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Abstract
Let 0 < α < n andMα be the fractional maximal function. The nonlinear commutator
ofMα and a locally integrable function b is given by [b,Mα ](f ) = bMα (f ) –Mα (bf ). In
this paper, we mainly give some necessary and sufficient conditions for the
boundedness of [b,Mα ] on variable Lebesgue spaces when b belongs to Lipschitz or
BMO(Rn) spaces, by which some new characterizations for certain subclasses of
Lipschitz and BMO(Rn) spaces are obtained.
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1 Introduction and main results
Let T be the classical singular integral operator. In 1976, Coifman, Rochberg and Weiss
[4] studied the commutator generated by T and a function b ∈ BMO(Rn) as follows:

[b, T](f )(x) = T
((

b(x) – b(·))f (·))(x) = b(x)T(f )(x) – T(bf )(x). (1.1)

A well-known result states that [b, T] is bounded on Lp(Rn) for 1 < p < ∞ if and only if
b ∈ BMO(Rn). The sufficiency was obtained by Coifman, Rochberg and Weiss [4] and the
necessity was proved by Janson [19]. Moreover, Janson also gave some characterizations
of the Lipschitz space Λ̇β (Rn) (see Definition 1.2 below) via commutator [b, T] in [19] and
proved that [b, T] is bounded from Lp(Rn) to Lq(Rn), for 1 < p < n/β , 1/p – 1/q = β/n and
0 < β < 1, if and only if b ∈ Λ̇β (Rn) (see also Paluszyński [24]).

As usual, a cube Q ⊂ R
n always has its sides parallel to the coordinate axes. Denote by

|Q| the Lebesgue measure and χQ the characteristic function of Q. For f ∈ L1
loc(Rn), we

write

fQ =
1

|Q|
∫

Q
f (x) dx.
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For 0 ≤ α < n and f ∈ L1
loc(Rn), the fractional maximal function Mα is given by

Mα(f )(x) = sup
Q�x

1
|Q|1–α/n

∫

Q

∣
∣f (y)

∣
∣dy,

where the supremum is taken over all cubes Q ⊂R
n containing x. When α = 0, we simply

write M instead of M0, which is exactly the Hardy–Littlewood maximal function.
Similar to (1.1), we can define two different kinds of commutator of the fractional max-

imal function as follows.

Definition 1.1 Let 0 ≤ α < n and b be a locally integrable function. The maximal com-
mutator of Mα and b is given by

Mα,b(f )(x) = sup
Q�x

1
|Q|1–α/n

∫

Q

∣∣b(x) – b(y)
∣∣∣∣f (y)

∣∣dy,

where the supremum is taken over all cubes Q ⊂R
n containing x.

The nonlinear commutator of Mα and b is defined by

[b, Mα](f )(x) = b(x)Mα(f )(x) – Mα(bf )(x).

When α = 0, we simply denote by Mb := M0,b and [b, M] := [b, M0].
We call [b, Mα] the nonlinear commutator because it is not even a sublinear operator,

although the commutator [b, T] is a linear one. We would like to remark that the nonlinear
commutator [b, Mα] and the maximal commutator Mα,b essentially differ from each other.
For example, Mα,b is positive and sublinear, but [b, Mα] is neither positive nor sublinear.

The mapping property of [b, Mα] has been extensively studied; see [1, 2, 8, 12, 13, 16, 23,
25–31], for instance. There are some applications of nonlinear commutators in analysis.
For example, [b, M] can be used in studying the products of functions in H1 and BMO (see
[3], for instance).

In 1990, by using the real interpolation techniques, Milman and Schonbek [23] obtained
a commutator result, by which they obtained the Lp-boundedness of [b, M] and [b, Mα]
(0 < α < n) when b ∈ BMO(Rn) and b ≥ 0. In 2000, Bastero, Milman and Ruiz [2] consid-
ered the necessary and sufficient conditions for the boundedness of [b, M] in Lp(Rn) when
b belongs to BMO(Rn). In 2009, Zhang and Wu [28] extended their results to commutators
of the fractional maximal function. The results in [2] and [28] were extended to variable
Lebesgue spaces in [29] and [30].

Recently, Zhang [26] studied the commutator [b, M] when b belongs to Lipschitz spaces.
Some necessary and sufficient conditions for the boundedness of [b, M] on Lebesgue and
Morrey spaces are given. Some of the results were extended to variable Lebesgue spaces
in [27] and to the context of Orlicz spaces in [15, 16] and [31].

Motivated by the papers mentioned above, in this paper, we mainly study the mapping
properties of [b, Mα] in variable Lebesgue spaces when b belongs to Lipschitz or BMO(Rn)
spaces. More precisely, we will give some new necessary and sufficient conditions for the
boundedness of [b, Mα] on variable Lebesgue spaces, by which some new characteriza-
tions for certain subclasses of Lipschitz and BMO(Rn) spaces are obtained. Moreover, our
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results also give affirmative answers to the questions mentioned in [16] and [29] (see Re-
marks 1.4 and 1.5 below, respectively). We would like to note that some of our results are
new even in the case of Lebesgue spaces with constant exponents.

To state the results, we first recall some definitions and notations.
Let γ ≥ 0, for a fixed cube Q0, the fractional maximal function with respect to Q0 of a

locally integrable function f is given by

Mγ ,Q0 (f )(x) = sup
Q�x

Q⊆Q0

1
|Q|1–γ /n

∫

Q

∣∣f (y)
∣∣dy,

where the supremum is taken over all cubes Q such that x ∈ Q ⊆ Q0.
When γ = 0, we simply write MQ0 instead of M0,Q0 .

