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Abstract
In this paper, we study the existence of solution for the following non-linear matrix
equations:

X = Q +
n∑

i=1

A∗
i XAi –

n∑

i=1

B∗
i XBi ,

X = Q +
n∑

i=1

A∗
i Υ (X)Ai ,

where Q is a Hermitian positive definite matrix, Ai , Bi are arbitrarym×mmatrices and
Υ :H(m) → P (m) is an order preserving continuous map such that Υ (0) = 0. To this
aim, we establish several common fixed point theorems for two mapping satisfying a
rational FR-contractive condition, whereR is a binary relation.
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1 Introduction
Non-linear matrix equations play an important role in several problems of engineering
and applied mathematics. Various matrix equations are encountered in stability analysis
[1], control theory [2, 3] and system theory [4–6]. To test the existence of solution to non-
linear matrix equations, we can have a number of advanced methods. One of these meth-
ods is to use the tools of fixed point theory. Using fixed point results, many researchers
checked the existence and uniqueness of solution of non-linear matrix equations [7–10].

An important result in fixed point theory, commonly known in the literature as the Ba-
nach principle, has been established by Banach [11]. This principle has been improved and
generalized by several researchers for different kinds of contractions in various spaces.
Wardowski [12] presented the concept of F-contraction and demonstrated fixed point
theorems for this new type of contractions. Several authors generalized Wardowski’s the-
orems by extending the concept of F-contraction. Recently, Sawangsup et al. [9] intro-
duced the concept of FR-contraction and established fixed point results for such type of
contractions.
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Throughout this work we use the following notation:
M(m) = set of m × m complex matrices,
H(m) = set of m × m Hermitian matrices,
P(m) = set of m × m positive definite matrices,
H+(m) = set of m × m positive semi-definite matrices.

Here P(m) ⊆H(m) ⊆M(m), H+(m) ⊆H(m), Ω1 � 0 and Ω1 � 0 means that Ω1 ∈ P(m)
and Ω1 ∈H+(m), respectively; for Ω1 – Ω2 � 0 and Ω1 – Ω2 � 0 we will use Ω1 � Ω2 and
Ω1 � Ω2, respectively. Moreover, N = {1, 2, 3, . . .}, and N0 = N∪ {0}.

The main concern of this paper is to study the following non-linear matrix equations:

X = Q +
n∑

i=1

A∗
i XAi –

n∑

i=1

B∗
i XBi, (1.1)

X = Q +
n∑

i=1

A∗
i Υ (X)Ai, (1.2)

where Q ∈ P(m), Ai, Bi are arbitrary m × m matrices and Υ : H(m) → P(m) is a contin-
uous order preserving map such that Υ (0) = 0. The matrix equations (1.1) often occur in
dynamic programming [13, 14], control theory [15, 16], ladder networks [17, 18], etc.

Berzig [7] used coupled fixed point results to prove the existence of the unique positive
definite solutions of (1.1). Recently, Sawangsup et al. [9] established fixed point theorems
for FR-contractions and proved the existence and uniqueness of a positive definite solu-
tion of the matrix equation (1.2).

The intention of this work is to introduce the concept of rational FR-contractive pair
of mappings, under an arbitrary binary relation R and using this concept we prove fixed
point results. By means of these results, we prove in the last section existence results for
positive definite solutions of the two classes of non-linear matrix equations (1.1) and (1.2).

2 Preliminaries
In this section we recall some basic notions.

Definition 2.1 Let F be the class of all functions f : [0,∞[ → R satisfying the following
properties:

(1) f is strictly increasing;
(2) for every sequence {sn}n∈N with sn > 0, we have

lim
n→∞sn = 0 ⇐⇒ lim

n→∞f(sn) = –∞;

(3) there is j ∈ ]0, 1[ such that lim
s→0+

sjf(s) = 0.

