)

]
� 2

x2 H3(x),

where Q6(x) and Q7(x) are, respectively, polynomials of degree 6 and 7 with positive co-
efficients. Utilizing (3.3) and (3.4), one can prove that the functions H2(x) and H3(x) are
completely monotonic on (0,∞). Finally, by (3.1), one can conclude that the functions f2(x)
and f3(x) are completely monotonic on (0,∞). �

3.4 Necessary and sufficient conditions
For λ ∈R, let

hλ(x) = 	(x) –
x2 + λx + 12
12x4(x + 1)2

on (0,∞). This is a generalization of the function f2(x) in (3.5). In [72, Theorem 1], it was
established that

1. the function hλ(x) is completely monotonic on (0,∞) if and only if λ ≤ 0;
2. the function –hλ(x) is completely monotonic on (0,∞) if and only if λ ≥ 4;
3. consequently, the double inequality

x2 + μx + 12
12x4(x + 1)2 < 	(x) <

x2 + νx + 12
12x4(x + 1)2

holds on (0,∞) if and only if μ ≤ 0 and ν ≥ 4.

Sketch of the proofs It is easy to see that hλ(x) = f2(x)–λg(x) and g(x) = 1
12x3(x+1)2 . Since f2(x)

and g(x) are completely monotonic functions on (0,∞), when λ ≤ 0, the function hλ(x) is
also completely monotonic on (0,∞). Utilizing (3.2) for n = 1 and n = 2 yields

hλ(x) = –
λ

12

[
1
x3 –

2
x2 +

3
x

–
4 + 3x

(1 + x)2

]
–

37
12x2 +

25
6x

–
63 + 50x

12(1 + x)2

+
2
x2 ψ ′(x + 1) +

[
ψ ′(x + 1)

]2 + ψ ′′(x + 1).

Therefore, if λ > 0 then limx→0+ hλ(x) = –∞. This implies that the function hλ(x) is com-
pletely monotonic on (0,∞) if and only if λ ≤ 0.

From (3.2), (3.3), and (3.4), we can arrive at

hλ(x) – hλ(x + 1) =
2
x2

[
ψ ′(x) –

λ(4 + 8x + 5x2)
24x(1 + x)3(2 + x)2 –

Q7(x)
6x2(1 + x)4(2 + x)2

]

=
1

24x2

∫ ∞

0

[
4P(t)
Q(t)

– λ

]
Q(t)e–(x+2)t dt,
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where

P(t) =
e2t(t3 – 12t2 + 54t – 86) – et(t3 – 12t2 + 16t – 160) – 26t – 74

et – 1
,

Q(t) = 2e2t – et(t2 – 6t + 18
)

+ 8(t + 2) > 0,

lim
t→0

P(t)
Q(t)

= 1, lim
t→∞

P(t)
Q(t)

= 0,

and P(x)
Q(x) is strictly decreasing on (0,∞). By the Bernstein–Widder theorem stated in (1.1),

it follows that
1. the difference hλ(x) – hλ(x + 1) is completely monotonic on (0,∞) if and only if λ ≤ 0;
2. the difference –[hλ(x) – hλ(x + 1)] is completely monotonic on (0,∞) if and only if

λ ≥ 4.
Finally, by (3.1), one can conclude necessary and sufficient conditions for the function
hλ(x) to be completely monotonic on (0,∞). �

How much are completely monotonic degrees of the function hλ(x) for λ ≤ 0 and its
negative –hλ(x) for λ ≥ 4 with respect to x ∈ (0,∞)?

3.5 A generalization of the third origin
Lemma 1.2 in [14] shows that the inequality

(–1)nψ (n+1)(x) <
n

n√(n – 1)!
[
(–1)n–1ψ (n)(x)

]1+1/n (3.6)

holds for x > 0 and n ∈ N. Remark 1.3 in [14] points out that the inequality (2.6) is the
special case n = 1 of the inequality (3.6). The inequality (3.6) was reformulated in [39,
p. 108] as the form

n+1

√
|ψ (n+1)(x)|

n!
< n

√
|ψ (n)(x)|
(n – 1)!

(3.7)

for n ∈N on (0,∞).

Sketch of the proof Theorem 2.1 in [8] states that the function

Fn,α(x) =
[
ψ (n)(x)

]2 – αψ (n–1)(x)ψ (n+1)(x), n ≥ 2

is completely monotonic on (0,∞) if and only if α ≤ n–1
n , while its negative –Fn,β (x) is

completely monotonic on (0,∞) if and only if β ≥ n
n+1 . Consequently, a sharp double in-

equality

n – 1
n

<
[ψ (n)(x)]2

ψ (n–1)(x)ψ (n+1)(x)
<

n
n + 1

, n ≥ 2 (3.8)

was derived in [8, Corollary 2.3]. In [14, Lemma 1.2], by virtue of the left inequality in
(3.8), the function [ψ (n)(x)]n+1

[ψ (n+1)(x)]n for n ∈ N was proved to be increasing on (0,∞). As a result,
the inequality (3.6) was deduced straightforwardly. �
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3.6 Necessary and sufficient conditions for divided differences
For n ∈N and p, q ∈R, let

φn(x) =

⎧⎨
⎩

– |ψ (n–1)(x+p)|–|ψ (n–1)(x+q)|
p–q , p 
= q,

|ψ (n)(x + q)|, p = q,

=

⎧⎨
⎩

1
p–q

∫ p
q |ψ (n)(x + t)|dt, p 
= q,

|ψ (n)(x + q)|, p = q,

and

Φn,λ(x) =
[
φn+1(x)

]2 – λφn(x)φn+2(x).

In [128], Theorem 1 states that
1. when p = q,

(a) the function Φn,λ(x) is completely monotonic on (– min{p, q},∞) if and only if
λ ≤ n

n+1 ;
(b) the function –Φn,λ(x) is completely monotonic on (– min{p, q},∞) if and only if

λ ≥ n+1
n+2 ;

2. when 0 < |p – q| < 1,
(a) the function Φn,λ(x) is completely monotonic on (– min{p, q},∞) if and only if

λ ≤ n
n+1 ;

(b) the function –Φn,λ(x) is completely monotonic on (– min{p, q},∞) if and only if
λ ≥ supt∈(0,∞) Q|p–q|(t), where

Qα(t) =
∫ 1

0 (1 – v2)nPα(t, v) dv∫ 1
0 (1 + v2)(1 – v2)n–1Pα(t, v) dv

,

Pα(t, v) = hα

(
1 + v

2
t
)

hα

(
1 – v

2
t
)

,

and

hα(t) =

⎧⎨
⎩

1
α

1–e–αt

1–e–t , α 
= 0;
t

1–e–t , α = 0;
(3.9)

3. when |p – q| > 1,
(a) the function Φn,λ(x) is completely monotonic on (– min{p, q},∞) if and only if

λ ≤ inft∈(0,∞) Q|p–q|(t);
(b) the function –Φn,λ(x) is completely monotonic on (– min{p, q},∞) if and only if

λ ≥ n
n+1 .

Theorem 2 in [128] states that the following four statements are equivalent:
1. the function [ψ (n+1)(x)]2

ψ (n)ψ (n+2)(x) is strictly decreasing from (0,∞) onto ( n
n+1 , n+1

n+2 );

2. the sequence {|ψ (n+1)(x)
ψ (n)(x) |, x ∈ (0,∞)}n∈N is concave;

3. the function |ψ (n)(x)ψ (n+1)(x)|
ψ (n)(x)ψ (n+2)(x)–[ψ (n+1)(x)]2 – x is strictly decreasing from (0,∞) onto (– 1

2 , 0);

4. the function | ψ (n)(x)
ψ (n+1)(x) | is convex on (0,∞).
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We note that the function hα(t) in (3.9) can be regarded as a special case of the function
qα,β (t) defined by (11.6).

3.7 A guess on complete monotonicity
Motivated by Theorem 2.1 in [8] mentioned above, we can consider the function

Fn,k;c(x) =
[
ψ (n)(x)

]2 – cψ (n–k)(x)ψ (n+k)(x)

for n > k ≥ 1 on (0,∞). Similarly, stimulated by Theorems 1 and 2 in [128], we can also
discuss the function

Φn,k,λ(x) =
[
φn+1(x)

]2 – λφn–k+1(x)φn+k+1(x).

We guess that necessary and sufficient conditions for the functions ±Fn,k;c(x) to be com-
pletely monotonic on (0,∞) are

c ≤ [(n – 1)!]2

(n – k – 1)!(n + k – 1)!
and c ≥ (n!)2

(n – k)!(n + k)!
,

respectively. We will confirm this guess in a subsequent paper soon.

3.8 Inequalities between polygamma functions
Theorem 2.2 in [14] states that the double inequality

(n – 1)!
[

ψ (k)(x + 1/2)
(–1)k–1(k – 1)!

]n/k

<
∣∣ψ (n)(x)

∣∣ < (n – 1)!
[

ψ (k)(x)
(–1)k–1(k – 1)!

]n/k

(3.10)

holds for 1 ≤ k ≤ n – 1 and x > 0. When n = 1, the left inequality in (3.10) becomes

ψ ′′(x) +
[
ψ ′

(
x +

1
2

)]2

< 0, x > 0.

