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Abstract
In this paper we study upper and lower bounds on the Bregman divergence
�

ξ
F (y, x) :=F (y) –F (x) – 〈ξ , y – x〉 for some convex functional F on a normed space

X , with subgradient ξ ∈ ∂F (x). We give a considerably simpler new proof of the
inequalities by Xu and Roach for the special case F (x) = ‖x‖p, p > 1. The results can be
transferred to more general functions as well.
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1 Introduction
In recent times the Bregman divergence (or Bregman distance) �x∗

F (y, x), introduced by
Bregman in [1], has been used as a generalized distance measure in various branches of
applied mathematics, for example optimization, inverse problems, statistics and compu-
tational mathematics, especially machine learning. To get an overview over the Bregman
divergence and its possible applications in optimization and inverse problems we refer to
[2–4]. In particular the Bregman divergence has been used for various algorithms in nu-
merical analysis and also for convergence analysis of numerical methods and algorithms.

Especially when doing convergence analysis it is often crucial to have lower and upper
bounds on the Bregman divergence in terms of norms. In [5] the authors prove upper and
lower bounds for expressions

‖x + y‖p – ‖x‖p – p
〈
jp(x), y

〉
=: �jp(x)

F (x + y, x), (1)

where jp : X → X ∗ is a duality mapping, under certain assumptions on the Banach
space X . As it turns out that (1) is the Bregman divergence corresponding to the func-
tional F = ‖ · ‖p these results have been used since then in many papers working with
the Bregman divergence. However, from the proofs of [5] it seems difficult to transfer the
results to other functions F . Thus we develop in this work a simple framework to find
such bounds and in fact can apply it to give a short new proof of the results from [5] for
F (x) = ‖x‖p, p > 1.

Our approach is as follows: Proving upper bounds is rather simple if one sufficiently
understands the smoothness of F as the Bregman divergence is basically a linearization
error and linearization errors are related to differentiability by definition. In particular we
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will show that one can obtain upper bounds for the Bregman divergence corresponding
to F = φ(‖ · ‖), if φ : R →R is convex and sufficiently smooth.

Regarding lower bounds we will make use of F∗, the convex conjugate of F . Actually it
can be shown that lower bounds for �x∗

F (y, x) correspond to upper bounds for �x
F∗ (y∗, x∗).

Note that this idea is not at all new. Already in [6, 7] this kind of connection between F
and F∗ was discussed in depth. So again one can just make use of the smoothness of F∗ to
conclude lower bounds for �x∗

F (y, x). One might argue that convex conjugates can be rather
complicated functions and expecting differentiability is too optimistic. This is true to some
extent, but actually reasonable lower bounds on �x∗

F (y, x) already imply differentiability of
F∗ at x∗ (see [6, Theorem 2.1]). So if one has any hope of finding lower bounds then one
might as well work with the convex conjugate.

One reason why our proof is simpler than the proof from [5] is that they did it the other
way round. They firstly proved lower bounds with quite some effort and then used the
convex conjugate to show upper bounds.

We will focus mainly on asymptotic bounds for �x∗
F (y, x) as ‖x – y‖ → 0. It is the more

interesting case for applications as for example in convergence analysis one will be inter-
ested in the Bregman divergence of xn and x, where xn → x. Also theoretical it is the more
challenging case, since for ‖x – y‖ → ∞ the Bregman divergence �x∗

F (y, x) will mostly de-
pend on the behavior of F (y) as y tends to infinity and it should be easy to find lower and
upper bounds. In particular we will show at the end of the paper, how one can deduce
uniform bounds for all x, y ∈X from the asymptotic bounds for the case F = ‖ · ‖p.

The paper consists of 4 sections. In Sect. 2 we recall some basis notions of convex anal-
ysis. In Sect. 3 we define moduli of smoothness and convexity corresponding to a general
functional F and develop some properties of them. Finally, in Sect. 4 we then use the the-
ory from Sect. 3 on the functional F = 1

p‖ · ‖p for p > 1 and find lower and upper bounds
for the corresponding Bregman divergence given by the smoothness, respectively, the con-
vexity of the space X as shown in [5].

