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Abstract
In this paper, a variant of Mehrotra-type predictor–corrector algorithm is proposed for
P∗(κ ) linear complementarity problems. In this algorithm, a safeguard step is used to
avoid small step sizes and a new corrector direction is adopted. The algorithm has
polynomial iteration complexity and the iteration bound is
O((14κ + 11)

√
(1 + 4κ )(1 + 2κ ) n log (x0)T s0

ε
). Some numerical results are reported as

well.
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1 Introduction
A P∗(κ) linear complementarity problem (LCP) is to find vectors x ∈ R

n and s ∈ R
n such

that

Mx + q = s,

xT s = 0,

x, s ≥ 0,

(1)

where M ∈R
n×n is a P∗(κ) matrix and q ∈R

n.
LCPs are closely associated with linear programming and quadratic programming. It

is well known that a differentiable convex quadratic programming can be formulated as
a monotone LCP by exploiting the first-order optimality conditions, and vice versa [1].
Transportation planning and game theory also have a close connection with LCPs [2, 3].

Interior point algorithms for LCPs have been widely studied in the last few decades
[4]. In 1991, Kojima et al. [5] extended all the previously known results to P∗(κ) LCPs and
unified the theory of LCPs from the view point of interior point methods. Since then, many
interior point algorithms for linear programming have been extended to P∗(κ) LCPs. Illés
and Nagy [6], and Miao [7] studied the Mizuno-Todd-Ye type interior point algorithms
on P∗(κ) LCPs. Cho [8], and Cho and Kim [9] proposed two interior point polynomial
algorithms based on kernel functions for P∗(κ) LCPs. Using a new updating strategy of
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the centering parameter, Liu et al. [10] extended two Mehrotra-type predictor–corrector
algorithms to sufficient LCPs.

Predictor–corrector algorithms are practical interior point methods for linear program-
ming, quadratic programming and LCPs, variants of which have become backbones of
several optimization software packages [11, 12]. Mehrotra [13] proposed a predictor–
corrector algorithm for linear programming, in which the coefficient matrices in both
predictor steps and corrector steps are the same, and it needs less computational efforts
than other methods. After that, several variants of this algorithm have been studied. Jarre
and Wechs [14] studied a new primal–dual interior point method in which the search di-
rections are based on corrector directions of Mehrotra-type algorithm. Zhang and Zhang
[15] presented a second order Mehrotra-type predictor–corrector algorithm without up-
dating the central path. Salahi et al. [16] found that in a variant of Mehrotra’s algorithm,
in order to keep iterates in a large neighborhood of the central path, some steps are very
small. To avoid small or zero steps, Salahi et al. introduced some safeguards in the cor-
rector steps [16] and a new criterion on predictor step sizes [17], moreover, they proved
that the two algorithms have polynomial complexity and practical efficiency. Infeasible
versions of Mehrotra-type algorithms are studied by Liu et al. [18], and Yang et al. [19].

In this paper, a new variant of Mehrotra-type predictor–corrector algorithm is proposed
for P∗(κ) LCPs. In this algorithm, the corrector step is different from other Mehrotra-
type predictor–corrector algorithms [16, 17]. If (�x, �s) is the search direction of a
P∗(κ) LCP, then �xT�s �= 0, while �xT�s = 0 if (�x, �s) is the search direction of lin-
ear programming. So the analysis is different from that in linear programming. If an it-
eration (x, s) takes a step along the corrector direction (�x,�s), the parameter μg(α) =
(1 – α)μg + αμ – αα2

a
�xaT �sa

n + α2 �xT �s
n , where αa is the predictor step size and (�xa,�sa)

is the predictor search direction. In order to reduce the dual gap xT s, the corrector step size
α should be chosen such that μg(α) ≤ μg , that is to say, α should have an upper bound. If α

is larger than a given threshold, then the threshold is chosen as the corrector step size. The
iteration complexity of the new algorithm is O((14κ + 11)

√
(1 + 4κ)(1 + 2κ) n log (x0)T s0

ε
),

which is analogous to that of linear programming.
This paper is organized as follows. In Sect. 2, a new Mehrotra-type predictor–corrector

algorithm for P∗(κ) LCPs is introduced. In Sect. 3, the polynomial iteration complexity is
provided. Some illustrative numerical results are reported in Sect. 4. Finally, some con-
cluding remarks are given in Sect. 5.