Definition 2.2 ([19]) Let X be a non-empty set and R be a binary relation on X. Then R
is transitive if (γ2,γ1) ∈R and (γ1,γ3) ∈R implies that (γ2,γ3) ∈R, for all γ2,γ1,γ3 ∈X.

Definition 2.3 ([20, 21]) Let X be a non-empty set and Φ : X→ X. Then a binary relation
R on X is called Φ-closed (equivalently Φ is R-non-decreasing) if for any γ1,γ2 ∈ X, we
have

(γ1,γ2) ∈R �⇒ (Φγ1,Φγ2) ∈R.
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Definition 2.4 ([21]) Let γ1,γ2 ∈ X and R be a binary relation on a non-empty set X.
A path (of length n ∈ N) in R from γ1 to γ2 is a sequence {t0, t1, t2, . . . , tn} ⊆X such that

(i) t0 = γ1 and tn = γ2;
(ii) (tj, tj+1) ∈R for all j ∈ {0, 1, 2, . . . , n – 1}.

Note that Γ (γ1,γ2,R) represents the class of all paths from γ1 to γ2 in R.

Notice that a path of length n involves n + 1 elements of X, although they are not nec-
essarily distinct.

Definition 2.5 ([22]) A metric space (M, d) equipped with a binary relation R is R-non-
decreasing-regular if for all sequences {κn} in M,

(κn,κn+1) ∈R, ∀n ∈N,

κn → κ ∈ M,

}
�⇒ (κn,κ) ∈R,∀n ∈N.

Definition 2.6 ([9]) Let (M, d) be a metric space,R be a binary relation M and Ψ : M → M
be a mapping. Let

W =
{

(κ1,κ2) ∈R : d(Ψ κ1,Ψ κ2) > 0
}

.

Then Ψ is said to be an FR-contraction if there exist ξ > 0 and F ∈ F such that

ξ + F
(
d(Ψ κ1,Ψ κ2)

) ≤ F
(
d(κ1,κ2)

)
, for all (κ1,κ2) ∈W . (2.1)

3 Main results
First we modify Definition 2.6 for two maps as follows.

Definition 3.1 Let Φ , Ψ be two self-mappings and R be a binary relation on a non-empty
set X. Then R is (Φ ,Ψ )-closed if for each a1, a2 ∈ X, we have

(a1, a2) ∈R �⇒ (Φa1,Ψ a2), (Ψ a1,Φa2) ∈R.

Definition 3.2 Let (M, d) be a metric space, Φ , Ψ be self-mappings of M and R be a
binary relation on M. Let

X =
{

(κ1,κ2) ∈R : d(Φκ1,Ψ κ2) > 0
}

.

We say that (Φ ,Ψ ) is a rational FR-contractive pair of mappings if there exist ξ > 0 and
F ∈ F such that

ξ + F
(
d(Φκ1,Ψ κ2)

)

≤ F
(

d(κ1,κ2) +
d(κ2,Φκ1)d(κ1,Ψ κ2)

1 + d(κ1,κ2)

)
, for all (κ1,κ2) ∈X . (3.1)

Denote by M((Φ ,Ψ );R) the set of all order pairs (κ1,κ2) ∈ M × M such that
(Φκ1,Ψ κ2) ∈R.
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Theorem 3.3 Let (M, d) be a complete metric space, R be a binary relation on M and
Φ ,Ψ : M → M. Suppose that the following conditions hold:

(C1) M((Φ ,Ψ );R) is non-empty;
(C2) R is (Φ ,Ψ )-closed;
(C3) Φ and Ψ are continuous;
(C4) the pair (Φ ,Ψ ) is rational FR-contractive.

Then there is a common fixed point of Φ and Ψ .