In [33, p. 1008] and [39, p. 110], the double inequality (3.10) was reformulated as

k

√
|ψ (k)(x + 1/2)|

(k – 1)!
< n

√
|ψ (n)(x)|
(n – 1)!

< k

√
|ψ (k)(x)|
(k – 1)!

(3.11)

for x > 0 and 1 ≤ k ≤ n – 1. The right inequality in (3.11) is equivalent to (3.7). In [33], the
left inequality in (3.10) and (3.11) was refined as

n

√
|ψ (n)(x)|
(n – 1)!

> k

√
|ψ (k)(1/ ln(1 + 1/x))|

(k – 1)!

for 1 ≤ k ≤ n – 1 on (0,∞), since x < 1
ln(1+1/x) < x + 1

2 on (0,∞).

3.9 Necessary and sufficient conditions
In [89, Theorem 1 and Corollary 1], the following necessary and sufficient conditions were
presented:
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1. the function ψ ′′(x) + [ψ ′(x + α)]2 is completely monotonic on (– min{0,α},∞) if and
only if α ≤ 0;

2. the function

–
{
ψ ′′(x) +

[
ψ ′(x + α)

]2} (3.12)

is completely monotonic if

α ≥ sup
x∈(0,∞)

x
φ–1([2(x + 1)2 – 1]e2x)

, (3.13)

where φ(x) = x coth x for x ∈ (0,∞) and φ–1 is the inverse function of φ;
3. for α ≥ 1

6 , the function (3.12) is completely monotonic on (0,∞).
Equivalently speaking, for β ∈R and x > – min{0,β},

1. the function

ψ ′′(x + β) +
[
ψ ′(x)

]2 (3.14)

is completely monotonic if and only if β ≥ 0;
2. if

β ≤ – sup
x∈(0,∞)

x
φ–1([2(x + 1)2 – 1]e2x)

< 0,

the negative of (3.14) is completely monotonic;
3. for β ≤ – 1

6 , the negative of (3.14) is completely monotonic on the interval
(– min{0,β},∞).

3.10 Complete monotonicity with a parameter
In [89, Theorem 3], it was found that the function [ψ ′(x)]2 + λψ ′′(x) is completely mono-
tonic on (0,∞) if and only if λ ≤ 1.

3.11 Uniqueness of complete monotonicity
In [38, Theorem 1], it was proved that, among the functions

fm,n(x) =
[
ψ (m)(x)

]2 + ψ (n)(x) (3.15)

on (0,∞) for m, n ∈ N, the functions f1,2(x) and fm,2n–1(x) are completely monotonic on
(0,∞), but complete monotonicity of fm,2n–1(x) is trivial, and the functions fm,2n(x) for
(m, n) 
= (1, 1) are not monotonic and does not keep the same sign on (0,∞).

3.12 Completely monotonic degree
In [47, p. 2273, Corollary 3], among others, it was deduced that the functions x2	(x) and
x3	(x) are completely monotonic on (0,∞). These imply that degx

cm[	(x)] ≥ 3. For more
information, please refer to the series of papers [47–49, 51].

With the help of [68], it was discovered in [65] that

degx
cm

[
	(x)

]
= 4. (3.16)
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3.13 Three q-analogs of the third origin
In [7, pp. 80–81, Lemma 4.6], the inequality (2.6) was generalized as

	q(x) =
[
ψ ′

q(x)
]2 + ψ ′′

q (x) > 0 (3.17)

for q > 1 on (0,∞). In [24, p. 13], it was established that

[
ψ ′

q(x)
]2 –

qx ln q
1 – q

ψ ′′
q (x) ≥ 0, 0 < q < 1, x > 0.

In [73, Theorem 1.1], it was presented that
1. for q > 1, the function 	q(x) is completely monotonic with respect to x ∈ (0,∞);
2. for 0 < q < 1, the function

[
ψ ′

q(x) – ln q
]2 + ψ ′′

q (x) (3.18)

is completely monotonic with respect to x ∈ (0,∞).

4 Generalizations of the first origin
The generalizations of the first origin have been developing in recent years.

4.1 Some basic methods
In order to present convexity and monotonicity of the function zs,t(x) defined by (2.1),
it is enough to show the positivity or negativity of the function 	s,t(x). However, it was
observed that the function 	s,t(x) or its negative should be completely monotonic. In order
to verify this observation, there was a barrier to be overcome, the barrier is to significantly
simplify and tidy up any high order derivatives of 	s,t(x) with respect to x. How to deal with
high order derivatives of 	s,t(x) easily and simply? This problem was nicely and smartly
solved in [30, 88]: utilizing the simple but effectual tools stated in Sect. 3.1.

4.2 Complete monotonicity of divided differences
In [30, Theorem 1] and [88, Theorem 1.2], it was found that the function 	s,t(x), defined
by (2.2), for |t – s| < 1 and –	s,t(x) for |t – s| > 1 are completely monotonic with respect to
x ∈ (– min{s, t},∞). As a consequence, meanwhile, complete monotonicity of 	(x) can be
recovered once again.

4.3 Complete monotonicity of divided differences with a parameter
For s, t,λ ∈ R and α = min{s, t}, the function

	s,t;λ(x) =

⎧⎨
⎩

[ ψ(x+t)–ψ(x+s)
t–s ]2 + λ

ψ ′(x+t)–ψ ′(x+s)
t–s , s 
= t;

[ψ ′(x + s)]2 + λψ ′′(x + s), s = t.
(4.1)

In [91, Theorem 1.1], complete monotonicity of the function 	s,t(x) was generalized as
follows:

1. when 0 < |t – s| < 1,
(a) the function 	s,t;λ(x) is completely monotonic on (–α,∞) if and only if λ ≤ 1;
(b) the function –	s,t;λ(x) is completely monotonic if and only if λ ≥ 1

|t–s| ;
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2. when |t – s| > 1,
(a) the function 	s,t;λ(x) is completely monotonic on (–α,∞) if and only if λ ≤ 1

|t–s| ;
(b) the function –	s,t;λ(x) is completely monotonic if and only if λ ≥ 1;

3. when |t – s| = 1,
(a) the function 	s,t;λ(x) is completely monotonic if and only if λ < 1;
(b) the function –	s,t;λ(x) is completely monotonic if and only if λ > 1;
(c) and 	s,t;1(x) ≡ 0;

4. when s = t, the function 	s,s;λ(x) is completely monotonic on (–s,∞) if and only if
λ ≤ 1.

Consequently, [89, Theorem 3], which shows that the function [ψ ′(x)]2 + λψ ′′(x) is com-
pletely monotonic on (0,∞) if and only if λ ≤ 1, can be derived again.

5 Related generalizations
There are several generalizations related to the above results and conclusions.

5.1 The difference between the trigamma function and rational functions
By the formula (3.3), it is easy to see that the function (–1)n+1ψ (n)(x) for n ∈N is completely
monotonic on (0,∞).

The functions

ψ ′(x) –
1
x

and ψ ′(x) –
1
x

–
1

2x2 = ψ ′(x) –
2x + 1

2x2 (5.1)

are completely monotonic on (0,∞). This can be derived from [2, pp. 374–375, Theo-
rem 1], [20, Theorems 1 and 2], [29, Theorem 1.1], [63, Theorem 1.3], [86, Theorem 1]
and the closely related references therein. For more general results, please refer to [39,
Sect. 1.4] and the closely related references therein.

5.2 The difference between the trigamma function and a rational function
It was concluded in [40, Remark 2] that the function

H1(x) = ψ ′(x) –
Q21(x)

1800x2(1 + x)10(2 + x)10

= ψ ′(x) –
1

2x
–

3
4x2 –

28
5(x + 1)

+
51

10(x + 2)
+

251
120(x + 1)2

+
331

120(x + 2)2 –
7

6(x + 1)3 +
17

12(x + 2)3 +
13

90(x + 1)4

+
49

72(x + 2)4 –
13

180(x + 1)5 +
47

180(x + 2)5 –
1

120(x + 1)6

–
1

60(x + 2)6 +
1

180(x + 1)7 –
2

45(x + 2)7 +
1

200(x + 1)8

–
13

600(x + 2)8 +
1

900(x + 1)9 –
1

450(x + 2)9

–
1

1800(x + 1)10 +
1

450(x + 2)10

is completely monotonic on (0,∞), where

Q21(x) = 1,382,400 + 21,657,600x + 162,792,960x2 + 778,137,600x3
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+ 2,645,782,983x4 + 6,789,381,590x5 + 13,626,443,025x6

+ 21,889,330,810x7 + 28,579,049,475x8 + 30,634,381,522x9

+ 27,125,436,630x10 + 19,896,883,200x11 + 12,088,287,630x12

+ 6,063,596,590x13 + 2,494,770,300x14 + 832,958,400x15

+ 222,060,150x16 + 46,134,540x17 + 7,195,500x18

+ 792,300x19 + 54,900x20 + 1800x21.

This result was proved in [40, Theorem 1].