We use the following notations throughout the paper: ‖·‖ denotes the 2-norm of vectors,
e is the n-dimensional vector of ones. For any two n-dimensional vectors x and s, xs is the
componentwise product of the two vectors. We also use the following notations.

I = {1, 2, . . . , n}, I+ =
{

i ∈ I|�xa
i �sa

i ≥ 0
}

, I– =
{

i ∈ I|�xa
i �sa

i < 0
}

,

F+ =
{

(x, s) ∈R
n ×R

n|s = Mx + q, (x, s) ≥ 0
}

,

F++ =
{

(x, s) ∈R
n ×R

n|s = Mx + q, (x, s) > 0
}

.

2 Mehrotra-type predictor–corrector algorithm
A matrix M ∈R

n×n is a P∗(κ) matrix [5] if

(1 + 4κ)
∑

j∈J+

xj(Mx)j +
∑

j∈J–

xj(Mx)j ≥ 0, ∀x ∈ R
n, (2)
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or

xT Mx ≥ –4κ
∑

j∈J+

xj(Mx)j, ∀x ∈R
n, (3)

where κ ≥ 0, J+ = {j|j ∈ I, xj(Mx)j ≥ 0}, and J– = {j|j ∈ I, xj(Mx)j < 0}.
Noting that the positive semi-definite matrix is a P∗(0) matrix, thus the class of P∗(κ)

matrices includes the class of positive semi-definite matrices. Other properties of P∗(κ)
matrices can be found in [5].

Without loss of generality [5], we assume that the P∗(κ) LCP (1) satisfies the interior
point condition, that is, there exists a point (x0, s0) such that

s0 = Mx0 + q, x0 > 0, s0 > 0.

To find an approximate solution of (1), the following parameterized system is estab-
lished:

Mx + q = s,

xs = μe,

x, s ≥ 0,

(4)

where μ > 0.
If the P∗(κ) LCP (1) satisfies the interior point condition, then the system (4) has a unique

solution for any μ > 0. For a given μ, the solution, denoted by (x(μ), s(μ)), is called a μ-
center of (1). The set of all μ-centers gives the central path of (1). A primal–dual interior
point algorithm follows the central path {(x(μ), s(μ))|μ > 0} approximately and approaches
the solution of (1) as μ goes to zero.

Most interior point algorithms work in the neighborhood N–∞(γ ) defined by

N–
∞(γ ) =

{
(x, s) ∈ F++|xisi ≥ γμg ,∀i ∈ I

}
,

where γ ∈ (0, 1) is a constant independent of n and μg = xT s
n .

Now, based on [16], a new variant of Mehrotra-type predictor–corrector algorithm for
P∗(κ) LCPs will be described.

The predictor search direction (�xa, �sa) is determined by the following equations:

M�xa = �sa,

s�xa + x�sa = –xs.
(5)

The predictor step size αa is defined by

αa = max
{
α|0 ≤ (

x + αa�xa, s + αa�sa), 0 < α ≤ 1
}

. (6)

However, this algorithm does not take a step along the direction (�xa,�sa). Using in-
formation of the predictor step, the algorithm computes the corrector search direction



Zhou et al. Journal of Inequalities and Applications          (2019) 2019:6 Page 4 of 13

(�x,�s) by solving the following system:

M�x = �s,

s�x + x�s = μe – xs – α2
a�xa�sa,

(7)

where

μ =
(

ga

g

)2 ga

n
(8)

with ga = (x +αa�xa)T (s +αa�sa) and g = xT s. The second equation of (7) is different from
that in [16], where it is s�x + x�s = μe – xs – �xa�sa.