Proof Let (κ0,κ1) be any element of M((Φ ,Ψ );R), then (Φκ0,Ψ κ1) ∈ R. Define the se-
quence {κn} in M by

κ2n+1 = Φκ2n,

κ2n+2 = Ψ κ2n+1,

}
(3.2)

where n ∈N0.
If κ2n∗ = κ2n∗+1 for some n∗ ∈ N0, then κ2n∗ is a common fixed point of Φ and Ψ . If

κ2n �= κ2n+1, for all n ∈ N0. Then d(Φκ2n,Ψ κ2n+1) > 0, for all n ∈ N0 and using assumption
(C2), we obtain

(κ1,κ2) = (Φκ0,Ψ κ1) ∈R,

(κ2,κ3) = (Ψ κ1,Φκ2) ∈R,

(κ3,κ4) = (Φκ2,Ψ κ3) ∈R,

(κ4,κ5) = (Ψ κ3,Φκ4) ∈R,

...

In general,

(κ2n,κ2n+1) = (Ψ κ2n–1,Φκ2n) ∈R.

Thus (κ2n,κ2n+1) ∈X , for all n ∈N0. Now, taking in (3.1) κ1 = κ2n and κ2 = κ2n–1, we have

F
(
d(κ2n,κ2n+1)

)
= F

(
d(κ2n+1,κ2n)

)

= F
(
d(Φκ2n,Ψ κ2n–1)

)

≤ F
(

d(κ2n,κ2n–1) +
d(κ2n–1,Φκ2n)d(κ2n,Ψ κ2n–1)

1 + d(κ2n,κ2n–1)

)
– ξ

= F
(

d(κ2n,κ2n–1) +
d(κ2n–1,κ2n+1)d(κ2n,κ2n)

1 + d(κ2n,κ2n–1)

)
– ξ

= F
(
d(κ2n,κ2n–1)

)
) – ξ ,

for all n ∈N. Similarly, setting κ1 = κ2n and κ2 = κ2n+1 in (3.1), we can write

F
(
d(κ2n+1,κ2n+2)

)
= F

(
d(Φκ2n,Ψ κ2n+1)

)

≤ F
(

d(κ2n,κ2n+1) +
d(κ2n+1,Φκ2n)d(κ2n,Ψ κ2n+1)

1 + d(κ2n,κ2n+1)

)
– ξ
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= F
(

d(κ2n,κ2n+1) +
d(κ2n+1,κ2n+1)d(κ2n,κ2n+2)

1 + d(κ2n,κ2n+1)

)
– ξ

= F
(
d(κ2n,κ2n+1)

)
) – ξ .

In general,

F
(
d(κn,κn+1)

) ≤ F
(
d(κn–1,κn)

)
) – ξ , (3.3)

where n ∈N. Now, using inequality (3.3), we can write

F
(
d(κn,κn+1)

) ≤ F
(
d(κn–1,κn)

)
– ξ

≤ F
(
d(κn–2,κn–1)

)
– 2ξ

≤ F
(
d(κn–3,κn–2)

)
– 3ξ

≤ F
(
d(κn–4,κn–3)

)
– 4ξ

...

≤ F
(
d(κ0,κ1)

)
– nξ ,

that is,

F
(
d(κn,κn+1)

) ≤F
(
d(κ0,κ1)

)
– nξ , (3.4)

where n ∈N. Thus lim
n→∞F(d(κn,κn+1)) = –∞, by condition (2) of Definition 2.1, we get

lim
n→∞d(κn,κn+1) = 0 or lim

n→∞d(κn,κn+1) = 0+. (3.5)

From condition (3) of Definition 2.1, we can find ε ∈ ]0, 1[ such that

lim
n→∞

(
d(κn,κn+1)

)εF
(
d(κn,κn+1)

)
= 0. (3.6)

Using (3.4), we have

(
d(κn,κn+1)

)ε(F
(
d(κn,κn+1)

)
– F

(
d(κ0,κ1)

)) ≤ –
(
d(κn,κn+1)

)εnξ ≤ 0. (3.7)

Taking the limit n → ∞ in (3.7), and using (3.5) and (3.6), we get

lim
n→∞n

(
d(κn,κn+1)

)ε = 0. (3.8)