5.3 Completely monotonic degree is one
In [32, Theorem 1], complete monotonicity of H1(x) was strengthened as

degx
cm

[
H1(x)

]
= 1

and the integral representation

H1(x) =
∫ ∞

0
q(t)e–xt dt

of the form (1.1) or (1.3) was concluded in [32, Remark 2], where

q(t) =
θ (t)

653,184,000e2t(et – 1)

and

θ (t) = 163,296,000(t – 2)e3t – e2t(t9 – 18t8 – 648t7 – 5040t6

+ 45,360t5 + 1,965,600t4 – 15,724,800t3 + 381,024,000t2

– 1,856,131,200t + 3,331,238,400
)

+ et(5t9 – 54t8 – 3456t7

– 45,360t6 – 45,360t5 + 9,072,000t4 + 58,363,200t3

+ 843,696,000t2 + 435,456,000t + 6,989,068,800
)

– 4
(
t9 – 9t8

– 702t7 – 10,080t6 – 22,680t5 + 1,776,600t4 + 18,522,000t3

+ 115,668,000t2 + 450,424,800t + 832,809,600
)

with q(0) = 0, q(t) ≥ 0, and q′(t) > 0 on (0,∞).

5.4 A difference between the trigamma function and a rational function
In [136, Remark 1], it was concluded that the functions

H2(x) = ψ ′(x) –
Q7(x)

6x2(1 + x)4(2 + x)2

= ψ ′(x) –
24 + 120x + 283x2 + 399x3 + 345x4 + 181x5 + 51x6 + 6x7

6x2(1 + x)4(2 + x)2
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= ψ ′(x) –
[

1
x2 +

43
6(x + 1)

–
7

2(x + 1)2 +
2

(x + 1)3

–
1

2(x + 1)4 –
37

6(x + 2)
–

13
6(x + 2)2

]

and

H3(x) =
Q6(x)

24x2(x + 1)4(x + 2)
– ψ ′(x)

=
24x6 + 156x5 + 412x4 + 621x3 + 523x2 + 242x + 48

24x2(x + 1)4(x + 2)
– ψ ′(x)

=
1
x2 +

13
24x

+
55

24(x + 1)
–

15
8(x + 1)2 +

35
24(x + 1)3

–
1

2(x + 1)4 –
11

6(x + 2)
– ψ ′(x)

are completely monotonic on (0,∞). Consequently, as claimed in [136, Remark 2], inte-
grating the inequalities H2(x) > 0 and H3(x) > 0 yields a double inequality,

42t3 + t2 – 81t – 48
48t(t + 1)3 +

13 ln t + 55 ln(t + 1) – 44 ln(t + 2)
24

< ψ(t) <
28t4 + 87t3 + 73t2 + 3t – 12

6t(t + 1)3(t + 2)
+

43 ln(t + 1) – 37 ln(t + 2)
6

, t > 0.

Can one compute completely monotonic degrees of the functions H2(x) and H3(x) on
(0,∞), as one did in [32]?

5.5 Necessary and sufficient conditions
In [72, Remark 3], it was deduced that the function

ψ ′(x) –
λ(4 + 8x + 5x2)

24x(1 + x)3(2 + x)2 –
Q7(x)

6x2(1 + x)4(2 + x)2 (5.2)

is completely monotonic on (0,∞) if and only if λ ≤ 0, and its negative is completely mono-
tonic on (0,∞) if and only if λ ≥ 4.

What are completely monotonic degrees of the function (5.2) for λ ≤ 0 and its negative
for λ ≥ 4 on (0,∞)?

5.6 A difference between the trigamma function and a rational function of a
parameter

Let α ∈R and x > – min{0,α}. It was proved in [89, Theorem 2 and Corollary 1] that
1. the function

ψ ′(x + α) –
1

2(x + α)2 –
(x + α)2

x3 (5.3)

is completely monotonic if and only if α ≤ 0;
2. the negative of the function (5.3) is completely monotonic if the inequality (3.13) is

valid;
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3. the necessary condition for the negative of (5.3) to be completely monotonic on
x ∈ (0,∞) is

α ≥ sup
x∈(0,∞)

{
x
[

1 – 3

√
2x

2x2ψ ′(x) – 1

]}
; (5.4)

4. for α ≥ 1
6 , the negative of (5.3) is completely monotonic on (0,∞); equivalently

speaking, for β ≤ – 1
6 , the function 1

2x2 + x2

(x+β)3 – ψ ′(x) is completely monotonic on
(– min{0,β},∞).

We guess that the conditions in (3.13) and (5.4) should be necessary and sufficient.

5.7 A difference between a divided difference of and a rational function
As by-product of [62, p. 524, Theorem 1.1] and [88, p. 1978, Theorem 1.1], the following
complete monotonicity for the divided difference form of the second function in (5.1) was
acquired: the function

δs,t(x) =

⎧⎨
⎩

ψ(x+t)–ψ(x+s)
t–s – 2x+s+t+1

2(x+s)(x+t) , s 
= t,

ψ ′(x + s) – 1
x+s – 1

2(x+s)2 , s = t,
(5.5)

for |t – s| < 1 and –δs,t(x) for |t – s| > 1 are completely monotonic on x ∈ (–α,∞), where s
and t are real numbers and α = min{s, t}.

5.8 A difference of a divided difference of and a rational function with a
parameter

In [91, Theorem 1.3], along with generalizing 	s,t(x) to 	s,t;λ(x) in (4.1), the authors gen-
eralized the function δs,t(x) as

θs,t;λ(x) =

⎧⎨
⎩

ψ(x+t)–ψ(x+s)
t–s – 1+λ(2x+s+t)

2(x+s)(x+t) , s 
= t,

ψ ′(x + s) – λ
x+s – 1

2(x+s)2 , s = t,
(5.6)

on (– min{s, t},∞) for s, t,λ ∈R, and presented the following complete monotonicity:
1. when 0 < |t – s| < 1,

(a) the function θs,t;λ(x) is completely monotonic if and only if λ ≤ 1;
(b) the function –θs,t;λ(x) is completely monotonic if and only if λ ≥ 1

|t–s| ;
2. when |t – s| > 1,

(a) the function θs,t;λ(x) is completely monotonic if and only if λ ≤ 1
|t–s| ;

(b) the function –θs,t;λ(x) is completely monotonic if and only if λ ≥ 1;
3. when |t – s| = 1,

(a) the function θs,t;λ(x) is completely monotonic if and only if λ < 1;
(b) the function –θs,t;λ(x) is completely monotonic if and only if λ > 1;
(c) and θs,t;1(x) ≡ 0;

4. when s = t, the function θs,s;λ(x) is completely monotonic if and only if λ ≤ 1.
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5.9 Necessary and sufficient conditions of complete monotonicity
In [83, 108], the authors alternatively generalized the function δs,t(x) in (5.5) as

δs,t;λ(x) =

⎧⎨
⎩

ψ(x+t)–ψ(x+s)
t–s – 2x+s+t+2λ

2(x+s)(x+t) , s 
= t,

ψ ′(x + s) – 1
x+s – λ

(x+s)2 , s = t,
(5.7)

on (–α,∞) for s, t,λ ∈ R and α = min{s, t}, and discovered the following necessary and
sufficient conditions of complete monotonicity:

1. when |t – s| < 1,
(a) the function δs,t;λ(x) is completely monotonic on (–α,∞) if and only if λ ≤ 1

2 ;
(b) the function –δs,t;λ(x) is completely monotonic on (–α,∞) if and only if

λ ≥ 1 – |t–s|
2 ;

2. when |t – s| > 1,
(a) the function δs,t;λ(x) is completely monotonic on (–α,∞) if and only if

λ ≤ 1 – |t–s|
2 ;

(b) the function –δs,t;λ(x) is completely monotonic on (–α,∞) if and only if λ ≥ 1
2 ;

3. when |t – s| = 1,
(a) the function δs,t;λ(x) is completely monotonic on (–α,∞) if and only if λ < 1

2 ;
(b) the function –δs,t;λ(x) is completely monotonic on (–α,∞) if and only if λ > 1

2 ;
(c) the function δs,t;λ(x) is identically zero if and only if λ = 1

2 .

5.10 Complete monotonicity of q-analogs
In [67, 105, 135], the second function in (5.1) was generalized to the q-analogs

fq(x) = ψ ′
q(x) –

(1 – q)qx

1 – qx –
1
2

[
(1 – q)qx

1 – qx

]2

and

Fq(x) = ψ ′
q(x) –

1 – q
1 – qx –

1
2

(
1 – q
1 – qx

)2

+
1
2

(1 – q)(3 – q)

on (0,∞) for 0 < q < 1 and these two q-analogs were proved to be completely monotonic
on (0,∞).

For 0 < q < 1, we guess that the functions

Iq(x) = ψ ′
q(x) –

1 – q
1 – qx –

1
2

(
1 – q
1 – qx

)2

–
1
6

(
1 – q
1 – qx

)3

+
1

30

(
1 – q
1 – qx

)5

+
1 – q

30
(
49 – 21q – q2 + 4q3 – q4)

and

Jq(x) = ψ ′
q(x) –

1 – q
1 – qx –

1
2

(
1 – q
1 – qx

)2

–
1
6

(
1 – q
1 – qx

)2

+
1

30

[
(1 – q)qx

1 – qx

]5

+
1 – q

6
(
10 – 5q + q2)

are completely monotonic with respect to x ∈ (0,∞).
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6 Applications
Some of the above results and conclusions have been applied to find inequalities, mono-
tonicity, logarithmically completely monotonicity of some functions involving the gamma
function Γ (x), the ratio Γ (x+a)

Γ (x+b) , polygamma functions ψ (k)(x) for k ≥ 0, and so on.