Definition 1.2 For 0 < β < 1, we say a function b belongs to the Lipschitz space Λ̇β (Rn),
denoted by b ∈ Λ̇β (Rn), if there exists a constant C > 0 such that for all x, y ∈R

n,

∣∣b(x) – b(y)
∣∣ ≤ C|x – y|β .

The smallest such constant C is called the Λ̇β norm of b and is denoted by ‖b‖Λ̇β
.

Definition 1.3 A locally integrable function f is said to belong to BMO(Rn) if

‖f ‖BMO := sup
Q

1
|Q|

∫

Q

∣∣f (x) – fQ
∣∣dx < ∞,

where the supremum is taken over all cubes Q in R
n.

For a function b defined on R
n, we denote by

b–(x) =

⎧
⎨

⎩
0, if b(x) ≥ 0,

|b(x)|, if b(x) < 0,

and b+(x) = |b(x)| – b–(x). Obviously, b+(x) – b–(x) = b(x).

Definition 1.4 Let p(·) : Rn → [1,∞) be a measurable function. The variable Lebesgue
space, Lp(·)(Rn), is defined by

Lp(·)(
R

n) =
{

f measurable:
∫

Rn

( |f (x)|
λ

)p(x)

dx < ∞ for some constant λ > 0
}

.

The set Lp(·)(Rn) becomes a Banach space with respect to the norm

‖f ‖Lp(·)(Rn) = inf

{
λ > 0 :

∫

Rn

( |f (x)|
λ

)p(x)

dx ≤ 1
}

.

We refer to [5, 10, 21] and [22] for more details on function spaces with variable expo-
nents.



Zhang et al. Journal of Inequalities and Applications          (2019) 2019:9 Page 4 of 17

Denote by P(Rn) the set of all measurable functions p(·) : Rn → [1,∞) such that

1 < p– := ess inf
x∈Rn

p(x) and p+ : = ess sup
x∈Rn

p(x) < ∞,

and by B(Rn) the set of all p(·) ∈ P(Rn) such that M is bounded on Lp(·)(Rn).

Remark 1.1 If p(·) ∈ B(Rn) and λ > 1, then λp(·) ∈ B(Rn). See Remark 2.13 in [6].

For notational convenience, we introduce a notation Bγ (Rn) as follows.

Definition 1.5 Let 0 < γ < n. We say that an ordered pair of variable exponents (p(·),
q(·)) ∈ Bγ (Rn), if p(·) ∈ P(Rn) with p+ < n/γ and 1/q(·) = 1/p(·) –γ /n with q(·)(n –γ )/n ∈
B(Rn).

Remark 1.2 The condition q(·)(n – γ )/n ∈ B(Rn) is equivalent to saying that there exists
a q0 with n/(n – γ ) < q0 < ∞ such that q(·)/q0 ∈ B(Rn). Moreover, q(·)(n – γ )/n ∈ B(Rn)
implies q(·) ∈ B(Rn). See Remark 2.13 in [6] for details.

Our results can be stated as follows.

Theorem 1.1 Let 0 < β < 1, 0 < α < n, 0 < α + β < n and let b be a locally integrable func-
tion. Then the following statements are equivalent:

(1) b ∈ Λ̇β (Rn) and b ≥ 0.
(2) [b, Mα] is bounded from Lp(·)(Rn) to Lq(·)(Rn) for some (p(·), q(·)) ∈ Bα+β (Rn).
(3) [b, Mα] is bounded from Lp(·)(Rn) to Lq(·)(Rn) for all (p(·), q(·)) ∈ Bα+β (Rn).
(4) There exists an s(·) ∈ B(Rn) such that

sup
Q

1
|Q|β/n

‖(b – |Q|–α/nMα,Q(b))χQ‖Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)
< ∞. (1.2)

(5) For all s(·) ∈ B(Rn) we have (1.2).

Remark 1.3 For the case α = 0, the result was proved in [27]. Moreover, (1.2) gives a new
characterization of nonnegative Lipschitz functions, compared with [27, Theorem 1.5].

For the case of p(·) and q(·) being constants, we have the following result from Theo-
rem 1.1, which is new even for this case.

Corollary 1.1 Let 0 < β < 1, 0 < α < n, 0 < α + β < n and let b be a locally integrable func-
tion. Then the following statements are equivalent:

(1) b ∈ Λ̇β (Rn) and b ≥ 0.
(2) [b, Mα] is bounded from Lp(Rn) to Lq(Rn) for some p and q such that

1 < p < n/(α + β) and 1/q = 1/p – (α + β)/n.
(3) [b, Mα] is bounded from Lp(Rn) to Lq(Rn) for all p and q such that 1 < p < n/(α + β)

and 1/q = 1/p – (α + β)/n.
(4) There exists s ∈ [1,∞) such that

sup
Q

1
|Q|β/n

(
1

|Q|
∫

Q

∣∣b(x) – |Q|–α/nMα,Q(b)(x)
∣∣s dx

)1/s

< ∞. (1.3)
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(5) For all s ∈ [1,∞) we have (1.3).

