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Abstract

The Changhee numbers and polynomials are introduced by Kim, Kim and Seo (Adv.
Stud. Theor. Phys. 7(20):993-1003, 2013), and the generalizations of those polynomials
are characterized. In this paper, we investigate a new g-analog of the higher order
degenerate Changhee polynomials and numbers. We derive some new interesting
identities related to the degenerate (h, g)-Changhee polynomials and numbers.
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1 Introduction
For a fixed odd prime number p, we make use of the following notation. Z,, Q,, and C,
will denote the ring of p-adic rational integers, the field of p-adic rational numbers and the
completions of algebraic closure of Q,, respectively. The p-adic norm is defined |p|, = p™*
(see [14, 15, 17, 19, 30]).

When one says g-extension, g is variously considered as an indeterminate, a complex
g € C, or p-adic number g € C,. If g € C, one normally assumes that |g| < 1. If g € C,,
then we assume that |q — 1], <‘197!’%1 so that g* = exp(xlogq), x|, < 1.

The g-analog of number x is defined as

l-q°
[l = —L.
l-q
Note that lim,_.,[x]; = x for each x € Z,,.
Let UD(Zy) = {f|f : Z, — R is uniformly differentiable}. For f € UD(Z,), the fermionic
p-adic q-integral on Z, is defined by Kim as follows (see [9, 14, 15, 17, 19, 20]):

1
L= [ = Jim X sar )

If we put f] to the translation of f with f;(x) = f(x + 1), then, by (1), we get

ql_o(fi) + L4(f) = [21,£(0)  (see [1, 1720, 23, 24, 28, 31]). (2)
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As is well known, the Stirling number of the first kind is defined by

@) =x@=1)--(c—n+1) =Y Si(n D, (3)
1=0

and the Stirling number of the second kind is given by the generating function to be

(e-1)"=m) 5, m)ﬁ (see [3-5, 11]). (4)
I=m
By (3), we have
n = xl
(log1 +x))" =n! Y " Si(l, n)ﬁ (n>0). (5)
I=n
The unsigned Stirling numbers of the first kind are given by

A —x(x 1) (x+n—1)= Z|S1(H, Dlx' (see [3, 5)). Q)
1=0

Note that if we replace x to —x in (3), then

(=) = (=16 =~ S1(m,1)(-1)''
1=0

= (1" Y [Si0m, D+ )

=0

(see [3, 5,28, 31]). Hence S1(1, 1) = |S1(n, )| (~1)"~".

In [16], Kim firstly constructed the new (%, g)-extension of the Bernoulli numbers and
polynomials with the aid of g-Volkenborn integration, and Simsek gave the Witt-formula
for (h, q)-Bernoulli numbers in [27, 34]. Ozden and Simsek defined (4, g)-extension of Eu-
ler numbers and polynomials withe the aid of fermionic integral of the function f(x) =
q"*e* in [29], and found recurrence identities for (%, g)-Euler polynomials and the alter-
nating sums of powers of consecutive (%, q)-integers in [35]. In Chapter 6 of [27], the author
discusses several generalizations of Bernoulli numbers and associated polynomials with
interpolation at negative integers.

Kim et al. introduced the Changhee polynomials of the first kind of order r, defined by
the generating function to be

2 r oo t"
— (r)
(2 N t) 1+1*= n§:0 Ch” (x) p (see [12, 13]), 8)
and Moon et al. defined the g-Changhee polynomials of order r as follows:

HREY B YRR o e
(q(1+t)+1> (1+1) —;Chn,q(x)m (see [28, 31]).
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By (2), we note that

l+g "
— | 1+t = 1+t du_g(y),
(q(1+t)+1> (o= || 0™ dieyy)
and thus we see that 3"°° Ch{") (x)tn—'; = pr(l + 8 dp_g(y).

In [31], the authors defined the generalization of the g-Changhee polynomials which are
called by (%, q)-Changhee polynomials of the first kind and (h, q)-Changhee polynomials of
the second kind, respectively, defined by the fermionic p-adic g-integral on Z, to be

00
tVl

E Ch,,,h,q(x)—' :/ qhy(l +t)x+ydM—q(Y)

10 n. Zp

l+qg

= W(l +1), )

o0

— o
> Chig ) = / 470+ 07 da )
n=0 n: Zp

l+gq _

As is well known, the Euler polynomials are defined by the generating function to be

o0
Z = (see[2,7,8, 17, 19,20, 33, 36, 37]).
n=0

et+1

In [4], Carlitz first introduced the concept of degenerate numbers and polynomials which
are related to Euler polynomials as follows:

2

71(1+M)§, (11)
A+r0)*+1

ZE (x|k =

where A € R. Note that, by (11), we see that

2
lim ZE x|,\)— = lim —————(1+A)*
nloA=0 (14 a8k + 1

et+1 ZE (x)—

and thus we get
lim E,,(x|A) = E,,(x).
A—0

In the recent years, the degenerate of some special polynomials are investigated by many
authors (see [4, 10, 11, 21-24, 26]). In particular, the degenerate Changhee polynomials
which are defined by the generating function to be

2)

Zc M(x) - m(umg(ux)%)x (see [26]), (12)
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and Kim et al. defined the degenerate q-Changhee polynomials as follows:

o0
t" A+ A
Z Chyg()— = 1
— n!  gqlog(l1+At)+gh+ A

(1+1log(1+8)7)"  (see [22, 24]). (13)

In the past decade, many researchers have investigated the various generalization of
Changhee polynomials (see [1, 6, 12, 13, 24-26, 28, 31]), and in [1, 31], the authors gave
new g-analog of Changhee numbers and polynomials.

In this paper, we introduce a new g-analog of degenerate Changhee numbers and poly-
nomials of the first kind and the second kind of order r, and derive some new interesting

identities related to the degenerate g-Changhee polynomials of order r.

2 g-Analog of degenerate Changhee polynomials
1
Let assume that A, ¢ € C, with |At| < p”7-T. By (2), we get

1 Xty
/Z qhy(l + 5 log(1 + At)) du_g(y)
‘P

B l+q
g1+ %log(l +A8)+1

(1 + %log(l + At))x, (14)

where & € Z. By (14), we define the g-analog of degenerate Changhee polynomials by the
generating function to be

oo X
t" l+gqg 1

E Chy, o (x|A)— = 1+ —log(l+Af)) . 15
s ¥l )n! g"1 (1 + T log(1+ A1) +1 ( A el )> (15)

In the special case x = 0, Ch,,;,,(A) = Ch,;,,(0|1) are called the g-analog of degenerate
Changhee numbers.
Note that

li iCh L < 1+q 1+ Mogt e n))
1m X — = 11m + — 10 +
A0 e mha nt =0 g1 (1 + 1 log(1 + Ar)) +1 P

B qg+1
g1+t +1

1407 =3 Ol a3
n=0
and so we see that
lim Chyy g (x12) = Chyyg (%), (16)
and, if we put 4 = 0, then

lim Ch®) (x[1) = Ch,(x) and  Chygg(x[A) = Chy s 4(x). (17)

By (16) and (17), we see that g-analog of degenerate Changhee polynomials are closely
related to the g-Changhee polynomials and degenerate g-Changhee polynomials.
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By using (7) and (14), we have

1 x+y
/Z qhy<1 + 5 log(1 + At)) du_g(y)
‘P

:/ hyz< ) A7 (log(1 +A8))" dpu_g(y)

:/ qhyz<x;y>,\-”nlzsl(1,n)(kl—f)lduq(y)
Zp n=0 I=n !
ZZA” "m!Sy (n, m)/ q (x;y) dl’«—q()’)f%

n=0 m=0
Z(an ™S, (n,m f q V(% + V) m du_q(y)>%. (18)
n=0 :
By (14) and (18), we have
Chygulh) = 32778, n, ) /Z P76+ Pmddit_g). (19)
m=0 P

By (3), we get

/Z 7" (x +Y)mdp_q(y) = ZSl(m, l)/ 7" (x +y)ld,u_q(y)

» 1=0 Zp
=Y Si(m,DExlh,q), (20)
=0

where E,(x|h, q) is the nth (h, q)-Euler polynomials which are defined by the generating
function to be

oo tn
D Enlalhg)— = / 77" du_y(y)
n=0 : Zp

o0

"
= Z(/ th’(x +y)" dﬂ_q()/)> —'
n=0 W Zp e
qg+1
= me (See [32])
In addition,
qg+1

q" 1+ %log(l +A8)+1

oo

=(g+1) ) _(-1)"g"") (1 + % log(1 + u))m

m=0

oo

=(g+1) ) g t) Zk ( ) 10g1+)»t))
1=0

m=0

Page 5 of 15
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o) m m o0 ti"
=@+ q""D" Y] r’( ; )n PINCULES
m=0 1=0 r=l ’

+l
=(q+ )};;q -1) Z L+, )( -
NSNS omeneny_qymet (D s o
‘2(%%‘1 -1) < ; >A Sl<n,z))m. (1)

By (19), (20) and (21), we obtain the following theorem.