6.1 Monotonicity and convexity
In [34, Theorem 2], by virtue of the inequality (2.6), it was proved that the function

eψ(x+1) – x (6.1)

is strictly decreasing and strictly convex on (–1,∞).
In [123], Theorems 1 and 2 state that
1. the function

exp

[
ψ

(
x +

1
2

)
–

1
24

1
x2 + 7/40

]
– x

is decreasing from (– 1
2 ,∞) onto (0, 1

2 ) and convex on (– 1
2 ,∞);

2. the function

exp

[
ψ

(
x +

1
2

)]
– x exp

(
1

24
1

x2 + 7/40

)

is decreasing from (0,∞) onto (0, 1
4eγ ) and convex on ( 1

2 ,∞), where
γ = 0.57721566. . . is the Euler–Mascheroni constant.

6.2 Alternative proofs of the first origin
By virtue of the equality (2.2), we see readily that complete monotonicity of the function
	s,t(x) implies the convexity, and then the monotonicity, of the function zs,t(x) defined by
(2.1). Therefore, alternative proofs of [23, Theorem 1] were provided in [19, 30, 31, 88, 99]
and the closely related references therein.

6.3 A generalization of the first origin
As an application of [91, Theorem 1.1] and as a generalization of [23, Theorem 1, Corol-
laries 2 and 3], [34, Theorem 2], and [89, p. 75, Corollary 2], Theorem 1.5 in [91] states
that the function

zs,t;λ(x) =

⎧⎨
⎩

[ Γ (x+t)
Γ (x+s) ]1/[λ(t–s)], s 
= t,

eψ(x+s)/λ, s = t,

for s, t ∈R, α = min{s, t}, and λ 
= 0 has the following properties:
1. when 0 < |t – s| < 1,

(a) the function zs,t;λ(x) is convex on (–α,∞) if and only if λ ≤ 1,
(b) the function zs,t;λ(x) is concave on (–α,∞) if and only if λ ≥ 1

|t–s| ;
2. when |t – s| > 1,

(a) the function zs,t;λ(x) is convex on (–α,∞) if and only if λ ≤ 1
|t–s| ,

(b) the function zs,t;λ(x) is concave on (–α,∞) if and only if λ ≥ 1;
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3. when s = t, the function zs,s;λ(x) is convex on (–s,∞) if and only if λ ≤ 1;
4. when |t – s| = 1,

(a) the function zs,t;λ(x) is convex on (–α,∞) if and only if λ < 1,
(b) the function zs,t;λ(x) is concave on (–α,∞) if and only if λ > 1,
(c) zs,t;1(x) = x + α on (–α,∞).

6.4 Monotonicity and inequalities for q-analogs
Using complete monotonicity of the function 	q(x) on (0,∞), the following monotonicity
cases and inequalities were established in [73, Corollary 1.1]: the functions

φq(x) =

⎧⎨
⎩

ψq(x) + ln[exp (ln q)qx

qx–1 – 1], q > 1,

ψ(x) + ln(e1/x – 1), q = 1,

ϕq(x) =

⎧⎨
⎩

ψq(x) + ln(exp ln q
qx–1 – 1), q > 1,

ψ(x) + ln(e1/x – 1), q = 1,

Φq(x) =

⎧⎨
⎩

ψq(x) – (ln q)x + ln[exp (ln q)qx

qx–1 – 1], 0 < q < 1,

ψ(x) + ln(e1/x – 1), q = 1,

Θq(x) =

⎧⎨
⎩

ψq(x) – (ln q)x + ln(exp ln q
qx–1 – 1), 0 < q < 1,

ψ(x) + ln(e1/x – 1), q = 1,

are strictly increasing on (0,∞); consequently,
1. the double inequality

a – ln
(
e1/x – 1

)
< ψ(x) < b – ln

(
e1/x – 1

)

holds on (0,∞) if and only if a ≤ –γ = –0.577. . . and b ≥ 0;
2. for 0 < q < 1, the double inequality

ψq(1) + (ln q)x – ln

[
exp

(ln q)qx

qx – 1
– 1

]

< ψq(x) < ln
ln q

q – 1
+ (ln q)x – ln

[
exp

(ln q)qx

qx – 1
– 1

]

holds on (0,∞), where the constants ψq(1) and ln( ln q
q–1 ) are the best possible;

3. for q > 1, the double inequality

ψq(1) – ln q – ln

(
exp

ln q
qx – 1

– 1
)

< ψq(x) < ln
ln q

q – 1
–

ln q
2

– ln

(
exp

ln q
qx – 1

– 1
)

holds on (0,∞), where the scalars ψq(1) – ln q and ln ln q
q–1 – ln q

2 are the best possible.
For properties of the function ψ(x) + ln(e1/x – 1) and related functions, please refer to [4,

13, 14, 28, 53] and the closely related references therein.
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6.5 Double inequalities for the gamma function and its q-analog
The inequality (2.6) was applied in [12, Theorem 2.1] to provide a double inequality,

Γ
(
x∗) exp

{
α
[
eψ(x)(ψ(x) – 1

)
+ 1

]} ≤ Γ (x) ≤ Γ
(
x∗) exp

{
β
[
eψ(x)(ψ(x) – 1

)
+ 1

]}
(6.2)

for x > x∗, where α = 1, β = 6eγ

π2 = 1.0827. . . , and x∗ = 1.4616. . . is the only positive zero of
ψ(x) such that Γ (x∗) = 0.8856. . . .

In [7, Theorem 4.3], the inequality (6.2) was proved to be valid for x ∈ (a, b) and with the
best possible constants

α =

⎧⎨
⎩

Q(b), if b < ∞,

1, if b = ∞,
and β = Q(a),

where 0 < a < b ≤ ∞ and

Q(x) =

⎧⎨
⎩

lnΓ (x)–lnΓ (x∗)
[ψ(x)–1]eψ(x)+1 , x 
= x∗;

1
ψ ′(x∗) , x = x∗.

In [7, Theorem 4.8], by establishing and utilizing the inequality (3.17), the inequality
(6.2) was generalized to the q-analog

Γq(x0)eα[eψq(x)(ψq(x)–1)+1] ≤ Γq(x) ≤ Γq(x0)eβ[eψq(x)(ψq(x)–1)+1]

for x ∈ (a, b) and with the best possible constants

α =

⎧⎨
⎩

Qq(b), if b < ∞,

0, if b = ∞,
and β = Qq(a),

where q > 1, 0 < a < b ≤ ∞, x0 is the only zero of ψq(x) on (0,∞), and

Qq(x) =

⎧⎨
⎩

lnΓq(x)–lnΓq(x0)
[ψq(x)–1]eψq(x)+1

, x 
= x0;
1

ψ ′
q(x0) , x = x0.

6.6 A monotonicity result
In [30, Theorem 2], complete monotonicity of the function 	s,t(x) defined in (2.2) was
applied to generalize the inequality (6.2) to a monotonicity result below. For real numbers
s and t, α = min{s, t}, and c ∈ (–α,∞), let

gs,t(x) =

⎧⎨
⎩

1
t–s

∫ x
c ln[ Γ (u+t)

Γ (u+s)
Γ (c+s)
Γ (c+t) ]du, s 
= t,∫ x

c [ψ(u + s) – ψ(c + s)]du, s = t

on x ∈ (–α,∞). Then the function

fs,t(x) =

⎧⎨
⎩

gs,t (x)
[g′

s,t (x)–1] exp[g′
s,t (x)]+1 , x 
= c,

1
g′′

s,t (c) , x = c,

on x ∈ (–α,∞) is decreasing for |t – s| < 1 and increasing for |t – s| > 1.
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6.7 Monotonicity and convexity
In [89, p. 75, Corollary 2], complete monotonicity of [ψ ′(x)]2 + λψ ′′(x) was utilized to
discuss the monotonicity and convexity of the function

fp,q(x) = epψ(x+1) – qx,

which is a generalization of the function in (6.1), with respect to x ∈ (–1,∞) for p 
= 0 and
q ∈R: the function fp,q(x)

1. is strictly decreasing if and only if p = 1 and q ≥ 1 or p < 0 and q ≥ 0;
2. is strictly increasing if and only if p = 1 and q ≤ 0 or p > 1 and q ≤ 0;
3. is strictly convex if and only if p ≥ 1 or p < 0;
4. has a unique minimum if and only if p ≥ 1 and 0 < q < 1 or p < 0 and q < 0.

These results extend and generalize [23, pp. 241–242, Corollary 2].