Remark 1.4 The result was proved for α = 0 in [26, Theorem 1.4]. Corollary 1.1 improves
the result of [16, Corollary 4.15] essentially and answers a question asked in [16, Re-
mark 4.17] affirmatively. Moreover, it was proved in [26, Theorem 1.4], see also Lemma 2.2
below, that b ∈ Λ̇β (Rn) and b ≥ 0 if and only if

sup
Q

1
|Q|β/n

(
1

|Q|
∫

Q

∣
∣b(x) – MQ(b)(x)

∣
∣s dx

)1/s

< ∞. (1.4)

Compared with (1.4), (1.3) gives a new characterization for nonnegative Lipschitz func-
tions.

Theorem 1.2 Let 0 < α < n and b be a locally integrable function. Then the following state-
ments are equivalent:

(1) b ∈ BMO(Rn) and b– ∈ L∞(Rn).
(2) [b, Mα] is bounded from Lp(·)(Rn) to Lq(·)(Rn) for some (p(·), q(·)) ∈ Bα(Rn).
(3) [b, Mα] is bounded from Lp(·)(Rn) to Lq(·)(Rn) for all (p(·), q(·)) ∈ Bα(Rn).
(4) There exists s(·) ∈ B(Rn) such that

sup
Q

‖(b – |Q|–α/nMα,Q(b))χQ‖Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)
< ∞. (1.5)

(5) For all s(·) ∈ B(Rn) we have (1.5).

Remark 1.5 The equivalence of (1), (2) and (3) was proved in [29]. Statements (4) and (5)
give new necessary and sufficient conditions for the statements (1), (2) and (3). Especially,
(1.5) gives a new characterization for b ∈ BMO(Rn) and b– ∈ L∞(Rn), which also answers
a question asked in [29, Remark 4.1]. For the case α = 0, the result was obtained in [30].

For the case of p(·) and q(·) being constants, we have the following result by Theorem 1.2.

Corollary 1.2 Let 0 < α < n and b be a locally integrable function. Then the following state-
ments are equivalent:

(1) b ∈ BMO(Rn) and b– ∈ L∞(Rn).
(2) [b, Mα] is bounded from Lp(Rn) to Lq(Rn) for some p and q such that 1 < p < n/α and

1/q = 1/p – α/n.
(3) [b, Mα] is bounded from Lp(Rn) to Lq(Rn) for all p and q such that 1 < p < n/α and

1/q = 1/p – α/n.
(4) There exists s ∈ [1,∞) such that

sup
Q

(
1

|Q|
∫

Q

∣∣b(x) – |Q|–α/nMα,Q(b)(x)
∣∣s dx

)1/s

< ∞. (1.6)

(5) For all s ∈ [1,∞) we have (1.6).
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Remark 1.6 It was shown in [2] and [28] that statements (1), (2) and (3) are equivalent
to

sup
Q

1
|Q|

∫

Q

∣∣b(x) – MQ(b)(x)
∣∣s dx < ∞, (1.7)

respectively. Compared with (1.7), (1.6) gives a new characterization.

Next, we give some necessary and sufficient conditions for the boundedness of the max-
imal commutator Mα,b on variable Lebesgue spaces when b belongs to a Lipschitz space.

Theorem 1.3 Let 0 < β < 1, 0 < α < n, 0 < α + β < n and let b be a locally integrable func-
tion. Then the following statements are equivalent:

(1) b ∈ Λ̇β (Rn).
(2) Mα,b is bounded from Lp(·)(Rn) to Lq(·)(Rn) for some (p(·), q(·)) ∈ Bα+β (Rn).
(3) Mα,b is bounded from Lp(·)(Rn) to Lq(·)(Rn) for all (p(·), q(·)) ∈ Bα+β (Rn).
(4) There exists s(·) ∈ B(Rn) such that

sup
Q

1
|Q|β/n

‖(b – bQ)χQ‖Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)
< ∞. (1.8)

(5) For all s(·) ∈ B(Rn) we have (1.8).

Remark 1.7 For the case α = 0, similar results were given in [26] for Lebesgue spaces with
constant exponents, and in [27] for the variable case.

When p(·) and q(·) are constants, we get the following result from Theorem 1.3.

Corollary 1.3 Let 0 < β < 1, 0 < α < n, 0 < α + β < n and b be a locally integrable function.
Then the following statements are equivalent:

(1) b ∈ Λ̇β (Rn).
(2) Mα,b is bounded from Lp(Rn) to Lq(Rn) for some p and q such that 1 < p < n/(α + β)

and 1/q = 1/p – (α + β)/n.
(3) Mα,b is bounded from Lp(Rn) to Lq(Rn) for all p and q such that 1 < p < n/(α + β)

and 1/q = 1/p – (α + β)/n.
(4) There exists s ∈ [1,∞) such that

sup
Q

1
|Q|β/n

(
1

|Q|
∫

Q

∣
∣b(x) – bQ

∣
∣s dx

)1/s

< ∞ (1.9)

(5) For all s ∈ [1,∞) we have (1.9).

Remark 1.8 The equivalence of (1), (2) and (3) was proved in [26] (for α = 0) and in [16]
(for 0 < α < n). The equivalence of (1), (4) and (5) is contained in Lemma 2.1 below.

Finally, for the case of completeness of this paper, we state a result similar to Theorem 1.3
without proof, which can be deduced from [29] and [18].

Theorem 1.4 Let 0 < α < n and b be a locally integrable function. Then the following state-
ments are equivalent:
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(1) b ∈ BMO(Rn).
(2) Mα,b is bounded from Lp(·)(Rn) to Lq(·)(Rn) for some (p(·), q(·)) ∈ Bα(Rn).
(3) Mα,b is bounded from Lp(·)(Rn) to Lq(·)(Rn) for all (p(·), q(·)) ∈ Bα(Rn).
(4) There exists s(·) ∈ B(Rn) such that

sup
Q

‖(b – bQ)χQ‖Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)
< ∞. (1.10)

(5) For all s(·) ∈ B(Rn) we have (1.10).