Theorem 2.1 For each nonnegative integer n, we have

Chipg(xl2) = Y A" (n, m) / 4"+ )mdii—q(9)
Z

m=0 /4

= Z Z A8y (n, m)S1 (m, 1) Ey(x|h, q)

m=0 [=0
and
_oo : (m+D)(h+1) mt (ML)
Chn,h,qm-mZ:O;q () ( ; )x Sy(m, ).

By replacing t by %(e” —1) in (15) and by using (4), we have

1 Lo )

(e ="
ZCh (x| 2)A " -

o) l
= (Z Chfjj;(xp\)x"%) (n‘ > Sallm)=~ @) )

n=0

Z (Z A ChY) (x12)S5(n, m)) e (22)

n=0 \m=0

and, thus, by (9) and (22), we have the following corollary.

Corollary 2.2 For each nonnegative integer n, we have

Ch,yjq(x) Zx" ™Sy (11, 1) Chyyy g (%]1).

m=0

From (1) and (14), we note that

oo

t}’l
D (@ Chyjg + 1) + Chy g (x]2)) -

n=0

1 1 1 )
B l(q +1) (qh+l <1 +—log(1 + A.t)) + 1> (1 + —log(1 + )xf))
7" (1+ Llog(1+ 1)) + 1 A -
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=(q+ 1)<1 + %log(l + kt))x

~(q+D) Z(Z(x)mm mslm,m))—", 23)

n=0 \m=0

By (23), we obtain the following theorem.

Theorem 2.3 For each nonnegative integer n, we get

7" Chypg(x + 113) + Chyg(x12) = (g + 1) Y (%), A" S1(n, m).

m=0

For positive integer d with d = 1 (mod 2), if we put f(x) = ¢"*(1 + % log(1 + At))*, then, by
(2) and (7), we have

1 x+d 1 x
qa' qh(x+d) <1 + X log(1 + )»t)) d,bL_q(x) + / qhx<1 : X log(1 + )»t)) d,u_q(x)
Z Z,

!
_(q+1)Z 1) lh”( +%10g(1+kt))

% k
=(g+1) 2:(—1)lql(h4rl Z ( )(— log(1 + kt))
k=0

1=0

. NN & ¢
(q+1>Z (~1)'q"Y ;(k)x kgkjsl(r,k)r—!
00 d-1 n I o
Z( g+1) Z 1)/ (k)x-ksl(n,k)); (24)

and

1 x+d
4 / 71 <1 + log(1 + At)) dp_y(x)
Z

P

1 X
+/ qhx(l + ; log(1 + M)) dp_y(x)
Zp

o0
tn
- } :(qd(h+l) Ch) (d|%) + Ch{}) (1)) —. (25)
) i1 n!
n=0

By (24) and (25), we obtain the following theorem.

Theorem 2.4 For each nonnegative integer n and odd integer d, we have

d-1 n

414 Chy g (@12) + Chyg(3) = (g4 1) S S (- 1)g (,i)rksl(n,/o.

1=0 k=0
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3 g-Analog of higher order degenerate Changhee polynomials
In this section, we consider the g-analog of higher order degenerate Changhee polynomials
which are defined by

ChY"7 (x| 1)

n

= Z/\"””Sl(n,m)/ / q== " (x4 3y
m=0 Zp Zp
_\/_J
r-times
L }/r)m dﬂ-q()ﬁ) e dﬂ—q(yr): (26)

where 7 is a nonnegative integer, 1,...,h, € Zand r e N.
By (26), we have

oo n

n . N t
Z(an “Silmm / / qzj_lhlyl(x-FyI+"'+yr)mdﬂ—q(yl)'“dﬂ—q(yr))_l
n=| m=0 Zp Zp n

Z )»n_mm!Sl (n, m)/ . / qZLl hiyi
Zp Zyp

n=0 m

n

X+y1+---+Yr t
x( nrey )du_q(yl)mdu_q(yr)—,
m n

/ / Sl 3 (x+y1+ +y,)“n!
Zp Zp 0

stl(z n) du J01) - du_g(o)

n=

F e (XYL Yy n n
/ / quzlhtJ’z Z ( N Y y )A (log(l + )»t)) dp_q(y1) - d_g(y,)
n=0

i 1 XYLy
f / gl (1 - +log(1 +m) da—glyn) - dagly,)

l+gq 1 ¥
H( ST 1log(1+At))+1><1+xlog(l+u)) . (27)

i=1

By (26) and (27), we see that

r

0 X
t" 1+q 1
Chil (a1 - ( )(1 Dlog1 u). 28
; - =11 7 (1 + Tog+ae) +1 )\ T % gl 24 29

= i=1

If we put

r l+g 1 *
Flh) (5 1) ( )<1+ 1o 1+/\t) ,
q (. 2) g1+ +log(1+A0) +1 A 5 )

i=
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[2] r 1 x
0,...0) _ q 1
Fq (x,2) = ([2]q " %log(l " At)) (1 + . log(1 + At))