2 Tools from convex analysis
In this work X will always be a real Banach space, with dimX ≥ 2, X ∗ denotes its dual
space, SX = {x ∈ X : ‖x‖ = 1} the unit sphere and F : X → R := R ∪ {∞} some function.
We will need some basic concepts from convex analysis, so we shortly recall them in this
chapter.

x∗ ∈X ∗ is called a subgradient of a convex function F : X →R at x ∈X if F (x) is finite
and

F (y) ≥F (x) +
〈
x∗, y – x

〉
, (2)

for all y ∈X . The set of all subgradients of F at x is called the subdifferential of F at x and
denoted by ∂F (x). The convex conjugate F∗ : X ∗ → R of F is defined by

F∗(x∗) = sup
x∈X

[〈
x∗, x

〉
– F (x)

]
.

From these two definitions one can directly conclude the following generalized Young
(in)equality. For all x ∈X , x∗ ∈X ∗ we have

F (x) + F∗(x∗) ≥ 〈
x∗, x

〉
. (3)
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Equality holds true if and only if x∗ ∈ ∂F (x). Further we have

F (x) ≥F∗∗(x) := sup
x∗∈X ∗

[〈
x∗, x

〉
– F∗(x∗)], x ∈ X, (4)

where equality holds if and only if F is convex and lower-semicontinuous. Finally, we
define the object of interest of this work. For F (x) < ∞ and x∗ ∈ ∂F (x) the Bregman di-
vergence �x∗

F (y, x) is given by

�x∗
F (y, x) = F (y) – F (x) –

〈
x∗, y – x

〉 ≥ 0,

for all y ∈ X . We will be especially interested in functionals F (x) = 1
p‖x‖p for some p ≥ 1

and need to understand their subdifferentials, so finally we have the following. For some
p ≥ 1 the set-valued mapping Jp : X → 2X∗ given by

Jp(x) =
{

x∗ ∈X ∗ :
〈
x∗, x

〉
=

∥∥x∗∥∥‖x‖,
∥∥x∗∥∥ = ‖x‖p–1}

is called the duality mapping with respect to p of X . The sets Jp(x) are always non-empty.
A mapping jp : X →X ∗ is called selection of Jp if jp(x) ∈ Jp(x) for all x ∈X . If F (x) = 1

p‖x‖p,
then the theorem of Asplund [8, Theorem 1] yields

∂F (x) = Jp(x).

3 Moduli of smoothness and convexity
Finding upper bounds for (1) is related to the smoothness of the norm of X whereas lower
bounds are related to convexity. Thus it is necessary to understand the moduli of smooth-
ness and convexity of the space X and we shortly recall their definitions (see e.g. [9]):

Definition 3.1 The modulus of convexity δX : [0, 2] → [0, 1] of the space X is defined by

δX (ε) := inf
{

1 – ‖y + ỹ‖/2 : y, ỹ ∈ SX ,‖y – ỹ‖ = ε
}

.

The modulus of smoothness ρX : [0,∞) → [0,∞) of X is defined by

ρX (τ ) := sup
{(‖x + τy‖ + ‖x – τy‖)/2 – 1 : x, y ∈ SX

}
.

The space X is called uniformly convex if δX (ε) > 0 for every ε > 0. It is called uniformly
smooth if limτ→0 ρX (τ )/τ = 0. The space X is called r-convex (or convex of power type r)
if there exists a constant K > 0 such that δX (ε) ≥ Kεr for all ε ∈ [0, 2]. Similarly, it is called
s-smooth (or smooth of power type s) if ρX (τ ) ≤ Kτ s for all τ > 0.

These two moduli have a well-developed theory, which has been known in the literature
for a long time and we will not discuss all their properties. However, for our proofs we will
need the following properties.

Lemma 3.2
1. We have for τ1 ≤ τ2 that ρX (τ1)/τ1 ≤ ρX (τ2)/τ2.
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2. We see for all τ > 0 that there exists a constant Cτ such that for all Banach spaces X
we have

ρX (τ ) ≥ (
1 + τ 2) 1

2 – 1 ≥ Cτ τ
2, τ ≤ τ .

3. If δX is extended by ∞ on R \ [0, 2] then (2δX )∗ = 2ρX ∗ .
4. There exists a convex function f such that δX (τ /2) ≤ f (τ ) ≤ δX (τ ). In particular we

have δ∗∗
X (τ ) ≥ δX (τ /2).