The next iterate is denoted by

x(α) = x + α�x, s(α) = s + α�s,

where α is the corrector step size defined by

α = max
{
α|(x(α), s(α)

) ∈ N–
∞(γ ), 0 < α ≤ 1

}
. (9)

In order to avoid small steps, we combine Mehrotra’s updating strategy of the center-
ing parameter with a safeguard step at each iteration. The new Mehrotra-type predictor–
corrector algorithm for P∗(κ) LCPs is stated as Algorithm 1.

Algorithm 1 Mehrotra-type predictor–corrector algorithm for P∗(κ) LCPs
Input:

A proximity parameter γ ∈ (0, 1
4κ+5 );

an accuracy parameter ε > 0;
a starting point (x0, s0) ∈ N–∞(γ ).

while xT s ≥ ε do
begin (Predictor Step)

Solve (5) and compute the predictor step size αa by (6).
end
begin (Corrector Step)

If αa ≥ 0.3, then solve (7) with μ = ( ga
g )2 ga

n and compute the
corrector step size α by (9).
end
If αa < 0.3 or α < 7γ

16pn , where p = 11+14κ
16

√
(1 + 4κ)(2 + 4κ), then solve

(7) with μ = γ

1–γ
μg and compute the corrector step size α.

end
If the corrector step size α > α1, then let α = α1,
where α1 = 1–2γ –(1–γ )κα2

a
2q(1–γ ) and q = 14κ+11

16 .
end
Set (x, s) = (x(α), s(α)).

end
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3 Complexity analysis
The polynomial complexity of Algorithm 1 will be discussed in this section. Firstly, we
present three important lemmas which will be used in convergence analysis.

Lemma 1 ([16]) Let (�xa,�sa) be the solution of (5). Then

�xa
i �sa

i ≤ 1
4

xisi, ∀i ∈ I+,

–�xa
i �sa

i ≤ 1
αa

(
1
αa

– 1
)

xisi, ∀i ∈ I–,

∑

i∈I+

�xa
i �sa

i ≤ xT s
4

.

Lemma 2 Let M be a P∗(κ) matrix and (�xa,�sa) be the solution of (5). Then

∑

i∈I–

∣∣�xa
i �sa

i
∣∣ ≤ 4κ + 1

4
xT s,

–κxT s ≤ �xaT
�sa ≤ xT s

4
.

Proof Since M is a P∗(κ) matrix, we have

0 ≥
∑

i∈I–

�xa
i �sa

i ≥ –(4κ + 1)
∑

i∈I+

�xa
i �sa

i ≥ –
4κ + 1

4
xT s,

where the last inequality is due to the third conclusion of Lemma 1. Furthermore, from
(3), we get

(
�xa)T

�sa ≥ –4κ
∑

i∈I+

�xa
i �sa

i ≥ –4κ
xT s
4

= –κxT s.

This completes the proof. �

Lemma 3 Let M be a P∗(κ) matrix and (�x,�s) be the solution of (7) with μ > 0. Then

‖�x�s‖ ≤
√(

1
4

+ κ

)(
1
2

+ κ

)∥∥μ(xs)– 1
2 – (xs)

1
2 – α2

a(xs)– 1
2 �xa�sa∥∥2,

∑

i∈I+

�xi�si ≤ 1
4
∥∥μ(xs)– 1

2 – (xs)
1
2 – α2

a(xs)– 1
2 �xa�sa∥∥2.

