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Abstract
In this paper, using Brzdȩk and Ciepliński’s fixed point theorems in a 2-Banach space,
we investigate approximate solution for the generalized inhomogeneous radical
quadratic functional equation of the form

f (
√
ax2 + by2) = af (x) + bf (y) + D(x, y),

where f is a mapping on the set of real numbers, a,b ∈ R+ and D(x, y) is a given
function. Some stability and hyperstability properties are presented.

Keywords: Fixed point theorem; Hyperstability; Radical quadratic functional
equation; 2-Banach space

1 Introduction
In this paper, N and R denote the sets of all positive integers, and real numbers, respec-
tively. We put N0 := N ∪ 0, R0 := R \ 0 and R+ := [0,∞). Also, Y X denotes the set of all
functions from a nonempty set X to a nonempty set Y .

The study of stability problems for functional equations originates from a question of
Ulam [28] concerning the stability of group homomorphisms. Popularly speaking, the
question was “Under what conditions a mathematical object satisfying a certain property
approximately must be close to an object satisfying the property exactly?” In the following
year, Hyers [20] first partially answered Ulam’s question, and proved the Ulam stability of
Cauchy function in Banach spaces. Aoki [5] and Rassias [27] generalized the Hyers’ re-
sults by allowing the Cauchy difference to become unbounded. During the last decades,
the Ulam–Hyers–Rassias stability of functional equations has been extensively investi-
gated and generalized by many mathematicians (see [2, 3, 6–9, 11–14, 16, 24, 26, 29] and
the references therein).

Recently, a lot of papers (see, for instance, [1, 4, 15, 17–19, 21–23]) on the stability of
radical function equations have been published. The functional equation

f
(√

x2 + y2
)

= f (x) + f (y) (1)
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is called a radical quadratic functional equation. Kim et al. [23] investigated the general-
ized Hyers–Ulam–Rassias stability problem of Eq. (1) in quasi-β-Banach spaces using the
direct method. Khodaei et al. [22] introduced and solved the generalized radical quadratic
functional equation

f
(√

ax2 + by2
)

= af (x) + bf (y). (2)

They established some stability results in 2-normed spaces by using the direct method,
and proved new theorems about the generalized Ulam stability by using subadditive and
subquadratic functions in p-2-normed spaces. Cho et al. [15] proved the generalized
Hyers–Ulam stability results for Eq. (2) in quasi-β-Banach spaces by using subadditive
and subquadratic functions. Using Brzdȩk’s fixed point theorem, Aiemsomboom et al. [1]
and Kang [21] investigated the stability of Eqs. (1) and (2), respectively, where f is a self-
mapping on R.

Let (Y ,‖·, ·‖) be a 2-Banach space, D : R2 → Y a given function, and let a, b ∈ R+ be fixed.
The purpose of this paper is to prove stability and hyperstability results for the generalized
inhomogeneous quadratic radical functional equation

f
(√

ax2 + by2
)

= af (x) + bf (y) + D(x, y), x, y ∈ R0 (3)

in a 2-Banach space using Brzdȩk and Ciepliński’s fixed point results in [11].

2 Preliminaries
Let us recall some basic definitions and facts concerning 2-Banach spaces (see, for in-
stance, [11, 17, 18, 25]).

Definition 1 Let X be a linear space over R with dim X ≥ 2 and let ‖·, ·‖ : X × X → R+ be
a function satisfying the following properties:

(1) ‖x, y‖ = 0 if and only if x and y are linearly dependent;
(2) ‖x, y‖ = ‖y, x‖ for x, y ∈ X ;
(3) ‖rx, y‖ = |r|‖x, y‖ for r ∈ R and x, y ∈ X ;
(4) ‖x + y, z‖ ≤ ‖x, z‖ + ‖y, z‖ for x, y, z ∈ X .

Then the pair (X,‖·, ·‖) is called a 2-normed space.

If x ∈ X and ‖x, y‖ = 0 for all y ∈ X, then x = 0. Moreover, the functions x → ‖x, y‖ are
continuous functions of X into R+ for each fixed y ∈ X.