Proof All statements follow from [9, Ch. 1.e]. The function f in the last statement can be
chosen as the Orlicz function f (τ ) := (ρX ∗ )(τ /2) by [9, Lemmata 1.e.6, 1.e.7]. �

For our purposes it will be more natural to introduce new definitions of the moduli of
smoothness and convexity related to functionals instead of spaces.

Definition 3.3 Let F : X → R be some arbitrary function, x ∈ X , F (x) < ∞ and ξ ∈ X ∗.
Define the linearization error functional �

ξ

F (y, x) by

�
ξ

F (y, x) = F (y) – F (x) – 〈ξ , y – x〉.

The modulus of smoothness ρ
ξ

F ,x : [0,∞) → [0,∞] of F in x with respect to ξ is defined
by

ρ
ξ

F ,x(τ ) := sup
y∈SX

∣∣F (x + τy) – F (x) – 〈ξ , τy〉∣∣ = sup
‖x–y‖=τ

∣∣�ξ

F (y, x)
∣∣.

The modulus of convexity δ
ξ

F ,x : [0,∞) → [0,∞] of F in x with respect to ξ is defined by

δ
ξ

F ,x(τ ) := inf‖x–y‖=τ

∣∣�ξ

F (y, x)
∣∣.

F is called r-convex (or convex of power type r) in x (w.r.t. ξ ) if there exist K , τ > 0 such
that δ

ξ

F ,x(τ ) ≥ Kτ r for all 0 < τ ≤ τ . Similarly, it is called s-smooth (or smooth of power
type s) in x (w.r.t. ξ ) if ρ

ξ

F ,x(τ ) ≤ Kτ s for all 0 < τ ≤ τ .

The quantities ρ
ξ

F ,x, δ
ξ

F ,x give us a reformulation of our basic problem: We want to find
upper bounds for ρ

ξ

F ,x(τ ) and lower bounds for δ
ξ

F ,x(τ ). Before we show some properties
of these functions we should state some simple facts for their interpretation.

Remark 3.4 We will mostly consider convex functions F with ξ ∈ ∂F (x) so that the lin-
earization error functional is a Bregman divergence and one can neglect the absolute value.
F is Fréchet-differentiable in x if and only if there exists ξ ∈X ∗, such that ρ

ξ

F ,x(τ )/τ → 0
as τ → 0. F being s-smooth in x, with s ∈ (1, 2] then can be seen as a stronger form of
differentiability, comparable to fractional derivatives; however, F being 2-smooth is not
equivalent to twice differentiability but rather to the notion of strong smoothness.

If there exists a selection j : X → X ∗ of the subdifferential of F , i.e. for every x exists
j(x) ∈ ∂F (x), then this implies already that F is convex. δj(x)

F ,x(τ ) > 0 for all x, τ implies strict
convexity. As before r-convexity is an even stronger notion of convexity and 2-convexity
is connected to strong convexity. In [10] the modulus of local (or total) convexity of F ,
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νF (x, τ ), was introduced and is basically given by δ
ξ

F ,x(τ ) just that 〈ξ , y – x〉 is replaced by
the right hand side derivative of F at x in direction y – x. If F is convex and Gâteaux-
differentiable then νF (x, τ ) coincides with δ

ξ

F ,x(τ ), where ξ = F ′(x). The modulus of total
convexity has been studied in several papers, see e.g. [11]. There exist further definitions
of moduli of convexity and smoothness related to functions (e.g. [4, 12]), but giving a com-
plete overview over all such definitions goes beyond the scope of this work.

It turns out that for functionals F that originate from the norm of X the moduli of the
space and of the functions are closely related.

Proposition 3.5 Let F = ‖ · ‖X and for all x ∈X let ξx ∈ ∂F (x) be arbitrary. We have

ρ ≤ sup
x∈SX

ρ
ξx
F ,x ≤ 2ρ. (5)

Proof If we replace y by –y in the definition of ρ
ξx
F ,x we see

2ρ(τ ) = sup
{
F (x + τy) + F (x – τy) – 2F (x) + 〈ξx, y – y〉 : x, y ∈ SX

}

≤ 2 sup
x∈SX

ρ
ξx
F ,x(τ )

and for all x, y ∈ SX we have by the definition of the subdifferential and as F (x) = ‖x‖X = 1

F (x + τy) – F (x) – 〈ξx, τy〉 ≤F (x + τy) + F (x – τy) – 2 ≤ 2ρ(τ ). �

So this already gives us an upper bound for ρ
ξ

‖·‖X ,x(τ ) if x ∈ SX , ξ ∈ ∂F (x). For general-
izing this to all x ∈X we use the following.