Proof The proof is similar to that of Lemma 8 in [6], and it is omitted. �

According to (8) and Lemma 2, it can be found that

(
ga

g

)2 ga

n
=

[(1 – αa)xT s + α2
a(�xa)T�sa]3

n(xT s)2

≤ [(1 – αa)xT s + 1
4α2

axT s]3

n(xT s)2
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=
(

1 – αa +
1
4
α2

a

)3

μg

≤
(

1 –
3
4
αa

)3

μg . (10)

Consequently, μ

μg
≤ (1 – 3

4αa)3 if μ = ( ga
g )2 ga

n .
The following theorem shows that the predictor step size has a lower bound.

Theorem 4 Let the current iterate (x, s) ∈ N–∞(γ ), (�xa,�sa) be the solution of (5) and αa

be the predictor step size. Then

αa ≥
√

γ

(4κ + 1)n
.

Proof According to (5), we get

(
xi + α�xa

i
)(

si + α�sa
i
)

= (1 – α)xisi + α2�xa
i �sa

i .

Following from Lemma 2, we have �xa
i �sa

i ≥ 0 if i ∈ I+ and �xa
i �sa

i ≥ – 4κ+1
4 xT s if i ∈ I–.

Therefore, for all i ∈ I ,

�xa
i �sa

i ≥ –
4κ + 1

4
xT s.

Noting that (x, s) ∈ N–∞(γ ) implies xisi ≥ γμg , we have

(1 – α)xisi + α2�xa
i �sa

i ≥ (1 – α)γ
xT s
n

–
4κ + 1

4
α2xT s.

Thus, to show (x + α�xa, s + α�sa) ∈ F+, one has to prove the following inequality:

(4κ + 1)nα2 + 4γα – 4γ ≤ 0. (11)

Clearly, inequality (11) is true if

0 ≤ α ≤ 2
√

γ 2 + (4κ + 1)nγ – 2γ

(4κ + 1)n
.

Therefore, the predictor step size αa satisfies

αa ≥ 2
√

γ 2 + (4κ + 1)nγ – 2γ

(4κ + 1)n
.

Since 0 < γ

(4κ+1)n < 1
4κ+1

1
4κ+5

1
n < 1

2 , it can be found that

2
√

γ 2 + (4κ + 1)nγ – 2γ

(4κ + 1)n
=

2

1 +
√

1 + (4κ + 1) n
γ

≥
√

γ

(4κ + 1)n
.

This completes the proof. �
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In what follows, the lower bound of αa is used as the default predictor step size with the
notation

αa =
√

γ

(4κ + 1)n
. (12)

Lemma 5 If (x, s) ∈ N–∞(γ ), and (�x,�s) is the solution of (7) with μ ≥ 0, then

‖ �x�s ‖≤ ω

√(
1
4

+ κ

)(
1
2

+ κ

)

and

�xT�s ≤ 1
4
ω,

where ω = nμ2

γμg
– 2nμ + nμα2

a(4κ+1)
2γ

+ α4
a+8α2

a+4α2
a(4κ+1)(1–αa)+16

16 nμg .

Proof From Lemma 3, we have

‖�x�s‖ ≤
√(

1
4

+ κ

)(
1
2

+ κ

)∥∥μ(xs)– 1
2 – (xs)

1
2 – α2

a(xs)– 1
2 �xa�sa∥∥2

and

�xT�s ≤ 1
4
∥∥μ(xs)– 1

2 – (xs)
1
2 – α2

a(xs)– 1
2 �xa�sa∥∥2,

where

∥∥μ(xs)– 1
2 – (xs)

1
2 – α2

a(xs)– 1
2 �xa�sa∥∥2

= μ2
∑

i∈I

1
xisi

+
∑

i∈I

xisi – 2nμ + α4
a

∑

i∈I

(�xa
i �sa

i )2

xisi

– 2μα2
a

∑

i∈I

�xa
i �sa

i
xisi

+ 2α2
a

∑

i∈I

�xa
i �sa

i .

Since xisi ≥ γμg for all i ∈ I , we have

μ2
∑

i∈I

1
xisi

≤ nμ2

γμg
.