Remark 1.9 We note that Theorem 1.4 follows from [29] and [18] directly. Indeed, the
equivalence of (1), (2) and (3) was proved in [29] Theorems 3.1 and 3.2 for α = 0 and 0 <
α < n, respectively, and the equivalence of (1), (4) and (5) was obtained in [18, Lemma 3].

If p(·) and q(·) are constants, we have a result similar to Corollary 1.3. We omit the
details.

The remainder of this paper is organized as follows. In the next section, we give some
lemmas that will be used later. In Sect. 3, we prove Theorems 1.1, 1.2 and 1.3.

2 Preliminaries and lemmas
It is known that Lipschitz space Λ̇β (Rn) coincides with some Morrey–Companato space
(see, e.g., [20]) and can be characterized by mean oscillation as in the following lemma,
which is due to DeVore and Sharpley [9] and Janson, Taibleson and Weiss [20] (see also
Paluszyński [24]).

Lemma 2.1 Let 0 < β < 1 and 1 ≤ q < ∞. Define

Λ̇β ,q
(
R

n) :=
{

f ∈ L1
loc

(
R

n) : ‖f ‖Λ̇β ,q = sup
Q

1
|Q|β/n

(
1

|Q|
∫

Q

∣∣f (x) – fQ
∣∣q dx

)1/q

< ∞
}

.

Then, for all 0 < β < 1 and 1 ≤ q < ∞, Λ̇β (Rn) = Λ̇β ,q(Rn) with equivalent norms.

From the proof of Theorem 1.4 in [26], we can obtain the following characterization of
nonnegative Lipschitz functions.

Lemma 2.2 Let 0 < β < 1 and b be a locally integrable function. Then the following state-
ments are equivalent:

(1) If b ∈ Λ̇β (Rn) and b ≥ 0.
(2) For all 1 ≤ s < ∞,

sup
Q

1
|Q|β/n

(
1

|Q|
∫

Q

∣
∣b(x) – MQ(b)(x)

∣
∣s dx

)1/s

< ∞. (2.1)

(3) (2.1) holds for some 1 ≤ s < ∞.

Proof Since the implication (2) ⇒ (3) follows readily, and the implication (3) ⇒ (1) was
proved in [26, Theorem 1.4], we only need to prove (1) ⇒ (2).
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If b ∈ Λ̇β (Rn) and b ≥ 0, then it follows from [26, Theorem 1.4] that (2.1) holds for all
s with n/(n – β) < s < ∞. Applying Hölder’s inequality, we see that (2.1) also holds for
1 ≤ s ≤ n/(n – β). So, the implication (1) ⇒ (2) is proven. �

Lemma 2.3 ([2]) Let b be a locally integrable function. Then the following statements are
equivalent:

(1) b ∈ BMO(Rn) and b– ∈ L∞(Rn).
(2) There exists s ∈ [1,∞) such that

sup
Q

1
|Q|

∫

Q

∣∣b(x) – MQ(b)(x)
∣∣s dx < ∞. (2.2)

(3) For all s ∈ [1,∞) we have (2.2).

The following strong-type estimate for the fractional maximal function is well known,
see [11] or [14] for details.

Lemma 2.4 Let 0 < γ < n, 1 < p < n/γ and 1/q = 1/p – γ /n. Then there exists a positive
constant C(n,γ , p) such that

∥∥Mγ (f )
∥∥

Lq(Rn) ≤ C(n,γ , p)‖f ‖Lp(Rn).

As for the boundedness of the fractional maximal function on variable Lebesgue spaces,
the following result was given in [6]; see Corollary 2.12 and Remark 2.13 in [6] for details.

Lemma 2.5 Let 0 < γ < n, p(·) ∈ P(Rn) with p+ < n/γ and 1/q(·) = 1/p(·) – γ /n. If q(·)(n –
γ )/n ∈ B(Rn), then Mγ is bounded from Lp(·)(Rn) to Lq(·)(Rn).

By Lemma 2.4, if 0 < γ < n, 1 < p < n/γ and f ∈ Lp(Rn), then Mγ (f )(x) < ∞ almost every-
where. A similar result is also valid in variable Lebesgue spaces.

Lemma 2.6 Let 0 < γ < n, p(·) ∈ P(Rn) and 1 < p– ≤ p+ < n/γ . If f ∈ Lp(·)(Rn), then
Mγ (f )(x) < ∞ for almost every x ∈R

n.

Proof Following the same procedure of the proof of [5, Proposition 3.15], we can achieve
the desired result. Indeed, for any f ∈ Lp(·)(Rn), by Theorem 2.51 in [5] we can write f =
f1 + f2, where f1 ∈ Lp+ (Rn) and f2 ∈ Lp– (Rn). Then Mγ (f )(x) ≤ Mγ (f1)(x) + Mγ (f2)(x). Noting
that 1 < p– ≤ p+ < n/γ and 0 < γ < n, by Lemma 2.4 we see that Mγ (f1)(x) and Mγ (f2)(x)
are finite almost everywhere. Then Mγ (f )(x) < ∞ for almost every x ∈R

n. �

We also need some basic properties of variable Lebesgue spaces. Denote by p′(·) the con-
jugate index of p(·). Obviously, if p(·) ∈ P(Rn) then p(·) ∈ P(Rn). The following lemma is
known as the generalized Hölder’s inequality in variable Lebesgue spaces; see [5] and [10]
for details.
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Lemma 2.7
(i) Let p(·) ∈ P(Rn). Then there exists a positive constant C such that for all

f ∈ Lp(·)(Rn) and g ∈ Lp′(·)(Rn),

∫

Rn

∣∣f (x)g(x)
∣∣dx ≤ C‖f ‖Lp(·)(Rn)‖g‖Lp′(·)(Rn).