Proposition 3.6 If the functional F is positively q-homogeneous then we have, for all x ∈
X \ {0}, ξ ∈X ∗,

‖x‖qδ
ξ /‖x‖q–1

F ,x/‖x‖

(‖x – y‖
‖x‖

)
≤ ∣∣�ξ

F (y, x)
∣∣ ≤ ‖x‖qρ

ξ /‖x‖q–1

F ,x/‖x‖

(‖x – y‖
‖x‖

)

and ξ /‖x‖q–1 ∈ ∂F (x/‖x‖) if and only if ξ ∈ ∂F (x).

Proof If F is positively q-homogeneous we have

∣∣�ξ

F (y, x)
∣∣ = ‖x‖q

∣∣∣∣�
ξ /‖x‖q–1

F

(
y

‖x‖ ,
x

‖x‖
)∣∣∣∣,

so that the first claim follows from Definition 3.3. The second claim follows from multi-
plying (2) either by ‖x‖q or ‖x‖–q. �

For convex functions F one can show that both moduli are nondecreasing.

Proposition 3.7 Let F be convex, x ∈X and ξ ∈ ∂F (x). Then for λ ≥ 1 one has

ρ
ξ

F ,x(λτ ) ≥ λρ
ξ

F ,x(τ ), δ
ξ

F ,x(λτ ) ≥ λδ
ξ

F ,x(τ ).

In particular δ
ξ

F ,x, ρξ

F ,x are nondecreasing.
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Proof The idea is the same, as in [10, Sect. 2.4]. Let λ ≥ 1. For all y ∈ X , ‖y – x‖ = τ one
can define yλ = λy + (1 – λ)x, so ‖yλ – x‖ = λτ . As λ ≥ 1 we get by the convexity of F

F
(
λy + (1 – λ)x

) ≥ λF (y) + (1 – λ)F (x)

(multiply by λ–1 and replace y = λ–1y + (1 – λ–1)x to see the equivalence to the usual defi-
nition of convexity) and thus

1
λ

�
ξ

F (yλ, x) =
1
λ

(
F

(
λy + (1 – λ)x

)
– F (x)

)
– 〈ξ , y – x〉 ≥ �

ξ

F (y, x).

So for all y ∈X , ‖y – x‖ = τ we find

�
ξ

F (y, x) ≤ 1
λ

ρ
ξ

F ,x(λτ ),

which gives the first inequality. Similarly for all y ∈ X , ‖y – x‖ = λτ one can define ỹλ =
1
λ

y + (1 – 1
λ

)x, then ‖ỹλ – x‖ = τ and again convexity of F can be used to show �
ξ

F (y, x) ≥
λ�

ξ

F (ỹλ, x), which yields the other inequality. �

We also have a chain rule.

Proposition 3.8 Let f : R → R and x ∈ X , ξ ∈ X ∗, t ∈ R be such that ρt
f ,F (x) is nonde-

creasing. Then for all τ ≥ 0 we have

ρ
tξ
f ◦F ,x(τ ) ≤ |t|ρξ

F ,x(τ ) + ρt
f ,F (x)

(‖ξ‖τ + ρ
ξ

F ,x(τ )
)
.

Proof Let s = F (x) and define functions R, r by

F (x + y) – F (x) = 〈ξ , y〉 + R(y) ∀y ∈X ,

f (s + h) – f (s) = th + r(h) ∀h ∈R.

Then we have for τ > 0 and y ∈ SX

f ◦F (x + τy) – f ◦F (x) = t
(〈ξ , τy〉 + R(y)

)
+ r

(〈ξ , τy〉 + R(τy)
)

= 〈tξ , τy〉 + tR(τy) + r
(〈ξ , τy〉 + R(τy)

)
.

Now the claim follows from R(τy) ≤ ρ
ξ

F ,x(τ ) and r(h) ≤ ρt
f ,F (x)(|h|) together with the as-

sumption that ρt
f ,F (x) is a nondecreasing function. �

Propositions 3.5, 3.7 and 3.8 are already sufficient to find upper bounds on ρ
ξ

F ,x for F =
f (‖x‖X ) if f is convex and if we sufficiently understand the smoothness of f and of the
space X . Regarding lower bounds the following proposition will be our key instrument.