6.8 Logarithmically complete monotonicity related to the ratio of gamma
functions

In [88, p. 1980, Theorem 1.4], complete monotonicity of the function δs,t(x) defined by (5.5)
was applied to derive the following logarithmically complete monotonicity of a function
involving the ratio of two gamma functions: for s, t ∈R and α = min{s, t},

1. when |t – s| > 1, the function

Hs,t(x) =

⎧⎨
⎩

(x+t)1/2(t–s)–1/2

(x+s)1/2(t–s)+1/2 [ Γ (x+t)
Γ (x+s) ]1/(t–s), s 
= t,

1
x+t exp[ψ(x + t) + 1

2(x+t) ], s = t,

is logarithmically completely monotonic on (–α,∞);
2. when |t – s| < 1, the function 1

Hs,t (x) is logarithmically completely monotonic on
(–α,∞);

3. when |t – s| = 1, the function Hs,t(x) identically equals 1 on (–α,∞);
4. when |t – s| < 1, the inequality

[
Γ (x + t)
Γ (x + s)

]1/(t–s)

<
(x + s)1/2(t–s)+1/2

(x + t)1/2(t–s)–1/2 (6.3)

holds on (–α,∞);
5. when |t – s| > 1, the inequality (6.3) is reversed on (–α,∞).

6.9 Logarithmically complete monotonicity involving the ratio of gamma
functions

By applying complete monotonicity of the function θs,t;λ(x) defined in (5.6), the following
results were discovered in [91, Theorem 1.2]. For s, t,λ ∈R and α = min{s, t}, let

Hs,t;λ(x) =

⎧⎨
⎩

(x+t)[1/(t–s)–λ]/2

(x+s)[1/(t–s)+λ]/2 [ Γ (x+t)
Γ (x+s) ]1/(t–s), s 
= t,

1
(x+s)λ exp[ψ(x + s) + 1

2(x+s) ], s = t,
(6.4)

on (–α,∞). Then
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1. when 0 < |t – s| < 1,
(a) the function Hs,t;λ(x) is logarithmically completely monotonic if and only if

λ ≥ 1
|t–s| ;

(b) the function 1
Hs,t;λ(x) is logarithmically completely monotonic if and only if λ ≤ 1;

2. when |t – s| > 1,
(a) the function Hs,t;λ(x) is logarithmically completely monotonic if and only if λ ≥ 1;
(b) the function 1

Hs,t;λ(x) is logarithmically completely monotonic if and only if
λ ≤ 1

|t–s| ;
3. when s = t, the function 1

Hs,s;λ(x) is logarithmically completely monotonic if and only if
λ ≤ 1;

4. when |t – s| = 1,
(a) the function Hs,t;λ(x) is logarithmically completely monotonic if and only if λ > 1;
(b) the function 1

Hs,s;λ(x) is logarithmically completely monotonic if and only if λ < 1;
(c) and Hs,t;1(x) ≡ 1.

6.10 Logarithmically complete monotonicity concerning the ratio of gamma
functions

By applying complete monotonicity of the function δs,t;λ(x) defined in (5.7), the follow-
ing logarithmically complete monotonicity were obtained in [83, Theorem 1.2] and [108,
Theorem 1.3]. For s, t,λ ∈R and α = min{s, t}, define

Hs,t;λ(x) =

⎧⎨
⎩

(x+t)λ/(t–s)–1/2

(x+s)λ/(t–s)+1/2 [ Γ (x+t)
Γ (x+s) ]1/(t–s), s 
= t,

1
x+t exp[ψ(x + t) + λ

x+t ], s = t,
(6.5)

on (–α,∞). Then
1. when |t – s| < 1,

(a) the function Hs,t;λ(x) is logarithmically completely monotonic if and only if
λ ≥ 1 – |t–s|

2 ;
(b) the function 1

Hs,t;λ(x) is logarithmically completely monotonic if and only if λ ≤ 1
2 ;

2. when |t – s| > 1,
(a) the function Hs,t;λ(x) is logarithmically completely monotonic if and only if λ ≥ 1

2 ;
(b) the function 1

Hs,t;λ(x) is logarithmically completely monotonic if and only if
λ ≤ 1 – |t–s|

2 ;
3. when |t – s| = 1,

(a) the function Hs,t;λ(x) is logarithmically completely monotonic if and only if λ > 1
2 ;

(b) the function 1
Hs,t;λ(x) is logarithmically completely monotonic if and only if λ < 1

2 ;
(c) the function Hs,t;λ(x) identically equals 1 on (–α,∞) if and only if λ = 1

2 .

7 Equivalent inequalities of complete monotonicity
It is very surprising that some (logarithmically) complete monotonicity cases discussed
above are equivalent to some inequalities for sums.

7.1 First equivalence
Theorem 1.2 in [62, p. 526] shows that, for k ≥ 0 and θ > 0,
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1. if a > 0 and b > 0, then

k∑
i=0

1
(a + θ )i+1(b + θ )k–i+1 +

k∑
i=0

1
ai+1bk–i+1 > 2

k∑
i=0

1
(a + θ )i+1bk–i+1 (7.1)

holds for b – a > –θ and reverses for b – a < –θ ;
2. if a < –θ and b < –θ , then inequalities

2k∑
i=0

1
(a + θ )i+1(b + θ )2k–i+1 +

2k∑
i=0

1
ai+1b2k–i+1

> 2
2k∑
i=0

1
(a + θ )i+1b2k–i+1 (7.2)

and

2k+1∑
i=0

1
(a + θ )i+1(b + θ )2k–i+2 +

2k+1∑
i=0

1
ai+1b2k–i+2

< 2
2k+1∑
i=0

1
(a + θ )i+1b2k–i+2 (7.3)

hold for b – a > –θ and reverse for b – a < –θ ;
3. if –θ < a < 0 and –θ < b < 0, then inequality (7.2) holds and inequality (7.3) is valid for

a + b + θ > 0 and is reversed for a + b + θ < 0;
4. if a < –θ and b > 0, then inequality (7.2) holds and inequality (7.3) is valid for

a + b + θ > 0 and is reversed for a + b + θ < 0;
5. if a > 0 and b < –θ , then inequality (7.2) is reversed and inequality (7.3) holds for

a + b + θ < 0 and reverses for a + b + θ > 0;
6. if b = a – θ , then inequalities (7.1), (7.2) and (7.3) become equalities.
Theorem 1.3 in [62, p. 526] states that the inequality (7.1) for a, b > 0 is equivalent to [62,

p. 524, Theorem 1.1] and [88, p. 1978, Theorem 1.1] mentioned in Sect. 5.7 in this paper.

7.2 Second equivalence
The (logarithmically) complete monotonicity of the functions δs,t;λ(x) and Hs,t;λ(x) are
equivalent to the following inequality (7.4) for the case a, b > 0. See [108, Remarks 1.8
and 1.9].

Theorem 1.7 in [108], which is a generalization of [62, Theorem 1.2] mentioned above,
states that, for k ∈ N, θ > 0, and a, b,λ ∈R,

1. the inequality

k∑
i=0

1
(a + θ )i+1bk–i+1 <

2θ (1 – λ) – b + a
2(θ – b + a)

k∑
i=0

1
ai+1bk–i+1

+
2θλ – b + a
2(θ – b + a)

k∑
i=0

1
(a + θ )i+1(b + θ )k–i+1 (7.4)

holds
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(a) if a, b > 0 and
(1) either 0 < |b – a| < θ and λ ≤ 1

2 ,
(2) or b – a < –θ and λ ≤ 1 + b–a

2θ
,

(3) or b – a > θ and λ ≥ 1
2 ;

(b) if a, b < –θ ,
(1) k is even and

⎧⎪⎪⎨
⎪⎪⎩

either 0 < |b – a| < θ and λ ≥ 1
2 ,

or a – b < –θ and λ ≥ b–a
2θ

,

or a – b > θ and λ ≤ 1
2 ;

(2) k is odd and

⎧⎪⎪⎨
⎪⎪⎩

either 0 < |b – a| < θ and λ ≤ |b–a|
2θ

,

or a – b < –θ and λ ≤ 1
2 ,

or a – b > θ and λ ≥ a–b
2θ

;

(c) if –θ < a < 0, –θ < b < 0 and
(1) k is even and 0 < λ ≤ 1,
(2) k is odd,

⎧⎨
⎩

either –2θ < a + b < –θ and λ ≥ 1
2 ,

or a + b + θ = 0 and λ > 1
2 ;

(d) if either a < –θ and b > 0 or a > 0 and b < –θ ,
(1) k is even and 0 ≤ λ ≤ 1,
(2) k is odd and

⎧⎨
⎩

either a + b + θ < 0 and λ ≤ 1
2 ,

or a + b + θ = 0 and λ < 1
2 ;

2. the inequality (7.1) is reversed
(a) if a > 0, b > 0 and

(1) either 0 < |b – a| < θ and λ ≥ 1 – |b–a|
2θ

,
(2) or b – a < –θ and λ ≥ 1

2 ,
(3) or b – a > θ and λ ≤ 1 – b–a

2θ
;

(b) if a < –θ and b < –θ ,
(1) k is even and

⎧⎪⎪⎨
⎪⎪⎩

either 0 < |b – a| < θ and λ ≤ |b–a|
2θ

,

or a – b < –θ and λ ≤ 1
2 ,

or a – b > θ and λ ≥ a–b
2θ

;
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(2) k is odd and

⎧⎪⎪⎨
⎪⎪⎩

either 0 < |b – a| < θ and λ ≥ 1
2 ,

or a – b < –θ and λ ≥ b–a
2θ

,

or a – b > θ and λ ≤ 1
2 ;

(c) if –θ < a < 0, –θ < b < 0, k is odd and
(1) either 0 > a + b > –θ and λ ≤ 1

2 ,
(2) or a + b + θ = 0 and λ < 1

2 ;
(d) if either a < –θ and b > 0 or a > 0 and b < –θ , k is odd and

(1) either a + b + θ > 0 and λ ≥ 1
2 ,

(2) or a + b + θ = 0 and λ > 1
2 .