Definition 2 Let {xn} be a sequence in a 2-normed space X.
(1) A sequence {xn} in a 2-normed space is called a Cauchy sequence if there are linear

independent y, z ∈ X such that

lim
n,m→∞‖xn – xm, y‖ = 0 = lim

n,m→∞‖xn – xm, z‖;

(2) A sequence {xn} is said to be convergent if there exists an x ∈ X such that
limn→∞ ‖xn – x, y‖ = 0 for all y ∈ X . Then, the point x is called the limit of the
sequence {xn}, which is denoted by limn→∞ xn = x;
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(3) If every Cauchy sequence in X converges, then the 2-normed space X is called a
2-Banach space.

It is easily seen that (R2,‖·, ·‖) is a 2-Banach space, where the Euclidean 2-norm ‖·, ·‖ is
defined by

∥∥(x1, x2), (y1, y2)
∥∥ := |x1y2 – x2y1|, (x1, x2), (y1, y2) ∈ R2.

The next example following from [11, Proposition 2.3].

Example 1 If (X, 〈·, ·〉) is a real Hilbert space, then (X,‖·, ·‖) is a 2-Banach space, where
‖·, ·‖ is given by

‖x, y‖ :=
√‖x‖2‖y‖2 – 〈x, y〉2, x, y ∈ X.

3 Fixed point theorems
Recently, Brzdȩk and Ciepliński [11] proved a new fixed point theorem in 2-Banach spaces
and showed its applications to the Ulam stability of some single-variable equations and the
most important functional equation in several variables, namely, the Cauchy equation.
And they extended the fixed point result to the n-normed spaces in [10].

Let us introduce the following hypotheses:
(H1) X is a nonempty set, (Y ,‖·, ·‖) is a 2-Banach space, Y0 is a subset of Y containing

two linearly independent vectors;
(H2) j ∈ N, f1, . . . , fj : X → X , g1, . . . , gj : Y0 → Y0, and L1, . . . , Lj : X × Y0 → R+ are given

maps;
(H3) T : Y X → Y X is an operator satisfying the inequality

∥∥(T ξ )(x) – (T η)(x), z
∥∥ ≤

j∑

i=1

Li(x, y)
∥∥ξ

(
fi(x)

)
– η

(
fi(x)

)
, gi(z)

∥∥, (4)

where ξ ,η ∈ Y X , x ∈ X, z ∈ Y0;
(H4) Λ : RX×Y0

+ → RX×Y0
+ is an operator defined by

(Λδ)(x, z) :=
j∑

i=1

Li(x, z)δ
(
fi(x), gi(z)

)
, δ ∈ RX×Y0

+ , x ∈ X, z ∈ Y0. (5)

Now, we are in a position to present the above mentioned fixed point result. We use it
to assert the existence of a unique fixed point of operator T : Y X → Y X .

Theorem 1 Let hypotheses (H1)–(H4) hold and functions ε : X × Y0 → R+ and ϕ : X → Y
fulfill the following two conditions:

∥∥(T ϕ)(x) – ϕ(x), z
∥∥ ≤ ε(x, z), x ∈ X, z ∈ Y0 (6)

and

ε∗(x, z) :=
∞∑

l=0

(
Λlε

)
(x, z) < ∞, x ∈ X, z ∈ Y0. (7)
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Then, there exists a unique fixed point ψ of T with

∥∥ϕ(x) – ψ(x), z
∥∥ ≤ ε∗(x, z), x ∈ X, z ∈ Y0. (8)

Moreover,

ψ(x) = lim
l→∞

(
T lϕ

)
(x), x ∈ X.

4 The main results
In this section, we investigate the stability and hyperstability of the generalized inhomo-
geneous radical quadratic functional equation (3) in 2-Banach spaces by using Theorem 1.
In what follows, we assume that a, b ∈ N are fixed, (Y ,‖·, ·‖) is a 2-Banach space, and Y0 is
a subset of Y containing two linearly independent vectors.

Theorem 2 Let h1, h2 : R0 × Y0 → R+ be two functions such that

M0 :=
{

n ∈ N : kn :=
1
a
λ1

(
a + bn2)λ2

(
a + bn2) +

b
a
λ1

(
n2)λ2

(
n2) < 1

}

�= ∅, (9)

where

λi(n) := inf
{

t ∈ R+ : hi
(
nx2, z

) ≤ thi
(
x2, z

)}
,

where x ∈ R0, z ∈ Y0, i = 1, 2, n ∈ N. Suppose that f : R → Y satisfies the inequality

∥∥f
(√

ax2 + by2
)

– af (x) – bf (y), z
∥∥ ≤ h1

(
x2, z

)
h2

(
y2, z

)
, (10)

where x, y ∈ R0, z ∈ Y0. Then there exists a unique solution Q : R → Y of (2) such that

∥∥f (x) – Q(x), z
∥∥ ≤ λ0(x, z), x ∈ R0, z ∈ Y0, (11)

where

λ0(x, z) := inf
m∈M0

{
λ2(m2)h1(x2, z)h2(x2, z)

a(1 – km)
, x ∈ R0, z ∈ Y0

}
.