Proposition 3.9 Let F convex and x be such there exists ξ ∈ ∂F (x). We have

(
δ

ξ

F ,x
)∗ = ρx

F∗ ,ξ . (6)

Further we see that F is p-convex in x w.r.t. ξ if and only if F∗ is p′-smooth in ξ w.r.t. x.
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Proof We have

ρx
F∗ ,ξ (τ ) = sup

y∗∈SX∗

[
F∗(ξ + τy∗) – F∗(ξ ) –

〈
τy∗, x

〉]

= sup
y∗∈SX∗

sup
y∈X

[〈
ξ + τy∗, y

〉
– F (y) – F∗(ξ ) –

〈
τy∗, x

〉]

= sup
y∈X

[〈ξ , y〉 – F (y) – F∗(ξ ) + τ‖y – x‖].

By Young’s equality (3) we then have

ρx
F∗ ,ξ (τ ) = sup

y∈X

[
F (x) – F (y) + 〈ξ , y – x〉 + τ‖y – x‖]

= sup
ε∈R+

0

sup
y∈X ,‖y–x‖=ε

[
ετ – �

ξ

F (y, x)
]

=
(
δ

ξ

F ,x
)∗(τ ).

The second statement follows from (6), which gives

ρx
F∗ ,ξ =

(
δ

ξ

F ,x
)∗, δ

ξ

F ,x ≥ (
δ

ξ

F ,x
)∗∗ =

(
ρx
F∗ ,ξ

)∗

and the fact that by Proposition 3.7 we have for τ > τ ρ
ξ

F ,x(τ ) ≥ τρ
ξ

F ,x(τ )/τ , δ
ξ

F ,x(τ ) ≥
τδ

ξ

F ,x(τ )/τ , so that in particular

(
δ

ξ

F ,x
)∗(

τ ∗) = sup
0≤τ≤τ

[
τ ∗τ – δ

ξ

F ,x(τ )
]
, for τ ∗ ≤ δ

ξ

F ,x(τ )/τ ,

(
ρ

ξ

F ,x
)∗(

τ ∗) = sup
0≤τ≤τ

[
τ ∗τ – ρ

ξ

F ,x(τ )
]
, for τ ∗ ≤ ρ

ξ

F ,x(τ )/τ .

Thus one can just put in the corresponding lower or upper bound and calculate the max-
imum, which completes the proof. �

4 Application to norm powers
In this section we will consider F = 1

p‖ · ‖p for some p > 1 and use the theory from the last
chapter to reproduce the main results from [5]. Note that in the light of Proposition 3.6 it
is sufficient to understand δ

jp(x)
F ,x and ρ

jp(x)
F ,x for x ∈ SX .

Theorem 4.1 For some fixed p > 1 let F = 1
p‖ · ‖p.

1. For all τ > 0 exists a constant Cτ ,p > 0, such that for x ∈ SX and τ ≤ τ we have

ρ
jp(x)
F ,x (τ ) ≤ Cτ ,pρX (τ ).

2. If we have for τ > 0, τ ≤ τ and all x ∈ SX

ρ
jp(x)
F ,x (τ ) ≤ φ(τ ),

then

ρX (τ ) ≤ p1/p–1φ(τ ) + Cτ τ
2,
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for τ ≤ τ . In particular if φ : R+ →R
+ fulfills limτ→0 φ(τ )/τ = 0, then X is uniformly

smooth.
3. Let 1

p + 1
p′ = 1. For all x ∈ SX , τ > 0 we have

δ
jp(x)
F ,x (τ ) ≥ Cτ ,p′δX (τ /Cτ ,p′ ), τ ≤ p′ – 1

2
τ ,

where Cτ ,p′ is the constant from 1.
4. If there exists τ > 0 such that we have for all x ∈ SX and τ ≤ τ

δ
jp(x)
F ,x (τ ) ≥ φ(τ ),

where φ : R+ →R
+ is nondecreasing and φ(τ ) > 0 for τ > 0, then X is uniformly

convex.