3. the sign < in (7.1) can be replaced by the equal sign = if a + b + θ = 0, λ = 1
2 and

(a) either –1 < a < 0 and –1 < b < 0,
(b) or a < –1 and b > 0,
(c) or a > 0 and b < –1.

8 Related inequalities
Making use of (logarithmically) complete monotonicity of some functions discussed
above, we can derive some inequalities for the ratio of two gamma functions and for the
divided differences of polygamma functions.

8.1 First group of inequalities
From the logarithmically complete monotonicity of the function Hs,t;λ(x) defined in (6.4),
the following inequalities were derived in [91, Theorem 1.4].

For a, b > 0, the inequality

[
Γ (b)
Γ (a)

]1/(b–a)

<
√

ab
(

a
b

)1/2(b–a)

holds for 0 < |b – a| < 1 and reverses for |b – a| > 1. For 0 < |b – a| < 1, the double inequality

(k – 1)!
2

[(
1

b – a
+ β

)
1
ak +

(
β –

1
b – a

)
1
bk

]

<
(–1)k–1[ψ (k–1)(b) – ψ (k–1)(a)]

b – a

<
(k – 1)!

2

[(
1

b – a
+ γ

)
1
ak +

(
γ –

1
b – a

)
1
bk

]
(8.1)

holds if and only if β ≤ 1 and γ ≥ 1
|b–a| . For |b – a| > 1, inequalities in (8.1) are valid if and

only if β ≤ 1
|b–a| and γ ≥ 1.

8.2 Second group of inequalities
From the logarithmically complete monotonicity of the function Hs,t;λ(x) defined in (6.5),
the following double inequalities were procured in [83, Theorem 1.3] and [108, Theo-
rem 1.5].
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For a, b > 0,
1. when 0 < |b – a| < 1, the double inequality

β2
(k – 1)!
b – a

(
1
ak –

1
bk

)
<

(–1)k–1[ψ (k–1)(b) – ψ (k–1)(a)]
b – a

–
(k – 1)!

2

(
1
ak +

1
bk

)

< γ2
(k – 1)!
b – a

(
1
ak –

1
bk

)
(8.2)

holds if and only if β2 ≤ 1
2 and γ2 ≥ 1 – |b–a|

2 ;
2. when |b – a| > 1, the double inequality (8.2) is valid if and only if β2 ≤ 1 – |b–a|

2 and
γ2 ≥ 1

2 .
3. when 0 < |b – a| < 1, the double inequality

√
ab

(
a
b

)β3/(b–a)

<
[

Γ (b)
Γ (a)

]1/(b–a)

<
√

ab
(

a
b

)γ3/(b–a)

(8.3)

holds if and only if β3 ≥ 1 – |b–a|
2 and γ3 ≤ 1

2 ;
4. when |b – a| > 1, the double inequality (8.3) is reversed if and only if β3 ≤ 1 – |b–a|

2
and γ3 ≥ 1

2 ;
5. the double inequality

β1
k!

xk+1 < (–1)k+1ψ (k)(x) –
(k – 1)!

xk < γ1
k!

xk+1

holds on (0,∞) if and only if β1 ≤ 1
2 and γ1 ≥ 1.

The inequality (8.3) can be rearranged in the following beautiful form:

1
γ3

ln b – ln a
b – a

< ln
√

ab –
lnΓ (b) – lnΓ (a)

b – a
<

1
β3

ln b – ln a
b – a

.

9 Some new properties for the ratio of two gamma functions
In [64, 69, 101, 106, 107, 112] and the closely related references therein, some kinds of
functions involving the ratio of two gamma functions were surveyed. In what follows, we
summarize several new kinds of functions involving the ratio of two gamma functions,
including some relating to the Catalan numbers in combinatorics and the Bernoulli trials
in probability. For information as regards the Catalan numbers, please refer to the survey
articles [93, 96] and the closely related references therein.

9.1 An exponential integral representation and logarithmically complete
monotonicity

Let

Fa,b(x) =
Γ (x + a)
Γ (x + b)

(x + b)x+b–a

(x + a)x , a, b ∈R, a 
= b, x > – min{a, b}.

In [54, Theorem 2] and [115, Theorem 3], it was established that, when a, b > 0,



Qi and Agarwal Journal of Inequalities and Applications         (2019) 2019:36 Page 29 of 42

1. the function Fa,b(x) has the exponential representation

Fa,b(x) = exp

[
b – a +

∫ ∞

0

1
t

(
a +

1
t

–
1

1 – e–t

)(
e–bt – e–at)e–xt dt

]

on [0,∞);
2. the function [Fa,b(x)]±1 is logarithmically completely monotonic on [0,∞) if and only

if

(a, b) ∈ D±(a, b) =
{

(a, b) : a ≷ b, a ≥ 1
} ∪

{
(a, b) : a ≶ b, a ≤ 1

2

}
.

9.2 An exponential expansion
Theorem 3 in [110] reads

Γ (a)
Γ (b)

=
aa–1/2

bb–1/2 exp

[ ∞∑
j=1

B2j

2j(2j – 1)

(
1

a2j–1 –
1

b2j–1

)]
, a, b > 0.

9.3 A double inequality
Theorem 11 in [110] states that

√
b
a
[
I(a, b)

]a–b
exp

[ 2m∑
j=1

B2j

2j(2j – 1)

(
1

a2j–1 –
1

b2j–1

)]

<
Γ (a)
Γ (b)

<
√

b
a
[
I(a, b)

]a–b
exp

[2m–1∑
j=1

B2j

2j(2j – 1)

(
1

a2j–1 –
1

b2j–1

)]
, a, b > 0,

where Bi for i ∈N are the Bernoulli numbers defined [80, 81, 84] by

x
ex – 1

=
∞∑
i=0

Bi
xi

i!
= 1 –

x
2

+
∞∑
j=1

B2j
x2j

(2j)!
, |x| < 2π

and I(α,β) is the exponential mean defined for α,β > 0 by

I(α,β) =

⎧⎨
⎩

1
e ( ββ

αα )1/(β–α), α 
= β ;

α, α = β .

9.4 Logarithmically complete monotonicity and applications in probability
Let m ∈ N, a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m, and p = (p1, p2, . . . , pm) with pi ∈
(0, 1) for 1 ≤ i ≤ m and

∑m
i=1 pi = 1. In [57, 113], it was proved that the function

Qa,p;m(x) =
Γ (1 + x

∑m
i=1 ai)∏m

i=1 Γ (1 + xai)

m∏
i=1

pxai
i (9.1)

is logarithmically completely monotonic on (0,∞). This is a generalization of a problem
originating from the Bernoulli trials in probability (see [6, 52]). This logarithmically com-
plete monotonicity can be used to derive some inequalities for multinomial coefficients
and multivariate beta functions (see [6, 113]).
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In [79], the q-analog of the function (9.1) was considered and its logarithmically com-
plete monotonicity was investigated.

At the deep night on 6 May 2018, Dr. Frédéric Ouimet (Université de Montréal, Canada)
acknowledged that, in his arXiv preprint [57], which was formally published as [58] later,
he alternatively and essentially proved [113, Theorem 2.2] and applied it to deriving
asymptotic formulas for quantities of interest in the context of a statistical density esti-
mation based on the Bernstein polynomials on the n-dimensional simplex.

9.5 Completely monotonic degrees of functions involving ratios of gamma
functions

Recall from [125] that a function f is said to be strongly completely monotonic on (0,∞) if
it has derivatives of all orders and (–1)nxn+1f (n)(x) is nonnegative and decreasing on (0,∞)
for all n ≥ 0.

Let

Ls,t(x) = x –
Γ (x + t)
Γ (x + s)

xs–t+1 = x
[

1 –
Γ (x + t)/xt

Γ (x + s)/xs

]

and suppose that either
1. s ≥ 1 > t and 0 < s – t ≤ 1

2 , or
2. t ≥ 1 and 0 < s – t < 1, or
3.

√
3

6 + 1
2 ≤ t < s < 1.

Theorem 1 in [47] reads
1. the function

Φs,t(x) =
L′′

s,t(x)
Ls,t(x) – x

= –
Γ (x + s)
Γ (x + t)

xt–s–1L′′
s,t(x)

is strongly completely monotonic on (0,∞);
2. the function Ls,t(x) is strictly increasing and concave on (0,∞) and the function

–L′′(x) is completely monotonic on (0,∞).
Proposition 1.1 in [50, p. 34], which was proved in [65, Sect. 4.2], states that a func-

tion f (x) is strongly completely monotonic if and only if the function xf (x) is completely
monotonic. In other words, the set of functions of completely monotonic degree not less
than 1 with respect to x ∈ (0,∞) coincides with the set of strongly completely monotonic
functions on (0,∞). This implies that degx

cm[Φ(x)] ≥ 1.
Corollary 3 in [47] can be restated as follows: the functions

	(x),
2
3

[
ψ ′(x) +

1
2x

]2

+ ψ ′′(x) –
1

2x2 , and – ψ ′′(x) –
2
x
ψ ′(x) +

1
x2

are of completely monotonic degree not less than 2. In [48, Theorem 1.3], the first two
functions above were proved to be of completely monotonic degree at least 3, but the
third function is of completely monotonic degree less than 3.