Proof Putting y = mx in (10), we obtain that

∥∥f
(√(

a + bm2
)
x2

)
– af (x) – bf (mx), z

∥∥ ≤ h1
(
x2, z

)
h2

(
m2x2, z

)
, (12)

where m ∈ N, x ∈ R0, z ∈ Y0, and so

∥∥∥∥
1
a

f
(√(

a + bm2
)
x2

)
–

b
a

f (mx) – f (x), z
∥∥∥∥ ≤ 1

a
h1

(
x2, z

)
h2

(
m2x2, z

)
, (13)

where m ∈ N, x ∈ R0, z ∈ Y0.
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For each m ∈ N, we define the operators Tm : Y R0 → Y R0 and Λm : RR0×Y0
+ → RR0×Y0

+ by

(Tmξ )(x) :=
1
a
ξ
(√(

a + bm2
)
x2

)
–

b
a
ξ (mx),

(Λmδ)(x, z) :=
1
a
δ
(√(

a + bm2
)
x2, z

)
+

b
a
δ(mx, z),

where x ∈ R0, ξ ∈ Y R0 , δ ∈ RR0×Y0
+ , z ∈ Y0. Then the operator Λm has the form (5) with X :=

R0, j = 2, f1(x) :=
√

(a + bm2)x2, f2(x) := mx, g1(z) = g2(z) := z, L1(x, z) := 1
a and L2(x, z) := b

a
for all x ∈ R0 and z ∈ Y0. Next, put

εm(x, z) :=
1
a

h1
(
x2, z

)
h2

(
m2x2, z

)
, m ∈ N, x ∈ R0, z ∈ Y0

and observe that

εm(x, z) =
1
a

h1
(
x2, z

)
h2

(
m2x2, z

) ≤ 1
a
λ2

(
m2)h1

(
x2, z

)
h2

(
x2, z

)
,

where m ∈ N, x ∈ R0, z ∈ Y0. Then, inequality (13) can be rewritten as

∥∥(Tmf )(x) – f (x), z
∥∥ ≤ εm(x, z), m ∈ N, x ∈ R0, z ∈ Y0,

and we have

∥∥(Tmξ )(x) – (Tmη)(x)), z
∥∥

=
∥∥∥∥

1
a
ξ
(√(

a + bm2
)
x2

)
–

b
a
ξ (mx)

–
1
a
η
(√(

a + bm2
)
x2

)
+

b
a
η(mx), z

∥∥∥∥

≤
∥∥∥∥

1
a
ξ
(√(

a + bm2
)
x2

)
–

1
a
η
(√(

a + bm2
)
x2

)
, z

∥∥∥∥

+
∥∥∥∥

b
a
ξ (mx) –

b
a
η(mx), z

∥∥∥∥

=
1
a
∥∥ξ

(√(
a + bm2

)
x2

)
– η

(√(
a + bm2

)
x2

)
, z

∥∥

+
b
a
∥∥ξ (mx) – η(mx), z

∥∥

= L1(x, z)
∥∥ξ

(
f1(x)

)
– η

(
f1(x)

)
, z

∥∥

+ L2(x, z)
∥∥ξ

(
f2(x)

)
– η

(
f2(x)

)
, z

∥∥ (14)

for any x ∈ R0, ξ ,η ∈ Y R0 , z ∈ Y0. Therefore,

∥∥(Tmξ )(x) – (Tmη)(x)), z
∥∥ ≤

2∑

i=1

Li(x, z)
∥∥ξ

(
fi(x)

)
– η

(
fi(x)

)
, z

∥∥, (15)

so (4) holds for T := Tm with m ∈ N. By the definition of λi(n), we have

hi
(
nx2, z

) ≤ λi(n)hi
(
x2, z

)
, x ∈ R0, z ∈ Y0, i = 1, 2, n ∈ N, (16)
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whence, using induction, we get

(
Λn

mεm
)
(x, z) ≤ 1

a
λ2

(
m2)kn

mh1
(
x2, z

)
h2

(
x2, z

)
, n ∈ N0, x ∈ R0, z ∈ Y0. (17)