Hence there exists n0 ∈ N such that, for all n ≥ n0, n(d(κn,κn+1))ε ≤ 1. Consequently, we
have

d(κn,κn+1) ≤ 1
n 1

ε

, ∀n ≥ n0. (3.9)
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Now, we show that {κn} is a Cauchy sequence. For this purpose, using (3.9) and the trian-
gular inequality, for all m > n ≥ n1, we have

d(κn,κm) ≤ d(κn,κn+1) + d(κn+1,κn+2) + d(κn+2,κn+3) + · · · + d(κm–1,κm)

≤ 1
n 1

ε

+
1

(n + 1) 1
ε

+
1

(n + 2) 1
ε

+ · · · +
1

(m – 1) 1
ε

=
m–1∑

i=n

1
i 1

ε

.

Since d(κn,κm) ≤ ∑m–1
i=n

1
i

1
ε

< ∞, the sequence {κn} is Cauchy in M. Due to completeness
of M, one can find t ∈ M such that κn → t as n → ∞.

Next, we show that Φt = Ψ t = t. Since Φ and Ψ are continuous and κ2n,κ2n–1 → t,

κ2n+1 = Φκ2n → Φt and κ2n = Ψ κ2n–1 → Ψ t.

Due to the limit uniqueness, we obtain Φt = t and Ψ t = t, which implies that Φt = Ψ t = t
and hence there is a common fixed point of Φ and Ψ . �

The next result ensures the uniqueness of the common fixed point in Theorem 3.3.

Theorem 3.4 Let R be a transitive relation and Φ , Ψ be the self-mappings on a complete
metric space M. Assume that the following conditions hold:

(C0) for all (κ1,κ2) ∈X , there exists F ∈ F such that

ξ + F
(
d(Φκ1,Ψ κ2)

) ≤ F
(

1
2

d(κ1,κ2) +
d(κ2,Φκ1)d(κ1,Ψ κ2)

2[1 + d(κ1,κ2)]

)
, (3.10)

where ξ > 0;
(C1) M((Φ ,Ψ );R) and Γ (κ1,κ2,R) are non-empty;
(C2) R is (Φ ,Ψ )-closed;
(C3) Φ and Ψ are continuous.

Then there is a unique common fixed point of Φ and Ψ .

Proof Following the same steps as in the proof of Theorem 3.3, one can easily prove that
there is a common fixed point of Φ and Ψ . Thus we have to show that there is a unique
common fixed point of Φ and Ψ . For this purpose, assume that λ and λ∗ are two distinct
common fixed points of Φ and Ψ . Then since Γ (λ,λ∗,R) is the class of paths in R from
λ to λ∗, there is a path of finite length l, i.e. there is a sequence {z0, z1, z2, . . . , zl} in R from
λ to λ∗ with

z0 = λ, zl = λ∗, (zj, zj+1) ∈R, for every j = 0, 1, 2, . . . , (l – 1).

But since R is transitive, we have

(λ, z1) ∈R, (z1, z2) ∈R, . . . ,
(
zk–1,λ∗) ∈R �⇒ (

λ,λ∗) ∈R.
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Now, setting λ = λ and λ∗ = λ∗ in contraction condition (3.10), we have

ξ + F
(
d
(
Φλ,Ψ λ∗)) ≤ F

(
1
2

d
(
λ,λ∗) +

d(λ∗,Φλ)d(λ,Ψ λ∗)
2[1 + d(λ,λ∗)]

)
,

ξ + F
(
d
(
λ,λ∗)) ≤ F

(
1
2

d
(
λ,λ∗) +

d(λ∗,λ)d(λ,λ∗)
2[1 + d(λ,λ∗)]

)

< F
(

1
2

d
(
λ,λ∗) +

1
2

d
(
λ∗,λ

))

= F
(
d
(
λ,λ∗)),

which is a contradiction. Thus λ = λ∗ and hence λ is the unique common fixed point of Φ

and Ψ . �

Taking Φ = Ψ in Theorems 3.3 and 3.4, we get the following corollaries.