(ii) Let p(·), p1(·), p2(·) ∈ P(Rn) and 1/p(·) = 1/p1(·) + 1/p2(·). Then there exists a
positive constant C such that for all f ∈ Lp1(·)(Rn) and g ∈ Lp2(·)(Rn),

‖fg‖Lp(·)(Rn) ≤ C‖f ‖Lp1(·)(Rn)‖g‖Lp2(·)(Rn).

Lemma 2.8 ([7]) Given p(·) ∈ P(Rn), for all r > 0 we have

∥
∥|f |r∥∥Lp(·)(Rn) = ‖f ‖r

Lrp(·)(Rn).

Lemma 2.9 ([17]) Let p(·) ∈ B(Rn), then there exists a constant C > 0 such that

1
|Q| ‖χQ‖Lp(·)(Rn)‖χQ‖Lp′(·)(Rn) ≤ C

for all cubes Q in R
n.

Lemma 2.10 ([27]) Let 0 < γ < n, p(·) ∈ P(Rn) with p+ < n/γ and 1/q(·) = 1/p(·) – γ /n. If
q(·)(n – γ )/n ∈ B(Rn), then there exists a constant C > 0 such that

‖χQ‖Lp(·)(Rn) ≤ C|Q|γ /n‖χQ‖Lq(·)(Rn)

for all cubes Q in R
n.

Now, we give the following pointwise estimate for [b, Mα] when b ∈ Λ̇β (Rn).

Lemma 2.11 Let 0 ≤ α < n, 0 < β < 1, 0 < α+β < n and let f be a locally integrable function.
If b ∈ Λ̇β (Rn) and b ≥ 0, then, for any x ∈R

n such that Mα(f )(x) < ∞, we have

∣
∣[b, Mα]f (x)

∣
∣ ≤ ‖b‖Λ̇β

Mα+β (f )(x).

Proof For any fixed x ∈R
n such that Mα(f )(x) < ∞, if b ≥ 0 and b ∈ Λ̇β (Rn) then

∣
∣[b, Mα](f )(x)

∣
∣ =

∣
∣b(x)Mα(f )(x) – Mα(bf )(x)

∣
∣

=
∣∣
∣∣sup

Q�x

1
|Q|1–α/n

∫

Q
b(x)

∣
∣f (y)

∣
∣dy – sup

Q�x

1
|Q|1–α/n

∫

Q
b(y)

∣
∣f (y)

∣
∣dy

∣∣
∣∣

≤ sup
Q�x

1
|Q|1–α/n

∫

Q

∣
∣b(x) – b(y)

∣
∣
∣
∣f (y)

∣
∣dy

≤ ‖b‖Λ̇β (Rn) sup
Q�x

1
|Q|1–(α+β)/n

∫

Q

∣
∣f (y)

∣
∣dy

≤ ‖b‖Λ̇β
Mα+β (f )(x). �
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Finally, we also need the following result.

Lemma 2.12 ([2, 28]) Let 0 ≤ γ < n, Q be a cube in R
n, and f be a locally integrable func-

tion. Then for all x ∈ Q,

Mγ (f χQ)(x) = Mγ ,Q(f )(x)

and

Mγ (χQ)(x) = Mγ ,Q(χQ)(x) = |Q|γ /n.

3 Proofs of Theorems 1.1, 1.2 and 1.3
To prove Theorem 1.1, we first prove the following lemma.

Lemma 3.1 Let 0 < β < 1 and 0 < γ < n. If b is a locally integrable function and satisfies

sup
Q

1
|Q|β/n

‖(b – |Q|–γ /nMγ ,Q(b))χQ‖Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)
≤ C (3.1)

for some s(·) ∈ B(Rn), then b ∈ Λ̇β (Rn).

Proof Some ideas are taken from [2, 28] and [29]. Reasoning as the proof of (4.4) in [29],
see also the proof of Lemma 2.4 in [28], we have, for any cube Q,

1
|Q|1+β/n

∫

Q

∣∣b(x) – bQ
∣∣dx ≤ 2

|Q|1+β/n

∫

Q

∣∣b(x) – |Q|–γ /nMγ ,Q(b)(x)
∣∣dx.

Indeed, for any cube Q, let E = {x ∈ Q : b(x) ≤ bQ} and F = {x ∈ Q : b(x) > bQ}. It is easy
to check that the following equality is true (see [2] page 3331):

∫

E

∣∣b(x) – bQ
∣∣dx =

∫

F

∣∣b(x) – bQ
∣∣dx.

Noticing the obvious estimate

|bQ| ≤ |Q|–γ /nMγ ,Q(b)(x) for any x ∈ Q

and b(x) ≤ bQ for any x ∈ E, we have

b(x) ≤ bQ ≤ |bQ| ≤ |Q|–γ /nMγ ,Q(b)(x) for any x ∈ E.

Then, for any x ∈ E,

∣∣b(x) – bQ
∣∣ ≤ ∣∣b(x) – |Q|–γ /nMγ ,Q(b)(x)

∣∣.