Indeed, for n = 0, (17) is obviously true. Next, we will assume that (17) holds for n = j,
where j ∈ N. Then, we have

(
Λj+1

m εm
)
(x, z)

=
(
Λm

(
Λj

mεm(x, z)
))

=
1
a
(
Λj

mεm
)(√(

a + bm2
)
x2, z

)
+

b
a
(
Λj

mεm
)
(mx, z)

≤ 1
a2 λ2

(
m2)kj

mh1
((

a + bm2)x2, z
)
h2

((
a + bm2)x2, z

)

+
b
a

1
a
λ2

(
m2)kj

mh1
(
m2x2, z

)
h2

(
m2x2, z

)

≤ 1
a
λ2

(
m2)kj

mh1
(
x2, z

)
h2

(
x2, z

)[1
a
λ1

(
a + bm2)λ2

(
a + bm2)

+
b
a
λ1

(
m2)λ2

(
m2)

]

=
1
a
λ2

(
m2)kj+1

m h1
(
x2, z

)
h2

(
x2, z

)
, x ∈ R0, z ∈ Y0, m ∈ M0.

This shows that (17) holds for n = j + 1. Now we can conclude that inequality (17) holds
for all n ∈ N0. Therefore, by (17), we obtain that

ε∗
m(x, z) =

∞∑

n=0

(
Λn

mεm
)
(x, z)

≤ 1
a
λ2

(
m2)h1

(
x2, z

)
h2

(
x2, z

) ∞∑

n=0

kn
m

=
λ2(m2)h1(x2, z)h2(x2, z)

a(1 – km)

for all x ∈ R0, z ∈ Y0 and m ∈ M0. Thus, according to Theorem 1, for any m ∈ M0, there
exists a unique fixed point Q′

m : R0 → Y of Tm, which satisfies the estimate

∥∥f (x) – Q′
m(x), z

∥∥ ≤ ε∗
m(x, z) ≤ λ2(m2)h1(x2, z)h2(x2, z)

a(1 – km)
, (18)

where x ∈ R0, z ∈ Y0, m ∈ M0. Moreover,

Q′
m(x) := lim

n→∞
(
T n

m f
)
(x), x ∈ R0, m ∈ M0.

and for any m ∈ M0, the function Qm : R → Y , given by the formula

Qm(0) = 0, Qm(x) := Q′
m(x), x ∈ R0,
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is a solution of the equation

Q(x) =
1
a

Q
(√(

a + bm2
)
x2

)
–

b
a

Q(mx), x ∈ R, m ∈ M0. (19)

Now, we show that

∥∥(
T n

m f
)(√

ax2 + by2
)

– a
(
T n

m f
)
(x) – b

(
T n

m f
)
(y), z

∥∥

≤ kn
mh1

(
x2, z

)
h2

(
y2, z

)
(20)

for any x, y ∈ R0, z ∈ Y0, m ∈ M0 and n ∈ N0.
Since the case n = 0 follows immediately from (10), take j ∈ N0 and assume that (20)

holds for n = j, x, y ∈ R0, m ∈ M0 and z ∈ Y . Then, by (16), we get

∥∥(
T j+1

m f
)(√

ax2 + by2
)

– a
(
T j+1

m f
)
(x) – b

(
T j+1

m f
)
(y), z

∥∥

=
∥∥∥∥

1
a
(
T j

mf
)(√(

a + bm2
)(

ax2 + by2
))

–
b
a
(
T j

mf
)(

m
√

ax2 + by2
)

–
(
T j

mf
)(√(

a + bm2
)
x2

)
+ b

(
T j

mf
)
(mx)

–
b
a
(
T j

mf
)(√(

a + bm2
)
y2

)
+

b2

a
(
T j

mf
)
(my), z

∥∥∥∥

≤
∥∥∥∥

1
a
(
T j

mf
)(√(

a + bm2
)(

ax2 + by2
))

–
(
T j

mf
)(√(

a + bm2
)
x2

)

–
b
a
(
T j

mf
)(√(

a + bm2
)
y2

)
, z

∥∥∥∥

+
∥∥∥∥

b
a
(
T j

mf
)(

m
√

ax2 + by2
)

– b
(
T j

mf
)
(mx) –

b2

a
(
T j

mf
)
(my), z

∥∥∥∥

≤ 1
a

kj
mh1

((
a + bm2)x2, z

)
h2

((
a + bm2)y2, z

)

+
b
a

kj
mh1

(
m2x2, z

)
h2

(
m2y2, z

)

≤ kj
mh1

(
x2, z

)
h2

(
y2, z

)[1
a
λ1

(
a + bm2)λ2

(
a + bm2) +

b
a
λ1

(
m2)λ2

(
m2)

]

= kj+1
m h1

(
x2, z

)
h2

(
y2, z

)
, x, y ∈ R0, z ∈ Y0, m ∈ M0.