In [48, 49], the functions Ls,t(x) and Φs,t(x) were further investigated and more conclu-
sions were discovered therein.

From the identity (3.16), we surely conclude that main results and their proofs in [47–49]
can be improved. We also believe that there should be a simple method or a nice approach



Qi and Agarwal Journal of Inequalities and Applications         (2019) 2019:36 Page 31 of 42

to find some properties of the functions Ls,t(x) and Φs,t(x). For this purpose, the integral
representation

Γ (x + a)
Γ (x + b)

=
1

Γ (b – a)

∫ ∞

0

(
1 – e–t)b–a–1e–(x+a)t dt

for 	(b – a) > 0 and 	(x + a) > 0, which can be found in [10, p. 165] and [124, p. 67], would
play a key role.

9.6 Necessary and sufficient conditions
In [129], Theorems 3.1 and 3.2 show that

1. the function

v(s, t, r; x) =

⎧⎨
⎩

e–ψ(x+r)[ Γ (x+t)
Γ (x+s) ]1/(t–s), t 
= s,

eψ(x+s)–ψ(x+r), t = s

is logarithmically completely monotonic with respect to x ∈ (–ρ,∞) if and only if
r ≤ min{s, t} and its reciprocal 1

v(s,t,r;x) is logarithmically completely monotonic with
respect to x ∈ (–ρ,∞) if and only if r ≥ s+t

2 , where s, t, r ∈R and ρ = min{s, t, r}; see
also [131, Corollary 3];

2. the function

U(a, b, c; x) =

⎧⎨
⎩

1
x+c [ Γ (x+a)

Γ (x+b) ]1/(a–b), a 
= b,
1

x+c eψ(x+a), a = b,

is logarithmically completely monotonic with respect to x ∈ (–ρ,∞) if and only if
c ≤ a+b–max{|a–b|,1}

2 and its reciprocal 1
U(a,b,c;x) is logarithmically completely monotonic

with respect to x ∈ (–ρ,∞) if and only if c ≥ a+b–min{|a–b|,1}
2 , where a, b, c ∈R and

ρ = min{a, b, c}.

9.7 Five classes of functions involving ratios of gamma functions
In [133], the logarithmically complete monotonicity of the functions

Wr,s(x)
Wu,v(x)

,
Wr̄,s̄(x)∏n

i=1 W λi
ri ,si (x)

,
∏n

i=1 Γ λi (x + si)
Γ (x + s)

,

n∏
i=1

Γ (x + ui)
Γ (x + ri)

,
n∏

i=1

Wri ,s(x)
Wui ,s(x)

was investigated, where Wu,v(x) is defined in (2.1). Concretely speaking,
1. Theorem 3.1 in [133] states that, for u, v, r, s ∈R and ρ = min{u, v, r, s}, the function

Wr,s(x)
Wu,v(x) is logarithmically completely monotonic on (–ρ,∞) if and only if u + v ≤ r + s
and min{u, v} ≤ min{r, s}; see also [131, Proposition 1] and [132, Corollary 3];

2. Theorem 3.7 in [133] states that, if r, s, ri, si ∈R and λi ≥ 0 such that
∑n

i=1 λi = 1, then
(a) the function Wr̄,s̄(x)∏n

i=1 Wλi
ri ,si (x)

is logarithmically completely monotonic on (–ρ1,∞),

where ρ1 = min{ri, si : 1 ≤ i ≤ n} and (r̄, s̄) = (
∑n

i=1 λiri,
∑n

i=1 λisi);
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(b) the function Wr,s(x)∏n
i=1 Wλi

r,si (x)
is logarithmically completely monotonic on (–ρ2,∞) if

and only if s ≥ s̄;

(c) the function
∏n

i=1 Wλi
r,si (x)

Wr,s(x) is logarithmically completely monotonic on (–ρ2,∞) if
and only if s ≤ min{si : 1 ≤ i ≤ n}, where ρ2 = min{r, s, si : 1 ≤ i ≤ n};

3. Theorems 4.2 and 4.3 in [133] show that, if λi > 0 such that
∑n

i=0 λi = 1, then
(a) the function

∏n
i=1 Γ λi (x+si)

Γ (x+s) is greater than 1 and logarithmically completely
monotonic on (– min{s, si : 1 ≤ i ≤ n},∞) if and only if s = s̄;

(b) the function Γ (x+s)∏n
i=1 Γ λi (x+si)

is logarithmically completely monotonic on
(– min{s, si : 1 ≤ i ≤ n},∞) if and only if s ≤ min{si : 1 ≤ i ≤ n};

4. Theorems 4.7, 4.9, and 4.12 in [133] show that, if u1 ≤ u2 ≤ · · · ≤ un and
r1 ≤ r2 ≤ · · · ≤ rn such that

∑k
i=1 ui ≤ ∑k

i=1 ri for k = 2, . . . , n – 1, then
(a) the function

∏n
i=1

Γ (x+ui)
Γ (x+ri)

is logarithmically completely monotonic on
(– min{u1, r1},∞) if and only if u1 ≤ r1 and

∑n
i=1 ui ≤ ∑n

i=1 ri;
(b) the function ln

∏n
i=1

Γ (x+ui)
Γ (x+ri)

is completely monotonic on the interval
(– min{u1, r1},∞) if and only if u1 ≤ r1 and

∑n
i=1 ui =

∑n
i=1 ri;

(c) the function ln
∏n

i=1
Wri ,s(x)
Wui ,s(x) is completely monotonic on the interval

(– min{u1, r1, s},∞) if and only if
∑n

i=1 ui ≤ ∑n
i=1 ri.

9.8 Complete monotonicity of a multivariate function involving ratios of the
gamma functions

It is well known [16, Theorem 4.2.2] that a function f (x1, x2, . . . , xk) is called completely
monotonic in a cone X = X1 × X2 × · · · × Xk if it is C∞ and

(–1)n1+n2+···+nk
∂n1+n2+···+nk f (x1, x2, . . . , xk)

∂xn1
1 ∂xn2

2 · · · ∂xnk
k

≥ 0

for all n1, n2, . . . , nk ≥ 0. See also [55, Chapter XIII, Sect. 6] and the closely related refer-
ences therein. For x, y > – min{p, q}, let

G(p, q; x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[ Γ (x+p)Γ (y+q)
Γ (y+p)Γ (x+q) ]1/(p–q)(x–y), (p – q)(x – y) 
= 0;

exp[ ψ(x+p)–ψ(y+p)
x–y ], p = q, x 
= y;

exp[ ψ(x+p)–ψ(x+q)
p–q ], p 
= q, x = y;

eψ ′(x+p), p = q, x = y.

Then
1. Theorem 1 in [132] states that the function ln G(p, q; x, y) is completely monotonic on

Ω = {(p, q, x, y) : x, y > – min{p, q}, p, q, x, y ∈ R};
2. Theorem 2 in [132] states that, for fixed p, q, r, s ∈ R and ρ = min{p, q, r, s}, the

function (x, y) �→ ln G(p,q;x,y)
G(r,s;x,y) is completely monotonic on (–ρ,∞)2 if and only if

p + q ≤ r + s and min{p, q} ≤ min{r, s}.

10 Difference between trigamma and exponential functions
In [33, Lemma 2], the inequality

ψ ′(x) < e1/x – 1, x > 0, (10.1)

was obtained and applied. Hereafter, there have been some developments on this topic.
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In [82, Theorem 3.1], [116, Theorem 1.1], and [118], among other things, by different and
elementary approaches, the inequality (10.1) was generalized to complete monotonicity,
which shows that the difference

h(x) = e1/x – ψ ′(x)

is completely monotonic on (0,∞).
For α,β > 0, let

hα,β (x) = αeβ/t – ψ ′(x)

on (0,∞). Theorem 4.1 in [82] reads
1. the function h1,β (x) is completely monotonic on (0,∞) if and only if β ≥ 1;
2. if β ≥ 1 and αβ ≥ 1, the function hα,β (x) is completely monotonic on (0,∞);
3. a necessary condition for the function hα,β (x) to be completely monotonic on (0,∞)

is αβ ≥ 1;
4. if 0 < β < 1, the condition

αβ ≥ max
u∈(0,∞)

Fβ (u) > 1

is necessary and sufficient for hα,β (x) to be completely monotonic on (0,∞), where

lim
u→0+

Fβ (u) = 1 and lim
u→∞ Fβ (u) = 0

for all β > 0.
For α,β > 0, let

Hα,β (x) = hα,β (x) – α

on (0,∞). Theorem 1.3 in [75] states that
1. if (α,β) = (1, 1), then

degx
cm

[
H1,1(x)

]
= 4;

2. if β > 1, then

degx
cm

[
H1/β ,β(x)

]
= 2;

3. if αβ > 1 and β ≥ 1, or if αβ > 1, 0 < β < 1, and

αβ2 ≥ max
u∈(0,∞)

{
Gβ (u)

}
,

then

degx
cm

[
Hα,β (x)

]
= 1.
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In [130, Theorem 1] that the double inequality

1
x2 + θ (x, p) < ψ ′(x) <

1
x2 + θ (x, q), x > 0,

was proved to be valid if and only if p ≤ 1 and q ≥ 2, where

θ (x, m) =
em/(x+1) – e–m/x

2m
.