Corollary 3.5 Let R be a binary relation and Ψ be the self-mappings on a complete metric
space M. Assume that the following conditions hold:

(C0) for all (κ1,κ2) ∈X , there exists F ∈ F such that

ξ + F
(
d(Ψ κ1,Ψ κ2)

) ≤ F
(

d(κ1,κ2) +
d(κ2,Ψ κ1)d(κ1,Ψ κ2)

1 + d(κ1,κ2)

)
, (3.11)

where ξ > 0;
(C1) M(Ψ ;R) is non-empty;
(C2) R is Ψ -closed;
(C3) Ψ is continuous.

Then there is a fixed point of Ψ .

Corollary 3.6 Let R be a transitive relation and Ψ be the self-mappings on a complete
metric space M. Assume that the following conditions hold:

(C0) for all (κ1,κ2) ∈X , there exists F ∈ F such that

ξ + F
(
d(Ψ κ1,Ψ κ2)

) ≤ F
(

1
2

d(κ1,κ2) +
d(κ2,Ψ κ1)d(κ1,Ψ κ2)

2[1 + d(κ1,κ2)]

)
, (3.12)

where ξ > 0;
(C1) M(Ψ ;R) and Γ (κ1,κ2,R) are non-empty;
(C2) R is Ψ -closed;
(C3) Ψ is continuous.

Then there is a unique fixed point of Ψ .

To avoid the continuity of Φ and Ψ in Theorem 3.3, we present the following result.

Theorem 3.7 Theorem 3.3 remains true if instead of condition (C3), we assume that (M, d)
is R-non-decreasing regular.

Proof In the proof of Theorem 3.3, we have seen that (κn,κn+1) ∈R and κn → γ as n → ∞,
∀n ∈ N. Then since (M, d) is R-non-decreasing regular, so (κn,γ ) ∈ R for every n ∈ N.
Here we discuss two cases which depends on M = {n ∈ N : Φκ2n = Ψ γ and Ψ κ2n+1 = Φγ }.
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Case (I): If M finite, there exist n0 ∈ N and Φκ2n �= Ψ γ and Ψ κ2n+1 �= Φγ , for all
n ≥ n0. Now since κ2n �= γ and κ2n+1 �= γ implies that d(κ2n,γ ) > 0, d(κ2n+1,γ ) > 0 and
d(Φκ2n,Ψ γ ) > 0 and d(Ψ κ2n+1,Φγ ) > 0, for all n ≥ n0.

Now, setting κ1 = γ and κ2 = κ2n+1 in the contractive condition (3.1), we have

ξ + F
(
d(Φγ ,Ψ κ2n+1)

) ≤ F
(

d(γ ,κ2n+1) +
d(κ2n+1,Φγ )d(γ ,Ψ κ2n+1)

1 + d(γ ,κ2n+1)

)

�⇒ ξ + F
(
d(Φγ ,κ2n+2)

) ≤ F
(

d(γ ,κ2n+1) +
d(κ2n+1,Φγ )d(γ ,κ2n+2)

1 + d(γ ,κ2n+1)

)
.

But {κn} = {d(γ ,κ2n+1) + d(κ2n+1,Φγ )d(γ ,κ2n+2)
1+d(γ ,κ2n+1) } is a sequence of positive terms with lim

n→∞κn = 0,
so by condition (2) of Definition 2.1, F(κn) → –∞ implies that F(d(Φγ ,κ2n+2)) → –∞,
again by condition (2) of Definition 2.1, d(Φγ ,κ2n+2) → 0, that is, κ2n+2 → Φγ as n → ∞.
Also κ2n+2 → γ as n → ∞, so by the uniqueness of the limit