Thus, by induction, we have shown that (20) holds for any n ∈ N0, x, y ∈ R0, z ∈ Y0 and
m ∈ M0. Letting n → ∞ in (20) and using Lemmas 2.1 and 2.2 in [11], we obtain that

Qm
(√

ax2 + by2
)

= aQm(x) + bQm(y), x, y ∈ R0, m ∈ M0. (21)

This way, for each m ∈ M0, we obtain a function Qm such that (21) holds for x, y ∈ R and

∥∥f (x) – Qm(x), z
∥∥ ≤ λ2(m2)h1(x2, z)h2(x2, z)

a(1 – km)
, x ∈ R, z ∈ Y0, m ∈ M0. (22)
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Let L > 0 be a constant. Next, we will see that every generalized radical quadratic map-
ping Q : R → Y satisfying the inequality

∥∥f (x) – Q(x), z
∥∥ ≤ Lh1

(
x2, z

)
h2

(
x2, z

)
, x ∈ R0, z ∈ Y0 (23)

is equal to Qm for any m ∈ M0. To do this, fix s ∈ M0 and let Q : R → Y be a generalized
radical quadratic mapping satisfying (23). By (18), we have

∥∥Qs(x) – Q(x), z
∥∥ ≤ ∥∥Qs(x) – f (x), z

∥∥ +
∥∥f (x) – Q(x), z

∥∥

≤
(

λ2(s2)
a(1 – ks)

+ L
)

h1
(
x2, z

)
h2

(
x2, z

)

= L0h1
(
x2, z

)
h2

(
x2, z

) ∞∑

n=0

kn
s , x ∈ R0, z ∈ Y0, (24)

where L0 = aL(1 – ks) + λ2(s2). Observe also that Q and Qs are solutions of equation (19)
for any m ∈ M0.

Now, we will see that, for any j ∈ N0,

∥∥Qs(x) – Q(x), z
∥∥ ≤ L0h1

(
x2, z

)
h2

(
x2, z

) ∞∑

n=j

kn
s , x ∈ R0, z ∈ Y0. (25)

The case j = 0 follows from the previous inequality. Fix a j ∈ N0 and assume that (25) holds.
Then, by (16), we get

∥∥Qs(x) – Q(x), z
∥∥

=
∥∥∥∥

1
a

Qs
(√(

a + bs2
)
x2

)
–

b
a

Qs(sx) –
1
a

Q
(√(

a + bs2
)
x2

)
+

b
a

Q(sx), z
∥∥∥∥

≤
∥∥∥∥

1
a

Qs
(√(

a + bs2
)
x2

)
–

1
a

Q
(√(

a + bs2
)
x2

)
, z

∥∥∥∥

+
∥∥∥∥

b
a

Qs(sx) –
b
a

Q(sx), z
∥∥∥∥

≤ 1
a

L0h1
((

a + bs2)x2, z
)
h2

((
a + bs2)x2, z

) ∞∑

n=j

kn
s

+
b
a

L0h1
(
s2x2, z

)
h2

(
s2x2, z

) ∞∑

n=j

kn
s

≤ L0h1
(
x2, z

)
h2

(
x2, z

)(1
a
λ1

(
a + bs2)λ2

(
a + bs2) +

b
a
λ1

(
s2)λ2

(
s2)

) ∞∑

n=j

kn
s

= L0h1
(
x2, z

)
h2

(
x2, z

) ∞∑

n=j+1

kn
s , x ∈ R0, z ∈ Y0. (26)
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Thus (25) is valid for any j ∈ N0. Letting j → ∞ in (25) and using Lemma 2.1 in [11], we
get

Q(x) = Qs(x), x ∈ R0, (27)

which, together with Q(0) = Qs(0) = 0, gives Q = Qs. This means that Qm = Qs for any
m ∈ M0. Therefore, by (18), we have

∥∥f (x) – Qs(x), z
∥∥ ≤ λ2(m2)h1(x2, z)h2(x2, z)

a(1 – km)
, x ∈ R0, z ∈ Y0, m ∈ M0. (28)

Hence, we get inequality (11) with Q := Qs. �

In a similar way, one can prove the following.