From Lemma 1 and Lemma 2, it follows that

∑

i∈I

(�xa
i �sa

i )2

xisi
=

∑

i∈I+

(�xa
i �sa

i )2

xisi
+

∑

i∈I–

(�xa
i �sa

i )2

xisi

≤
∑

i∈I+

( xisi
4 )2

xisi
+

∑

i∈I–

–�xa
i �sa

i
xisi

(
–�xa

i �sa
i
)
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≤ xT s
16

+
1 – αa

α2
a

∑

i∈I–

∣∣�xa
i �sa

i
∣∣

≤ nμg

16
+

(1 – αa)(4κ + 1)nμg

4α2
a

.

Since (x, s) ∈ N–∞(γ ) and
∑

i∈I– |�xa
i �sa

i | ≤ 4κ+1
4 xT s, we obtain

–2μ
∑

i∈I

�xa
i �sa

i
xisi

≤ 2μ
∑

i∈I–

|�xa
i �sa

i |
xisi

≤ 2μ

γμg

∑

i∈I–

∣∣�xa
i �sa

i
∣∣ ≤ nμ(4κ + 1)

2γ
.

As
∑

i∈I+ �xa
i �sa

i ≤ xT s
4 , we get

2
∑

i∈I

�xa
i �sa

i ≤ 2
∑

i∈I+

�xa
i �sa

i ≤ nμg

2
.

Combining the above inequalities yields the result of this lemma. �

Corollary 6 If (x, s) ∈ N–∞(γ ), γ ∈ (0, 1
4κ+5 ), and (�x,�s) is the solution of (7) with μ =

γ

1–γ
μg , then

‖�x�s‖ ≤ pnμg , �xT�s ≤ qnμg ,

where p = 14κ+11
16

√
(1 + 4κ)(2 + 4κ) and q = 14κ+11

16 .

Proof Since 0 < γ < 1
4κ+5 ≤ 1

5 , we have γ

(1–γ )2 ≤ 5
16 and α2

a(4κ+1)–4γ

2(1–γ ) ≤ 5α2
a(4κ+1)

8 .
If μ = γ

1–γ
μg , then

ω =
(

γ

(1 – γ )2 +
α2

a(4κ + 1) – 4γ

2(1 – γ )
+

α4
a + 8α2

a + 4α2
a(4κ + 1)(1 – αa) + 16

16

)
nμg

≤
(

5
16

+
5α2

a(4κ + 1)
8

+
α4

a + 8α2
a + 4α2

a(4κ + 1)(1 – αa) + 16
16

)
nμg

≤
(

5
16

+
5(4κ + 1)

8
+

1 + 8 + 4(4κ + 1) + 16
16

)
nμg =

56κ + 44
16

nμg ,

where the second inequality follows from 0 < αa ≤ 1.
From Lemma 5, it follows that

‖�x�s‖ ≤ ω

√(
1
4

+ κ

)(
1
2

+ κ

)
≤ pnμg .

Similarly, the second result can easily be verified. �

For simplicity, the following notation is used in the rest of this paper:

t = max
i∈I+

{
�xa

i �sa
i

xisi

}
.

Obviously, �xa
i �sa

i ≤ txisi and t ≤ 1
4 .
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Theorem 7 Let (x, s) ∈ N–∞(γ ), (�x,�s) be the solution of (7) with μ = γ

1–γ
μg and α be the

corrector step size. Then

α ≥ 7γ

16pn
.

Proof The corrector step size is the maximum α such that α ∈ (0, 1] and

xi(α)si(α) ≥ γμg(α), ∀i ∈ I.

After a simple computation, we get

xi(α)si(α) = xisi + α
(
μ – xisi – α2

a�xa
i �sa

i
)

+ α2�xi�si

≥ (
1 – α – αtα2

a
)
xisi + αμ – α2pnμg ,

where the inequality is due to �xa
i �sa

i ≤ txisi and ‖�x�s‖ ≤ pnμg . Clearly, 1 + tα2
a ≤

1 + 1
4α2

a . Thus, for 0 ≤ α ≤ 1
1+ 1

4 α2
a

, we have

xi(α)si(α) ≥ (
1 – α – αtα2

a
)
γμg + αμ – α2pnμg .