N
T,
= Ch) () -

n=0

and

2 o1 *
lim FC () = (1—) (1 + = log(1 + M))
+log(1 +At) +2 A

o0 t”
=Y " ChY) ()=
n.
n=0

Thus, F, hl """ ")(x,£) seems to be a new q-extension of the generating function for the de-
generate Changhee polynomials of order r.
Note that

: l+g 1 ¥
l—[ - I 1+ —log(1 + Af)
q" 1 (1+ 5 log(1+At)) +1 A

i=1
t" e [ "
ZCh ..... ) (1) = Z < ))L”mm!Sl(n,m)—
n! et bt \ 1 n!

m

[ee] n n-m o n t,,,
Z( 012()( >)\ ‘nChlfih) ()\)Sl(n—m,l))a. (29)

Since

(+y1++ V)

=Y Sy +y)
1=0

ZSMD 2 (zl by. )y?y?m(xw»“, (30)

I+ =1
ll ~~~~~ lr>0

where (11 by, ) %, we have

Iy

/ o / ngﬂhij’i(x +y1+--- +yr)m dﬂ—q(yl) te d“*q(yr)
Zp Zp

:/ / qZ’rzlh’”ZSl(m,l)(x+y1+~~~+yr)ldu—q(3’1)~~du—q(%)
Zp Zp

=0

= [ ... Yt hivi NS (m, 1)
L

=0

Page9of 15
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m Lol
e (” ! )y 193 G ) dag0n) - dpg()
lll+"';'lr=l 12625444y
1rolr=0

= ZSl (WZ l) Z <l I )Ell (hliq) o 'Elr_l (hr—l» q)Elr,q(x|hr) q);
=0 1,625 r

11+ +lr
0 ,enly>0

where E, (i, q) = E,(0|h, q), which are called the (%, q)-Euler numbers.
Thus, by (26) and (31), we obtain the following theorem.

Theorem 3.1 For n > 0, we have

Y X asmmsion 0(,," )

m=0 [=0 l+-+ly=l ?
11,e0lr>0

X Ell (hb q) e Ely,l (hr—l, q)Elr,q(xlhrr 6])'

By replacing ¢ by 1 (e* - 1) in (28),

o) 1 "
> Chif) (x]2)— ( ( “—1))
n=0
00 At L
_ Z hl ..... hr)(xM) A nquz (, n)u
n=0
_ Z( Yt (e[ )27 Sy, m>) -
n=0 \m=0 *
and, bY (9);

r

qg+1 "
(i) 00

i=1

r-1 / oo 4 . [e%e} .
([H(Zewi))(Gewi)

n (1) — (hy) t"
Z Z (ll’ L )Chlllq Chl 1thqu()n.'

n=0 [1++lp=n
0yeeer 1720

Thus, by (32) and (33), we obtain the following theorem.

Theorem 3.2 For n > 0, we have

h++lp=n
ll ~~~~~ lrio

2 (11 . z)ChlfIq -Chy" ) Chy) (x) ZCh ''''' @RS (n, ).

(31)

(32)

(33)

Page 10 of 15
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4 g-Analog of higher order degenerate Changhee polynomials of the second
kind
In this section, we consider the g-analog of higher order degenerate Changhee polynomials

of the second kind is defined as follows:

Ch" (x])
_ZA” ’”Sl(n,m)/ f g i (—x — gy
ZP
rtlmes
— =2 dpg ) - dpgOn), (34)

where 7 is a nonnegative integer. In particular, E:Tlfj“; """ i (0]A) = cAhfq; """ hr)(k) are called the
q-analog of higher order degenerate Changhee numbers of the second kind.
By (7) and (34), it leads to

" (x]1)

= sy nm/ / G (—x =y = =y dpgOn) - dig())
Zp Zp

m=0

n
= Z)\"_msl(n,m)/‘ .. f qZ,Zlhiyi(_l)
m=0 Zp Zp

X (x+y1 +- +}’r dM aO1) - du_g ()

n
= ZA"‘mSI(n,m)/ ... / qu‘rzlhiJ’i(_l)
m=0 Zp Zp

< Y 1S1m D@ +y1+ -+ ) dugn) - dpg(vy)
=0

= ZZA” " S1 (1, m)| Sy (m, 1) | (1)

m=0 [=0

I r—1 o
- Z (11 l)l_[/Z thyly? d'u“‘q(yi)_é thyr(x+yr)l, d:“«—q()’r)
vt/ ey Y p »

x S1(m,m)S1(m, ) (]‘[E},.””<q>>15§f”(x|q>. (35)

i=1

Thus, we state the following theorem.