Theorem 3 Let H : R0 × Y0 → R+ be a function such that

M :=
{

n ∈ N :
1
a
ρ
(
a + bn2) +

b
a
ρ
(
n2) < 1

}
�= ∅, (29)

where

ρ(n) := inf
{

t ∈ R+ : H
(
nx2, z

) ≤ tH
(
x2, z

)
, x ∈ R0, z ∈ Y0, n ∈ N

}
.

Suppose that f : R → Y satisfies the inequality

∥∥f
(√

ax2 + by2
)

– af (x) – bf (y), z
∥∥ ≤ H

(
x2, z

)
+ H

(
y2, z

)
, (30)

where x, y ∈ R0, z ∈ Y0. Then there exists a unique solution Q : R → Y of (2) such that

∥∥f (x) – Q(x), z
∥∥ ≤ ρ0(x, z), x ∈ R0, z ∈ Y0, (31)

where

ρ0(x, z) := inf
m∈M

{
(1 + ρ(m2))H(x2, z)

a – ρ(a + bm2) – bρ(m2)
, x ∈ R0, z ∈ Y0

}
.

From the above theorems we can obtain results analogous to Theorems 2 and 3 for the
inhomogeneous radical quadratic functional equation.

Corollary 1 Let h1, h2 : R0 × Y0 → R+, f : R → Y and D : R2 → Y such that (9) holds, and

∥∥f
(√

ax2 + by2
)

– af (x) – bf (y) – D(x, y), z
∥∥ ≤ h1

(
x2, z

)
h2

(
y2, z

)
, (32)

where x, y ∈ R0, z ∈ Y0. Assume that (3) has a solution f0 : R → Y . Then there exists a unique
solution F : R → Y of (3) such that

∥∥f (x) – F(x), z
∥∥ ≤ λ0(x, z), x ∈ R0, z ∈ Y0, (33)

where λ0(x, z) is defined as in Theorem 2.
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Proof Write f1 := f – f0. Then, we have

∥∥f1
(√

ax2 + by2
)

– af1(x) – bf1(y), z
∥∥

=
∥∥f

(√
ax2 + by2

)
– af (x) – bf (y) – D(x, y)

–
(
f0

(√
ax2 + by2

)
– af0(x) – bf0(y) – D(x, y)

)
, z

∥∥

=
∥∥f

(√
ax2 + by2

)
– af (x) – bf (y) – D(x, y), z

∥∥

≤ h1
(
x2, z

)
h2

(
y2, z

)
, x, y ∈ R0, z ∈ Y0,

and, according to Theorem 2, there is a unique solution Q : R → Y of (2) such that

∥∥f1(x) – Q(x), z
∥∥ ≤ λ0(x, z), x ∈ R0, z ∈ Y0,

where λ0(x, z) is defined as in Theorem 2. Let F = f0 + Q. Then F is a solution to (3) and
(33) holds. The uniqueness of F follows from the uniqueness of Q (see [6, Corollary 4]). �

Corollary 2 Let H : R0 × Y0 → R+, f : R → Y and D : R2 → Y such that (29) holds, and

∥∥f
(√

ax2 + by2
)

– af (x) – bf (y) – D(x, y), z
∥∥ ≤ H

(
x2, z

)
+ H

(
y2, z

)
, (34)

where x, y ∈ R0, z ∈ Y0. Assume that (3) admits a solution f0 : R → Y . Then there exists a
unique solution F : R → Y of (3) such that

∥∥f (x) – F(x), z
∥∥ ≤ ρ0(x, z), x ∈ R0, z ∈ Y0, (35)

where ρ0(x, z) is defined as in Theorem 3.

Corollaries 1 and 2 yield at once the following hyperstability results.

Corollary 3 Let h1, h2 : R0 × Y0 → R+ be functions such that

sup
n∈N

{
λ1

(
a + bn2)λ2

(
a + bn2) + bλ1

(
n2)λ2

(
n2)} < a,

inf
n∈N

{
λ2

(
n2)} = 0,

(36)

where λi(·) (i = 1, 2) are defined as in Theorem 2. Assume that Eq. (3) has a solution f0. Then
any function f : R → Y , which satisfies f (0) = f0(0) and inequality (32), is a solution of (3).