Applying Lemma 2 and Corollary 6 yields

μg(α) =
(x + α�x)T (s + α�s)

n

= (1 – α)μg + αμ – αα2
a
�xaT�sa

n
+ α2 �xT�s

n
≤ (1 – α)μg + αμ + αα2

aκμg + α2qμg . (13)

To prove xi(α)si(α) ≥ γμg(α), one has to show that

(
1 – α – αtα2

a
)
γμg + αμ – α2pnμg ≥ γ

[
(1 – α)μg + αμ + αα2

aκμg + α2qμg
]
.

If μ = γ

1–γ
μg , then the above inequality is equivalent to

γ – γ κα2
a – tγα2

a ≥ α(pn + qγ ). (14)

Since αa =
√

γ

(4κ+1)n , γ < 1 and t ≤ 1
4 , we have

γ – γ κα2
a – tγα2

a ≥ γ –
4κγ 2 + γ 2

4n(4κ + 1)
≥ γ –

4κγ + γ

4n(4κ + 1)
≥ 7

8
γ .

Noting that pn > qγ , then inequality (14) is true if 0 ≤ α ≤ 7γ

16pn . We can conclude that the
corrector step size α satisfies

α ≥ min

{
1

1 + 1
4α2

a
,

7γ

16pn

}
=

7γ

16pn
. �
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In Algorithm 1, the corrector step size α has an upper bound α1, that is,

α ≤ α1 =
1 – 2γ – (1 – γ )κα2

a
2q(1 – γ )

. (15)

The next theorem means that the upper bound is well defined.

Theorem 8 Let αa be the default predictor step size and γ ∈ (0, 1
4κ+5 ). Then 7γ

16pn <
1–2γ –(1–γ )κα2

a
2q(1–γ ) < 1.

Proof Since q = 14κ+11
16 > 1

2 , it is clear that 1–2γ –(1–γ )κα2
a

2q(1–γ ) < 1. As n ≥ 2 and p > q > 1
2 , we have

7γ

16pn
≤ 7γ

16
.

According to (12), one has κα2
a = κγ

n(4κ+1) ≤ γ

8 , thus

1 – 2γ – (1 – γ )κα2
a

1 – γ
≥ 1 – 2γ – (1 – γ ) γ

8
1 – γ

= 2 +
1

γ – 1
–

γ

8
.

From γ < 1
4κ+5 ≤ 1

5 , it follows that

2 +
1

γ – 1
–

γ

8
>

7γ

16
.

Therefore

1 – 2γ – (1 – γ )κα2
a

2q(1 – γ )
>

7γ

16pn
,

which completes the proof. �

In the following theorem, we obtain an upper bound of the iteration number.

Theorem 9 Algorithm 1 stops after at most

O
(

(14κ + 11)
√

(1 + 4κ)(1 + 2κ) n log
(x0)T s0

ε

)

iterations with a solution for which xT s ≤ ε.

Proof If αa ≥ 0.3 and α ≥ 7γ

16pn , then Algorithm 1 adopts Mehrotra’s strategy in the cor-
rector step, i.e., μ = ( ga

g )2 ga
n . Based on (13), we have

μg(α) ≤
[

1 –
(

1 – κα2
a – qα –

μ

μg

)
α

]
μg

≤
[

1 –
(

1 – κα2
a – q

1 – 2γ – (1 – γ )κα2
a

2q(1 – γ )
–

(
1 –

3
4
αa

)3)
α

]
μg

≤
[

1 –
(

1 – 0.0125 –
1 – 2γ

2(1 – γ )
– 0.47

)
α

]
μg
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≤
[

1 –
γ

2(1 – γ )
α

]
μg

≤
[

1 –
7γ 2

32pn(1 – γ )

]
μg ,

where the second inequality follows from (10) and (15), the third inequality is due to κα2
a ≤

0.025 and 1 – 3
4αa ≤ 31

40 , and the fourth inequality comes from 1 – 0.0125 – 0.47 ≥ 1
2 .