Proof Claim 1: Note that F = f ◦ ‖ · ‖, with f (t) = 1
p tp, which is convex, thus ρ1

f ,F (x) is
nondecreasing by Proposition 3.7, so Proposition 3.8 gives

ρ
jp(x)
F ,x (τ ) ≤ ρ

jp(x)
‖·‖,x(τ ) + ρ1

f ,F (x)
(
τ + ρ

jp(x)
‖·‖,x(τ )

)
.

We have by Taylor’s theorem

ρ1
f ,1(τ ) = sup

σ∈{–1,+1}
p – 1

2
τ 2 + r(στ )τ 2 ≤ Cτ 2, for τ ≤ 3τ ,

where the inequality holds for a constant depending on p and τ as ρ1
f ,1 is always finite and

so is the remainder r. We have jp(x) ∈ ∂‖ · ‖(x) for x ∈ SX , so by Proposition 3.5 we have
ρ

jp(x)
‖·‖,x(τ ) ≤ 2ρX (τ ) and one can easily see that ρX (τ ) ≤ τ . So we have

ρ
jp(x)
F ,x (τ ) ≤ 2ρX (τ ) + 9Cτ 2 ≤ (2 + 9C/Cτ )ρX (τ ), τ ≤ τ ,

where the second inequality follows from item 2 of Lemma 3.2.
Claim 2: Note that ‖ · ‖ = f –1 ◦F and f –1(t) = (pt)

1
p is concave, thus –f –1 is convex and

it is differentiable, so –1 ∈ ∂(–f –1)( 1
p ) and by Proposition 3.7 ρ1

f –1,1/p = ρ–1
–f –1,1/p is nonde-

creasing. Then Proposition 3.8 gives for all x ∈ SX

ρ
jp(x)
‖·‖,x(τ ) ≤ ρ

jp(x)
F ,x (τ ) + ρ1

f –1,1/p
(
τ + ρ

jp(x)
F ,x (τ )

) ≤ φ(τ ) + Cτ τ
2,

where the second inequality follows by Taylor’s theorem as above and the fact that by
Claim 1 we always have ρ

jp(x)
F ,x (τ ) ≤ Cτ for some C > 0. Thus Proposition 3.5 yields the

assertion.
Claim 3: First of all note that F∗(t) = 1

p′ tp′ , with 1
p + 1

p′ = 1. We have

δ
jp(x)
F ,x (τ ) ≥ (

δ
jp(x)
F ,x

)∗∗(τ ) =
(
ρx
F∗ ,jp(x)

)∗(τ ) = sup
r≥0

[
τ r – ρx

F∗ ,jp(x)(r)
]
.

By Claim 1 we have for all x ∈ SX ρx
F∗ ,jp(x)(r) ≤ Cτ ,p′ρX ∗ (r) for all 0 < r < τ . We are only

interested in the case τ → 0 so let τ ≤ Cτ ,p′ρX ∗ (τ )/τ , where ρX ∗ (τ )/τ > 0 by Lemma 3.2, 2.
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Then by Lemma 3.2, 1. we have τ r ≤ Cτ ,p′ρX ∗ (r) for r ≥ τ and thus find

sup
0≤r

[
τ r – ρx

F∗ ,jp(x)(r)
] ≥ sup

0≤r≤τ

[
τ r – Cτ ,p′ρX ∗ (r)

]
= (CρX ∗ )∗(τ ).

So we have by Lemmas 3.2, 3 and 4

δ
jp(x)
F ,x (τ ) ≥ (Cτ ,p′ρX )∗(τ ) =

Cτ ,p′

2
(2δX )∗∗

(
2τ

Cτ ,p′

)
≥ Cτ ,p′ (δX )

(
τ

Cτ ,p′

)
.

Finally, note that Cτ ,p′ ≥ p′–1
2 C–1

τ , with Cτ from item 2 of Lemma 3.2 and thus Cτ ,p′ρX ∗ (τ )/
τ ≥ p′–1

2 τ .
Claim 4: By assumption we have δ

jp(x)
F ,x (τ ) ≥ φ(τ ) for τ ≤ τ and by Proposition 3.7 we

have for τ > τ δ
jp(x)
F ,x (τ ) ≥ τδ

jp(x)
F ,x (τ )/τ and thus δ

jp(x)
F ,x (τ ) ≥ φ̃(τ ) with

φ̃(τ ) :=

⎧
⎨

⎩
φ(τ ), τ ≤ τ ,

τφ(τ )/τ , τ > τ .