Therefore,

1
|Q|1+β/n

∫

Q
|b(x) – bQ|dx =

1
|Q|1+β/n

∫

E∪F

∣
∣b(x) – bQ

∣
∣dx

=
2

|Q|1+β/n

∫

E

∣
∣b(x) – bQ

∣
∣dx
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≤ 2
|Q|1+β/n

∫

E

∣∣b(x) – |Q|–γ /nMγ ,Q(b)(x)
∣∣dx

≤ 2
|Q|1+β/n

∫

Q

∣
∣b(x) – |Q|–γ /nMγ ,Q(b)(x)

∣
∣dx.

By Lemma 2.7(i), (3.1) and Lemma 2.9, we get

1
|Q|1+β/n

∫

Q

∣∣b(x) – bQ
∣∣dx

≤ C
|Q|1+β/n

∥∥(
b – |Q|–γ /nMγ ,Q(b)

)
χQ

∥∥
Ls(·)(Rn)‖χQ‖Ls′(·)(Rn)

≤ C
|Q| ‖χQ‖Ls(·)(Rn)‖χQ‖Ls′(·)(Rn)

≤ C.

So, the proof is completed by applying Lemma 2.1. �

Proof of Theorem 1.1 Since the implications (3) ⇒ (2) and (5) ⇒ (4) follows readily, we
only need to prove (1) ⇒ (3), (2) ⇒ (4), (4) ⇒ (1), and (3) ⇒ (5).

(1) ⇒ (3). Let b ∈ Λ̇β (Rn) and b ≥ 0. We need to prove that [b, Mα] is bounded from
Lp(·)(Rn) to Lq(·)(Rn) for all (p(·), q(·)) ∈ Bα+β (Rn). For such p(·) and any f ∈ Lp(·)(Rn), it
follows from Lemma 2.6 that Mα(f )(x) < ∞ for almost every x ∈ R

n. By Lemma 2.11, we
have

∣
∣[b, Mα]f (x)

∣
∣ ≤ ‖b‖Λ̇β

Mα+β (f )(x).

Then, statement (3) follows from Lemma 2.5.
(2) ⇒ (4). Let (p(·), q(·)) ∈ Bα+β (Rn) be such that [b, Mα] is bounded from Lp(·)(Rn) to

Lq(·)(Rn). We will verify (1.2) for s(·) = q(·). For any fixed cube Q and any x ∈ Q, it follows
from Lemma 2.12 that

Mα(χQ)(x) = Mα,Q(χQ)(x) = |Q|α/n and Mα(bχQ)(x) = Mα,Q(b)(x).

Then, for any x ∈ Q,

b(x) – |Q|–α/nMα,Q(b)(x)

= |Q|–α/n(b(x)|Q|α/n – Mα,Q(b)(x)
)

= |Q|–α/n(b(x)Mα(χQ)(x) – Mα(bχQ)(x)
)

= |Q|–α/n[b, Mα](χQ)(x).

Thus

(
b(x) – |Q|–α/nMα,Q(b)(x)

)
χQ(x) = |Q|–α/n[b, Mα](χQ)(x)χQ(x).
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Noting that [b, Mα] is bounded from Lp(·)(Rn) to Lq(·)(Rn) with 1/q(·) = 1/p(·) – (α + β)/n
and applying Lemma 2.10, we have

∥
∥(

b – |Q|–α/nMα,Q(b)
)
χQ

∥
∥

Lq(·)(Rn)

≤ |Q|–α/n∥∥[b, Mα](χQ)
∥
∥

Lq(·)(Rn)

≤ C|Q|–α/n∥∥[b, Mα]
∥∥

Lp(·)→Lq(·)‖χQ‖Lp(·)(Rn)

≤ C|Q|β/n∥∥[b, Mα]
∥∥

Lp(·)→Lq(·)‖χQ‖Lq(·)(Rn),

which gives (1.2) for s(·) = q(·) since Q is arbitrary and C is independent of Q.
(4) ⇒ (1). By Lemma 2.2, it suffices to prove

sup
Q

1
|Q|1+β/n

∫

Q

∣∣b(x) – MQ(b)(x)
∣∣dx < ∞. (3.2)

For any fixed cube Q,

1
|Q|1+β/n

∫

Q

∣
∣b(x) – MQ(b)(x)

∣
∣dx

≤ 1
|Q|1+β/n

∫

Q

∣
∣b(x) – |Q|–α/nMα,Q(b)(x)

∣
∣dx

+
1

|Q|1+β/n

∫

Q

∣
∣|Q|–α/nMα,Q(b)(x) – MQ(b)(x)

∣
∣dx

:= I1 + I2. (3.3)

For I1, by statement (4) and applying Lemma 2.7(i) and Lemma 2.9, we have

I1 ≤ C
|Q|1+β/n

∥∥(
b – |Q|–α/nMα,Q(b)

)
χQ

∥∥
Ls(·)(Rn)‖χQ‖Ls′(·)(Rn)

≤ C
|Q|β/n

‖(b – |Q|–α/nMα,Q(b))χQ‖Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)

≤ C,

where the constant C is independent of Q.
Next, we consider I2. Similar to the proof of Theorem 1.1 in [31], we can get I2 ≤ C.

Now, we give the proof of this. For all x ∈ Q, it follows from Lemma 2.12 that

M(χQ)(x) = χQ(x) = 1 and M(bχQ)(x) = MQ(b)(x),

and

Mα(χQ)(x) = |Q|α/n and Mα(bχQ)(x) = Mα,Q(b)(x).