If αa < 0.3 or α < 7γ

16pn , then Algorithm 1 adopts the safeguard strategy in the corrector

step, that is, μ = γ

1–γ
μg . In this case, from 7γ

16pn ≤ α ≤ 1–2γ –(1–γ )κα2
a

2q(1–γ ) , we get

μg(α) ≤
[

1 –
(

1 – κα2
a – qα –

μ

μg

)
α

]
μg

≤
[

1 –
(

1 – κα2
a – q

1 – 2γ – (1 – γ )κα2
a

2q(1 – γ )
–

γ

1 – γ

)
α

]
μg

=
[

1 –
(

1 – 2γ

2(1 – γ )
–

κα2
a

2

)
α

]
μg

≤
[

1 –
(39 – 79γ )7γ

1280pn(1 – γ )

]
μg ,

where the last inequality follows from κα2
a ≤ 0.025 and α ≥ 7γ

16pn . This completes the proof
by Theorem 3.2 of [1]. �

4 Numerical results
In this section, some numerical results are reported. The results are obtained by using
MATLAB R2014a.

The algorithm presented in this paper is compared with a Mizuno–Todd–Ye (MTY) type
predictor–corrector algorithm [6], Cho’s algorithm [8] and an interior point algorithm
based on the classical kernel function ϕ(t) = t2–1

2 – log t (IPMCKF) [20]. We consider the
following two problems.

Problem 1 ([21])

M =

(
0 1

–2 0

)

, q =

(
2
3

)

, x0 =

(
0.4

0.45

)

, s0 =

(
2.45
2.2

)

.

Problem 2 ([22])

M =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 2 · · · 2
2 5 6 · · · 6
2 6 9 · · · 10
...

...
...

...
...

2 6 10 · · · 4n – 3

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, q =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

–1
–1
–1
...

–1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, x0 =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1
1
1
...
1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

Problem 1 is a P∗( 1
4 ) LCP, and Problem 2 is a P∗(0) LCP. We solve the two problems by

using the above-mentioned algorithms. For all algorithms we set the accuracy parameter
ε = 10–8. In Algorithm 1, we set γ = 0.01.
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Table 1 The iteration numbers of Problem 1

Algorithm 1 MTY Cho’s IPMCKF

4 55 19 24

Table 2 The iteration numbers of Problem 2

n Algorithm 1 MTY Cho’s IPMCKF

10 10 31 31 34
20 11 37 44 39
30 12 40 49 43
40 13 40 52 44
50 13 49 53 47
100 15 58 64 52
150 15 73 68 55
200 16 85 71 57

Table 1 shows the iteration numbers of Algorithm 1, MTY algorithm, Cho’s algorithm
and IPMCKF algorithm for Problem 1. From the results we conclude that Algorithm 1
reduced the iteration numbers.

Table 2 gives the iteration numbers of the four algorithms for Problem 2 with n ∈
{10, 20, 30, 40, 50, 100, 150, 200}. The numerical results illustrate that Algorithm 1 has the
least iteration numbers. Since the safeguard step helps Algorithm 1 to avoid small steps,
Algorithm 1 is efficient.

5 Concluding remarks
In this paper, a Mehrotra-type predictor–corrector algorithm for P∗(κ) LCPs is studied.
Since P∗(κ) LCPs are the generalization of linear programming, the search directions �x
and �s are not orthogonal, therefore the analysis is different from that in linear program-
ming. The iteration bound of our algorithm is O((14κ + 11)

√
(1 + 4κ)(1 + 2κ) n log (x0)T s0

ε
).

Numerical results show that this algorithm is efficient.
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