So by Proposition 3.9 we have for all x∗ ∈ SX ∗

ρ
j∗p(x∗)
F∗ ,x∗ (τ ) =

(
δx∗
F ,j∗p(x∗)

)∗(τ ) ≤ φ̃∗(τ ).

Now just observe that for τ < φ(τ )/τ we have

φ̃∗(τ )
τ

= sup
0≤t

[
t –

φ̃(t)
τ

]
= sup

0≤t≤τ

[
t –

φ(t)
τ

]
→ 0, τ → 0,

as φ is nondecreasing. So by part 2 of the theorem we see that X ∗ is uniformly smooth
from which it follows that X is uniformly convex [9, Prop. 1.e.2]. �

Remark 4.2 One can see from the above proof that in the asymptotic case τ → 0 one can
choose the constant Cτ ,p such that

Cτ ,p →
⎧
⎨

⎩
2, X is not 2-smooth,

1 + p, X is 2-smooth.

These constants are not sharp for every space X , but at least in the asymptotic case the
constants are much simpler than the ones given in [5]. For best known constants with
respect to Lp spaces we refer to [13] and [14].

The above theorem combined with Proposition 3.6 gives us upper and lower bounds
on the Bregman divergence for ‖x – y‖ ≤ τ‖x‖. However, as for large ‖x – y‖ the Breg-
man divergence will be dominated by the term 1

p‖y‖p it is not difficult to also find bounds
that hold for all x, y ∈ X. Further one can additionally conclude bounds for the symmetric
Bregman divergence,

�
sym
F (x, y) := �

jp(x)
F (y, x) + �

jp(y)
F (x, y) =

〈
jp(x) – jp(y), x – y

〉
,

from our theorem. These two claims are shown in the following two propositions.
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Proposition 4.3 For some fixed p > 1 letF = 1
p‖·‖p and let φ : R+ →R

+ be nondecreasing.
Let V = X \ {0} ×X and define the statements:

∃C, c > 0 ∀(x, y) ∈ V ,‖x – y‖ ≤ c‖x‖: �
jp(x)
F (y, x) ≤ C‖x‖pφ

(‖x – y‖
‖x‖

)
, (a)

∃C > 0 ∀(x, y) ∈ V : �
sym
F (x, y) ≤ C max

{‖x‖,‖y‖}p
φ

(
2‖x – y‖

max{‖x‖,‖y‖}
)

, (b)

∃C > 0 ∀(x, y) ∈ V : �
jp(x)
F (y, x) ≤ C max

{‖x‖,‖y‖}p
φ

(
2‖x – y‖

max{‖x‖,‖y‖}
)

. (c)

Then (a) ⇒ (b) ⇒ (c). Obviously one also has (c) ⇒ {(a) with φ replaced by φ(2·)}.

Proof We only show that (a) implies (b) as (b) ⇒ (c) follows trivially. Without loss of gen-
erality let c ≤ 1. First of all assume ‖x–y‖

‖x‖ > c. Then by

‖x – y‖
‖x‖

‖x‖
‖y‖ =

‖x – y‖
‖y‖ ≥ ‖y‖ – ‖x‖

‖y‖ ≥ 1 –
‖x‖
‖y‖

one can see that regardless of whether we have ‖x‖/‖y‖ > 1/2 or ‖x‖/‖y‖ ≤ 1/2 one always
has 2‖x–y‖

‖y‖ > c. So by

�
sym
F (x, y) =

〈
jp(x) – jp(y), x – y

〉 ≤ ‖x‖p + ‖y‖p + ‖x‖p–1‖y‖ + ‖y‖p–1‖x‖
≤ 4 max

{‖x‖,‖y‖}p

we find that

�
sym
F (x, y) ≤ 4

φ(c)
max

{‖x‖,‖y‖}p
φ

(
2‖x – y‖

max{‖x‖,‖y‖}
)

.