This means that

sinh
1

x + 1
< ψ ′(x + 1) <

1
2

sinh
2
x

, x > 0.

In [111], when x > 3, the inequality (10.1) was refined as

em(x) – 1 < ψ ′(x) < eM(x) – 1,

where

m(x) =
1
x

–
1

24x4 +
7

360x6 and M(x) = m(x) +
1

90x7 .

Are the functions

ψ ′(x + 1) – sinh
1

x + 1
and

1
2

sinh
2
x

– ψ ′(x + 1)

completely monotonic on (0,∞)?
By the way, we note the function e±1/x has something to do with the existence of par-

titions of unity in differential geometry and with the Lah numbers in combinatorics. For
more information, please refer to [17, 22, 35, 37, 44, 70, 74, 77, 78, 95, 104, 121, 134] and
the closely related references therein.

11 Remarks
11.1 First remark
In [45, p. 20], Kazarinoff proved the inequality

[
lnφ(t)

]′′ –
{[

lnφ(t)
]′}2 > 0, (11.1)

where

φ(t) =
∫ π/2

0
sint x dx =

√
π

2
Γ ((t + 1)/2)
Γ ((t + 2)/2)

for –1 < t < ∞. We observe that the inequality (11.1) can be rewritten as

[
ψ((t + 2)/2) – ψ((t + 1)/2)

(t + 2)/2 – (t + 1)/2

]2

+ 2
ψ ′((t + 2)/2) – ψ ′((t + 1)/2)

(t + 2)/2 – (t + 1)/2
< 0 (11.2)



Qi and Agarwal Journal of Inequalities and Applications         (2019) 2019:36 Page 35 of 42

for t > –1. Letting u = t+1
2 in (11.2) yields

[
ψ(u + 1/2) – ψ(u)

(u + 1/2) – u

]2

+ 2
ψ ′(u + 1/2) – ψ ′(u)

(u + 1/2) – u
< 0 (11.3)

for u > 0. Consequently, it is easy to see that the inequality (11.2) or (11.3) can be derived
from complete monotonicity of the function 	s,t;λ(x) defined in (4.1).

11.2 Second remark
In the proof of [19, Theorem 1.1], by using the convolution theorem for Laplace trans-
forms, the inequality

ψ ′(x + b) – ψ ′(x + a) +
1

b – a
[
ψ(x + b) – ψ(x + a)

]2 > 0,

which is equivalent to

[
ψ(x + b) – ψ(x + a)

b – a

]2

+
ψ ′(x + b) – ψ ′(x + a)

b – a
> 0,

for 0 ≤ a < b < a + 1 was proved. This result can be directly deduced from complete mono-
tonicity of the functions 	s,t(x) and 	s,t;λ(x).

11.3 Third remark
In [5, Lemma 7], the inequality

ψ ′(x) – ψ ′(x + c) >
[
ψ(x + c) – ψ(x)

]2,

which can be rearranged as

[
ψ(x + c) – ψ(x)

(x + c) – x

]2

–
1
c

ψ ′(x + c) – ψ ′(x)
(x + c) – x

< 0,

on (0,∞) for 0 < c < 1 and its reversed version for c > 1 were proved. This inequality is also
a special case of complete monotonicity of the function 	s,t;λ(x) defined in (4.1).

11.4 Fourth remark
In [24, p. 13], the following inequalities were obtained:

1
c
[
ψ(x + c) – ψ(x)

]2 > ψ ′(x) – ψ ′(x + c) >
[
ψ(x + c) – ψ(x)

]2, (11.4)

1 – q
1 – qc

[
ψq(x + c) – ψq(x)

]2 > qx[ψ ′
q(x) – ψ ′

q(x + c)
]

>
[
ψq(x + c) – ψq(x)

]2,
(11.5)

where 0 < c < 1, 0 < q < 1, and x > 0. When c > 1, the inequalities in (11.4) and (11.5) reverse.
It is clear that both inequalities in (11.4) are special cases of complete monotonicity of

the function 	s,t;λ(x).
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The inequalities (11.4) and (11.5) can be reformulated as

–
[

ψ(x + c) – ψ(x)
(x + c) – x

]2

<
ψ ′(x + c) – ψ ′(x)

(x + c) – x
< –c

[
ψ(x + c) – ψ(x)

(x + c) – x

]2

and

–
c

qx
1 – q
1 – qc

[
ψq(x + c) – ψq(x)

(x + c) – x

]2

<
ψ ′

q(x + c) – ψ ′
q(x)

(x + c) – x

< –
c

qx

[
ψq(x + c) – ψq(x)

(x + c) – x

]2

.

Stimulated by (11.5), we naturally ask a question: what are the q-analogs of the function
	s,t;λ(x)? Are they completely monotonic functions?

11.5 Fifth remark
For α,β ∈ R satisfying α 
= β and (α,β) /∈ {(0, 1), (1, 0)}, let

qα,β (t) =

⎧⎨
⎩

eβt–eαt

et–1 , t 
= 0;

β – α, t = 0.
(11.6)

It is clear that qα,0(t) = –αhα(–t), or say, hα(t) = – qα,0(–t)
α

, where hα(t) is defined by (3.9).
This implies that some properties of the function qα,β (t) can be applied in [128].

The function qα,β (t) plays an important role in some investigations on functions involv-
ing the ratio of two gamma functions. For more details, please refer to [64, Sect. 1.7], [106,
Sect. 4.1], the survey articles [107, 109], [26, 31, 47, 48, 60, 61, 87, 99], and the closely
related references therein.

11.6 Sixth remark
For more information on the history and properties of logarithmically completely mono-
tonic functions, please refer to [15], [27, pp. 21–23], [64, pp. 5–6, Sect. 1.5], [100, pp. 2154–
2155, Remark 8], and the closely related references therein. The notion “logarithmically
completely monotonic function” has been collected in the monograph [122]: see [122, Def-
inition 5.10], [122, Theorem 5.11], [122, Proposition 5.17], [122, Proposition 5.25], [122,
Comments 5.29], and [122, Remark 9.18].

12 Open problems
Finally, we would like to pose more open problems.

12.1 First problem
What are the q-analogs of 	s,t(x), 	s,t;λ(x), δs,t(x), δs,t;λ(x), θs,t;λ(x), and others in this paper?
What about the (logarithmically) complete monotonicity of these q-analogs?

12.2 Second problem
Can one find integral representations of the form in (1.1) for the (logarithmically) com-
pletely monotonic functions collected in this paper?
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12.3 Third problem
Motivated by [89, p. 75, Corollary 2] and others, we can naturally generalize the function
(2.1) to

fp,q;s,t(x) =
[

Γ (x + t)
Γ (x + s)

]p/(t–s)

– qx

on (–α,∞), where 0 < |t – s| 
= 1, α = min{s, t}, p 
= 0, and q ∈R. How about the monotonic-
ity and convexity of the function fp,q;s,t(x)?

12.4 Fourth problem
Motivated by the results in [40], we guess that the difference between the right and left
hand sides of (2.5) is a completely monotonic function on (0,∞).

12.5 Fifth problem
For m, n ∈N and i, j ∈N, let

fm,n;i,j(x) =
[
ψ (m)(x)

]i +
[
ψ (n)(x)

]j (12.1)

on (0,∞). It is clear that f1,2;2,1(x) = f1,2(x), a special case of the function (3.15), and that
fm,n;i,j(x) = fn,m;j,i(x). Stimulated by [38], we pose to discuss complete monotonicity of the
function (12.1).

12.6 Sixth problem
For n ∈N, let

fn(x) =
∑
km=n

[
ψ (k)(x)

]m

on (0,∞). It is clear that

f1(x) = ψ ′(x), f2(x) = 	(x), f3(x) =
[
ψ ′(x)

]3 + ψ ′′′(x),

f4(x) =
[
ψ ′(x)

]4 +
[
ψ ′′(x)

]2 + ψ (4)(x), f5(x) =
[
ψ ′(x)

]5 + ψ (5)(x),

f6(x) =
[
ψ ′(x)

]6 +
[
ψ ′′(x)

]3 +
[
ψ (3)(x)

]2 + ψ (6)(x).

For � ∈ N, prove that the functions f2�–1(x) is completely monotonic on (0,∞), but f2�(x)
is not. This problem was suggested by Dr. Li Yin (Binzhou University, Shangdong, China)
on 26 August 2018.

12.7 Seventh problem
We conjectured [72, Remark 6] that the double inequality

1
x4

[
x2 + 4x + 12
12(x + 1)2

]α

<
[
ψ ′(x)

]2 + ψ ′′(x) <
1
x4

[
x2 + 4x + 12
12(x + 1)2

]β

holds on (0,∞) if and only if α ≥ 6
5 and β ≤ 1.
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12.8 Eighth problem
The function 1

arctan x is logarithmically completely monotonic on (0,∞), but not a Stieltjes
transform. This problem was first proposed in 2010.
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