Then, for any x ∈ Q,

∣
∣|Q|–α/nMα,Q(b)(x) – MQ(b)(x)

∣
∣

≤ |Q|–α/n∣∣Mα,Q(b)(x) – |Q|α/n∣∣b(x)
∣∣∣∣ +

∣∣∣∣b(x)
∣∣ – MQ(b)(x)

∣∣
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≤ |Q|–α/n∣∣Mα(bχQ)(x) –
∣∣b(x)

∣∣Mα(χQ)(x)
∣∣

+
∣
∣
∣
∣b(x)

∣
∣M(χQ)(x) – M(bχQ)(x)

∣
∣

≤ |Q|–α/n∣∣[|b|, Mα

]
(χQ)(x)

∣∣ +
∣∣[|b|, M

]
(χQ)(x)

∣∣. (3.4)

Since s(·) ∈ B(Rn), statement (4) along with Lemma 3.1 gives b ∈ Λ̇β (Rn), which implies
|b| ∈ Λ̇β (Rn). Thus, we can apply Lemma 2.11 to [|b|, Mα] and [|b|, M] since |b| ∈ Λ̇β (Rn)
and |b| ≥ 0. By Lemmas 2.11 and 2.12, we have, for any x ∈ Q,

∣
∣[|b|, Mα

]
(χQ)(x)

∣
∣ ≤ ‖b‖Λ̇β

Mα+β (χQ)(x) ≤ C‖b‖Λ̇β
|Q|(α+β)/n

and

∣∣[|b|, M
]
(χQ)(x)

∣∣ ≤ ‖b‖Λ̇β
Mβ (χQ)(x) ≤ C‖b‖Λ̇β

|Q|β/n.

By (3.4), we have

I2 =
1

|Q|1+β/n

∫

Q

∣∣|Q|–α/nMα,Q(b)(x) – MQ(b)(x)
∣∣dx

≤ C
|Q|1+(α+β)/n

∫

Q

∣∣[|b|, Mα

]
(χQ)(x)

∣∣dx

+
C

|Q|1+β/n

∫

Q

∣
∣[|b|, M

]
(χQ)(x)

∣
∣dx

≤ C‖b‖Λ̇β
.

Putting the above estimates for I1 and I2 into (3.3), we obtain (3.2).
(3) ⇒ (5). Assume statement (3) is true. Reasoning as in the proof of (2) ⇒ (4), we have

sup
Q

1
|Q|β/n

‖(b – |Q|–α/nMα,Q(b))χQ‖Lq(·)(Rn)

‖χQ‖Lq(·)(Rn)
< ∞ (3.5)

for any q(·) for which there exists a p(·) such that (p(·), q(·)) ∈ Bα+β (Rn).
For any s(·) ∈ B(Rn), choosing an r > n/(n – β), we have rs(·)(n – β)/n ∈ B(Rn) and

rs(·) ∈ B(Rn) by Remark 1.1. Set q(·) = rs(·) and define p(·) by 1/p(·) = 1/q(·) + (α + β)/n. It
is easy to check that (p(·), q(·)) ∈ Bα+β (Rn).

Noting that

1
s(·) =

1
rs(·) +

1
r′s(·) =

1
q(·) +

1
r′s(·) ,

it follows from Lemma 2.7(ii), (3.5) and Lemma 2.8 that

1
|Q|β/n

‖(b – |Q|–α/nMα,Q(b))χQ‖Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)

≤ 1
|Q|β/n

‖(b – |Q|–α/nMα,Q(b))χQ‖Lq(·)(Rn)‖χQ‖Lr′s(·)(Rn)

‖χQ‖Ls(·)(Rn)
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≤ C‖χQ‖Lq(·)(Rn)‖χQ‖Lr′s(·)(Rn)

‖χQ‖Ls(·)(Rn)

=
C‖χQ‖1/r

Ls(·)(Rn)‖χQ‖1/r′
Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)
= C,

which is what we want.
The proof of Theorem 1.1 is finished. �

Remark 3.1 The proof of (3) ⇒ (5) is also valid for β = 0.

To prove Theorem 1.2, we recall the following results obtained in [29].

Lemma 3.2
(1) Let p(·) ∈ B(Rn). If 0 ≤ b ∈ BMO(Rn), then [b, M] is bounded from Lp(·)(Rn) to itself.
(2) Let 0 < γ < n, p(·) ∈ P(Rn) with p+ < n/γ , 1/q(·) = 1/p(·) – γ /n and

q(·)/(n – γ ) ∈ B(Rn). If 0 ≤ b ∈ BMO(Rn), then [b, Mα] is bounded from Lp(·)(Rn) to
Lq(·)(Rn).

The following result can be deduced from the proof of Lemma 4.1 in [29].

Lemma 3.3 Let 0 < γ < n. If b is a locally integrable function and satisfies

sup
Q

‖(b – |Q|–γ /nMγ ,Q(b))χQ‖Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)
< ∞

for some s(·) ∈ B(Rn), then b ∈ BMO(Rn).

Proof of Theorem 1.2 Since the equivalence of (1), (2) and (3) was given in [29, Theo-
rem 1.1], the implication (2) ⇒ (4) follows from [29, Lemma 4.1] and (3) ⇒ (5) follows
from Remark 3.1, we only need to prove the implication (4) ⇒ (1).