Now consider the case ‖x – y‖/‖x‖ ≤ c ≤ 1. In this range we can conclude (b) from (a)
as ‖y‖ ≤ 2‖x‖, so that

φ

(‖x – y‖
‖x‖

)
≤ φ

(
2‖x – y‖

‖y‖
)

. �

Proposition 4.4 For some fixed p > 1 let F = 1
p‖ · ‖p, let φ : R+ → R

+ be nondecreasing
and φ(τ ) > 0 for τ > 0. Let V = X \ {0} ×X and define the statements:

∃C, c > 0 ∀(x, y) ∈ V ,‖x – y‖ ≤ c‖x‖: �
jp(x)
F (y, x) ≥ C‖x‖pφ

(‖x – y‖
‖x‖

)
, (d)

∃C > 0 ∀(x, y) ∈ V : �
jp(x)
F (y, x) ≥ C max

{‖x‖,‖y‖}p
φ

( ‖x – y‖
max{‖x‖,‖y‖}

)
, (e)

∃C > 0 ∀(x, y) ∈ V : �
sym
F (x, y) ≥ C max

{‖x‖,‖y‖}p
φ

( ‖x – y‖
max{‖x‖,‖y‖}

)
. (f)

Then (d) ⇒ (e) ⇒ (f).
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Proof The proof is very similar to the previous proof so we just sketch it. We look at three
different cases. By Proposition 3.7 we know that δ

jp(x)
F ,x is nondecreasing, so (d) gives also

for ‖x – y‖/‖x‖ ≥ c �
jp(x)
F (y, x) ≥ C‖x‖pφ(c) and thus

�
jp(x)
F (y, x) ≥

⎧
⎪⎪⎨

⎪⎪⎩

C‖x‖pφ( ‖x–y‖
‖x‖ ), ‖x–y‖

‖x‖ ≤ c,

C‖x‖pφ(c), c ≤ ‖x–y‖
‖x‖ < N ,

Cp,φ,N‖y‖pφ( ‖x–y‖
‖y‖ ), N ≤ ‖x–y‖

‖x‖ ,

for sufficiently large N > 3, where the last line follows from the fact that ‖x–y‖
‖x‖ ≥ N implies

‖y‖ ≥ (N – 1)‖x‖, which implies ‖x–y‖
‖y‖ ≥ 1 – (N – 1)–1 ≥ 1/2 and thus it suffices to see that

the Bregman divergence will be dominated by ‖y‖p, for sufficiently large N . To conclude
(e) one then basically has to redefine the constants. Equation (f) follows trivially. �

To conclude this chapter we combine the results and summarize the most important
inequalities.

Corollary 4.5 Let X be a Banach space and F (x) = 1
p‖x‖p for p > 1. Then there exist con-

stants C1, C2 > 0 such that for all x, y ∈X we have

�
jp(x)
F (y, x) ≤ C1 max

{‖x‖,‖y‖}p
ρX

(
2‖x – y‖

max{‖x‖,‖y‖}
)

(7)

and

�
jp(x)
F (y, x) ≥ C2 max

{‖x‖,‖y‖}p
δX

( ‖x – y‖
3 max{‖x‖,‖y‖}

)
. (8)

If the space X is s-smooth, then there exists C > 0 and for all τ > 0 also Cτ > 0 such that

�
jp(x)
F (y, x) ≤

⎧
⎨

⎩
C‖x – y‖s, p = s,

Cτ‖x‖p–s‖x – y‖s, for ‖x–y‖
‖x‖ ≤ τ , p �= s.

(9)

If the space X is r-convex, then there exists C̃ > 0 and for all τ > 0 also C̃τ > 0 such that

�
jp(x)
F (y, x) ≥

⎧
⎨

⎩
C̃‖x – y‖r , p = r,

C̃τ‖x‖p–r‖x – y‖r , for ‖x–y‖
‖x‖ ≤ τ , p �= r.

(10)

Proof By Proposition 3.6 we have

‖x‖pδ
jp(x)/‖x‖p–1

F ,x/‖x‖

(‖x – y‖
‖x‖

)
≤ �

jp(x)
F (y, x) ≤ ‖x‖pρ

jp(x)/‖x‖p–1

F ,x/‖x‖

(‖x – y‖
‖x‖

)
.

Thus item 1 of Theorem 4.1 and the s-smoothness show the bound (9) for x ∈ X and y
such that ‖x – y‖ ≤ τ‖x‖. Similarly item 3 of Theorem 4.1 and the r-convexity show (10)
for x ∈ X and y such that ‖x – y‖ ≤ p′–1

2 τ‖x‖. As this holds true for all τ > 0 one can
just replace τ̃ = 2τ

p′–1 . Apply Proposition 4.3 and Proposition 4.4 to conclude from this the
uniform bounds for all x, y ∈X . �
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