Corollary 4 Let H : R0 × Y0 → R+ be function such that

sup
n∈N

{
ρ
(
a + bn2) + bρ

(
n2)} < a, inf

n∈N

{
ρ
(
n2)} = –1, (37)

where ρ(·) is defined as in Theorem 3. Assume that (3) has a solution f0. Then any function
f : R → Y , which satisfies f (0) = f0(0) and inequality (34), is a solution of (3).

According to Corollaries 3 and 4, we derive the following particular cases.
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Corollary 5 Let h1, h2 : R0 × Y0 → R+ be functions such that

lim
n→∞

(
λ1

(
a + bn2)λ2

(
a + bn2) + bλ1

(
m2)λ2

(
n2)) = 0, lim

n→∞λ2
(
n2) = 0, (38)

where λi(·) (i = 1, 2) are defined as in Theorem 2. Assume that (3) has a solution f0. Then
any function f : R → Y , which satisfies f (0) = f0(0) and inequality (32), is a solution of (3).

Corollary 6 Let H : R0 × Y0 → R+ be function such that

lim
n→∞

(
ρ
(
a + bn2) + bρ

(
n2)) = 0, lim

n→∞ρ
(
n2) = –1,

where ρ(·) is defined as in Theorem 3. Assume that (3) has a solution f0. Then any function
f : R → Y , which satisfies f (0) = f0(0) and inequality (34), is a solution of (3).

Next, we derive some hyperstability results for particular forms of h1, h2, H and (3).

Corollary 7 Let θ ∈ R+ and let p, q ∈ R be such that p + q < 0. Assume that Eq. (3) has a
solution f0. If f : R → Y satisfies f (0) = f0(0) and the inequality

∥∥f
(√

ax2 + by2
)

– af (x) – bf (y) – D(x, y), z
∥∥ ≤ θ |x|p|y|q, x, y ∈ R0, z ∈ Y , (39)

then f is a solution of (3).

Proof Define h1, h2 : R0 ×Y0 → R+ by h1(x2, z) = θ1|x|p and h2(y2, z) = θ2|y|p, where θ1, θ2 ∈
R+ with θ = θ1θ2. Then, we have

λ1(n) = inf
{

t ∈ R+ : h1
(
nx2, z

) ≤ th1
(
x2, z

)
, x ∈ R0, z ∈ Y0

}

= inf
{

t ∈ R+ : θ1
∣∣n1/2x2∣∣p ≤ tθ1|x|p, x ∈ R0, z ∈ Y0

}

= np/2, n ∈ N.

Similarly, we get λ2(n) = nq/2 for any n ∈ N. Thus,

lim
n→∞

(
λ1

(
a + bn2)λ2

(
a + bn2) + bλ1

(
n2)λ2

(
n2))

= lim
n→∞

((
a + bn2)(p+q)/2 + bnp+q)

= 0.

As p, q ∈ R with p + q < 0, either p < 0 or q < 0. Hence, by inequality (39), one can see
that it is sufficient to consider only the case q < 0, and thus

lim
n→∞λ2

(
n2) = lim

n→∞ nq = 0.

So, we can apply Corollary 5. �
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Corollary 8 Let θ ∈ R+ and let p, q ∈ R be such that p + q < 0. If f : R → Y satisfies f (0) = 0
and the inequality

∥∥f
(√

ax2 + by2
)

– af (x) – bf (y), z
∥∥ ≤ θ |x|p|y|q, x, y ∈ R0, z ∈ Y ,

then f is a solution of (2).

Similarly, we can prove the following.

Corollary 9 Let θ ∈ R+ and consider p ∈ R with p < 0. Assume that (3) has a solution f0. If
f : R → Y satisfies f (0) = f0(0) and the inequality

∥∥f
(√

ax2 + by2
)

– af (x) – bf (y) – D(x, y), z
∥∥ ≤ θ

(|x|p + |y|p),

where x, y ∈ R0, z ∈ Y , then f is a solution of (3).

Corollary 10 Let θ ∈ R+ and consider p ∈ R with p < 0. If f : R → Y satisfies f (0) = 0 and
the inequality

∥∥f
(√

ax2 + by2
)

– af (x) – bf (y), z
∥∥ ≤ θ

(|x|p + |y|p), x, y ∈ R0, z ∈ Y ,

then f is a solution of (2).
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