Page 11 of 15
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Theorem 4.1 For n > 0, we have

G =3y T (h )M’"(—l)’sl(n,m)sl(m,n

m=0 [=0 ly+-+lp=1
115ealy=0

r-1
X (1_[ E;.(h;, q))Ez, (x4, q).

i=1

Now, we consider the generating function of the g-analog of higher order degenerate
Changhee polynomials of the second kind as follows:

00
(1t "
> Gyt ala) =
’ n!
n=0
0o n
= Z )\.n mSl n Wl)/ / Zz lhlyl _x_yl
n=0 m Zp Zp

n

ey edp ) - du_q(y,)%

/ / lllyl (_x_yl_..._y"))"—nn!
Zp Zp 0 "

stl(z n) D i )~ dpq(y,)

f /qz,l,yl (—x—y1—~~—yr)
Zp Zp n=0 "

Ain(log(l + )Lt))n dﬂ—qb’l) e dﬂ—q(yr)

. 1 XY=y
f | qzwht%(uilog(lm)) dia—glyn) - daglyy)

l+g 1 r=x
H( h+1+1+110g(1+)¢)>(1+Xlog(1+u)> . (36)

In the special case r = 1,

n=

l+q 1 -
Ch,, xk 1+ —log(l+ At . 37
Z alx12) n g"1 +1+ 1 log(1 +At) ( A el )> 87)

alg,';(xpn) = aln,q(x|h,k) are called the g-analog of degenerate Changhee polynomials of
the second kind.
By replacing ¢ by 2(e* - 1) in (36), we have

- [2]q r—x
(1_[ th,+1 + (1 + t)>(1 + t)

i=1

:ZCh """ ) (x |A)7( e - DF
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-G ) Lo '252(1 Y

n=0
00 n n
PR n-m 4
= Z(Z Chi ") (| M)A Sy, m)) — (38)
n=0 \m=0 ’

and, by (10), we get

- [Z]q r—x
<1_[ (110 t)>(1 +1)

i=1

(e
) Z( Z <i1 n l)Ch:lq) Ch‘hyllq)Chzrq( ));—n' (39)

n=0 Ni+-+ip=n
i10ir=0

By (38) and (39), we obtain the following theorem.

Theorem 4.2 For n > 0, we have

n
3 Chye " xR S5 (n, m)

n (1) o (1 (hy)
-2 ( A)Chfll G UCh") ).
L1yevesly

i1+-+ip=n
il ~~~~~ ir>0

Note that
o0
~(J11,hiy t"
> G @)=
’ n!
n=0

! l+g 1 =
l_[ - T 1+ —log(1 + Af)
- \g" 1+ 5 log(1 + Az) A

i=1

r-1 —hi-1 r-1
1 i 1

1_[ ( -I;q)q (1 + —log(1 + At))

g1+ 5 log(1 + A2)) + 1 A

i=1

1 —hy—1 1 1-x
X ( ( +1q)q ) <1 + —log(1 + )Lt))
g1 (1 + ;log(1+ A1) +1 A

r-1 00
= (Hq’“) (ZCth,;” """ (- m)—) (ZChn - zq(xm—)
=1 n=0
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and thus we see that

A (h15ehy)

Ch, """ (x|1)
r-1 oo n
- ")y <m> Chin 2172 (1 — 1| 1) Chy, 2,4 (%[1).
i=1 m=0

5 Conclusion

The Changhee polynomials were defined by Kim, and have been attempted the various
generalizations by many researchers (see [1, 6, 12, 13, 24-26, 28, 31]). The Changhee
numbers (g-Changhee numbers, respectively) are closely relate with the Euler numbers
(g-Euler numbers), the Stirling numbers of the first kind and second kind and the har-
monic numbers, etc. which are interesting numbers of combinatorics, and pure and ap-
plied mathematics.

In this paper, we defined two types of the degenerate (%, g)-Changhee polynomials and
number, and found the relationship between the Stirling numbers of the first kind and
second kind, (%, g)-Euler numbers, g-Changhee numbers and those polynomials and num-
bers. It is a further problem to find the relationship between some special polynomials and
degenerate (41, g)-Changhee polynomials.
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