For any fixed cube Q, it follows from (3.3) and (3.4) that

1
|Q|

∫

Q

∣
∣b(x) – MQ(b)(x)

∣
∣dx ≤ 1

|Q|
∫

Q

∣
∣b(x) – |Q|–α/nMα,Q(b)(x)

∣
∣dx

+
1

|Q|1+α/n

∫

Q

∣∣[|b|, Mα

]
(χQ)(x)

∣∣dx

+
1

|Q|
∫

Q

∣∣[|b|, M
]
(χQ)(x)

∣∣dx

:= J1 + J2 + J3. (3.6)

For J1, by Lemma 2.7(i), Lemma 2.9 and statement (4), we have

J1 ≤ C
|Q|

∥∥(
b – |Q|–α/nMα,Q(b)

)
χQ

∥∥
Ls(·)(Rn)‖χQ‖Ls′(·)(Rn)

≤ C‖(b – |Q|–α/nMα,Q(b))χQ‖Ls(·)(Rn)

‖χQ‖Ls(·)(Rn)

≤ C,

where the constant C is independent of Q.
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Set q(·) = s(·)n/(n – α). By Remark 1.1, we have q(·) ∈ B(Rn) since s(·) ∈ B(Rn). For a
p(·) such that 1/q(·) = 1/p(·) – α/n, we have p(·) ∈ P(Rn) and p+ < n/α.

Noticing that s(·) ∈ B(Rn), statement (4) along with Lemma 3.3 gives b ∈ BMO(Rn),
which implies |b| ∈ BMO(Rn). Thus, we can apply Lemma 3.2 to [|b|, Mα] and [|b|, M] for
the pair of exponents p(·) and q(·) given as above and get

∥
∥[|b|, M

]
(χQ)

∥
∥

Lp(·)(Rn) ≤ C‖χQ‖Lp(·)(Rn)

and

∥∥[|b|, Mα

]
(χQ)

∥∥
Lq(·)(Rn) ≤ C‖χQ‖Lp(·)(Rn).

Then, it follows from Lemma 2.7(i), Lemma 2.10 and Lemma 2.9 that

J2 =
1

|Q|1+α/n

∫

Q

∣
∣[|b|, Mα

]
(χQ)(x)

∣
∣dx

≤ C
|Q|1+α/n

∥
∥[|b|, Mα

]
(χQ)

∥
∥

Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

≤ C
|Q|1+α/n ‖χQ‖Lp(·)(Rn)‖χQ‖Lq′(·)(Rn)

≤ C
|Q| ‖χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn)

≤ C.

Similarly, by Lemma 2.7(i) and Lemma 2.9, we have

J3 =
1

|Q|
∫

Q

∣∣[|b|, M
]
(χQ)(x)

∣∣dx

≤ C
|Q|

∥
∥[|b|, M

]
(χQ)

∥
∥

Lp(·)(Rn)‖χQ‖Lp′(·)(Rn)

≤ C
|Q| ‖χQ‖Lp(·)(Rn)‖χQ‖Lp′(·)(Rn)

≤ C.

Putting the above estimates for J1, J2 and J3 into (3.6), we obtain

1
|Q|

∫

Q

∣
∣b(x) – MQ(b)(x)

∣
∣dx ≤ C,

which implies b ∈ BMO(Rn) and b– ∈ L∞(Rn) by Lemma 2.3, since the constant C is inde-
pendent of Q.

The proof of Theorem 1.2 is completed. �

Proof of Theorem 1.3 Since the equivalence of (1), (4) and (5) were proved in [27, Corol-
lary 1.1], we only need to prove the implications (1) ⇒ (3) and (2) ⇒ (4).
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(1) ⇒ (3). If b ∈ Λ̇β (Rn), then

Mα,b(f )(x) = sup
Q�x

1
|Q|1–α/n

∫

Q

∣∣b(x) – b(y)
∣∣∣∣f (y)

∣∣dy

≤ C‖b‖Λ̇β
sup
Q�x

1
|Q|1–(α+β)/n

∫

Q

∣
∣f (y)

∣
∣dy

= C‖b‖Λ̇β
Mα+β (f )(x).

This, together with Lemma 2.5, shows that Mα,b is bounded from Lp(·)(Rn) to Lq(·)(Rn).
(2) ⇒ (4). For any fixed cube Q, we have for all x ∈ Q,

|b(x) – bQ| ≤ 1
|Q|

∫

Q

∣
∣b(x) – b(y)

∣
∣dy

=
1

|Q|
∫

Q

∣
∣b(x) – b(y)

∣
∣χQ(y) dy

≤ |Q|–α/nMα,b(χQ)(x).

Then, for all x ∈R
n,

∣∣(b(x) – bQ
)
χQ(x)

∣∣ ≤ |Q|–α/nMα,b(χQ)(x).

Since Mα,b is bounded from Lp(·)(Rn) to Lq(·)(Rn), by Lemma 2.10, we have

∥∥(b – bQ)χQ
∥∥

Lq(·)(Rn) ≤ |Q|–α/n∥∥Mα,b(χQ)
∥∥

Lq(·)(Rn)

≤ C‖Mα,b‖Lp(·)→Lq(·) |Q|–α/n‖χQ‖Lp(·)(Rn)

≤ C‖Mα,b‖Lp(·)→Lq(·) |Q|β/n‖χQ‖Lq(·)(Rn),

which gives (1.8) for s(·) = q(·) since Q is arbitrary and C is independent of Q.
The proof of Theorem 1.3 is finished. �
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