Φγ = γ , (3.13)

and hence γ is the fixed point of Φ .
Similarly, setting κ1 = κ2n and κ2 = γ in contractive condition (3.1), we can easily show

that F(d(κ2n+1,Ψ γ )) → –∞. By condition (2) of Definition 2.1, d(κ2n+1,Ψ γ ) → 0, that is,
κ2n+1 → Ψ γ as n → ∞. Also κ2n+1 → γ as n → ∞, so by the uniqueness of the limit

Ψ γ = γ , (3.14)

and hence γ is the fixed point of Ψ .
From Eqs. (3.13) and (3.14), we get

Φγ = Ψ γ = γ . (3.15)

Thus γ is a common fixed point of Φ and Ψ .
Case (II): If M is infinite, there exists a subsequence {κ2n(j)} of {κn} with κ2n(j)+1 =

Φκ2n(j) = Ψ γ such that κ2n(j)+2 = Ψ κ2n(j)+1 = Φγ for all j ∈ N. But κ2n(j)+1,κ2n(j)+2 → γ , so
by the uniqueness of the limit Φγ = γ and Ψ γ = γ and hence γ is a common fixed point
of Φ and Ψ .

In both cases, γ is a common fixed point of Φ and Ψ . �

Theorem 3.8 Theorem 3.4 remains true if, instead of condition (C3), we assume that (M, d)
is R-non-decreasing regular.

Taking Φ = Ψ in Theorems 3.7 and 3.8, we get the following corollaries.

Corollary 3.9 Let R be a binary relation and Ψ be the self-mappings on a complete metric
space M. Assume that the following conditions hold:

(C0) for all (κ1,κ2) ∈X , there exists F ∈ F such that

ξ + F
(
d(Ψ κ1,Ψ κ2)

) ≤ F
(

d(κ1,κ2) +
d(κ2,Ψ κ1)d(κ1,Ψ κ2)

1 + d(κ1,κ2)

)
, (3.16)

where ξ > 0;
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(C1) M(Ψ ;R) is non-empty;
(C2) R is Ψ -closed;
(C3) M is R-non-decreasing regular.

Then there is a fixed point of Ψ .

Corollary 3.10 Let R be a transitive relation and Ψ be the self-mappings on a complete
metric space M. Assume that the following conditions hold:

(C0) for all (κ1,κ2) ∈X , there exists F ∈ F such that

ξ + F
(
d(Ψ κ1,Ψ κ2)

) ≤ F
(

1
2

d(κ1,κ2) +
d(κ2,Ψ κ1)d(κ1,Ψ κ2)

2[1 + d(κ1,κ2)]

)
, (3.17)

where ξ > 0;
(C1) M(Ψ ;R) and Γ (κ1,κ2,R) are non-empty;
(C2) R is Ψ -closed;
(C3) M is R-non-decreasing-regular.

Then there is a unique fixed point of Ψ .

4 Applications
In this section, by using the previous theorems, we obtain existence results for the solu-
tions of the matrix equations (1.1) and (1.2). We use the metric which is induced by the
norm ‖ℵ‖tr =

∑n
i=1 θi(ℵ), where θi(ℵ), i = 1, 2, . . . , n, are the singular values of ℵ ∈ M(m).

The set H(m) equipped with the trace norm ‖ · ‖tr is a complete metric space (see [7, 8,
23]) and partially ordered with partial ordering �, where ℵ1 � ℵ2 ⇐⇒ ℵ2 � ℵ1. Also, for
every ℵ1,ℵ2 ∈H(m) there is a glb and a lub (see [8]).

To establish the existence results we need the following lemmas.

Lemma 4.1 ([8]) If ℵ1,ℵ2 � O are m × m matrices, then

0 ≤ tr(ℵ1ℵ2) ≤ ‖ℵ2‖ tr(ℵ1).

Lemma 4.2 ([24]) If ℵ ∈H(m) with ℵ ≺ In, then ‖ℵ‖ < 1.

Define the operator Ψ : H(m) →H(m) by

Ψ (X ) =
1
2
(
Ψ1(X ) + Ψ2(X )

)
,

where the operators Ψ1,Ψ2 : H(m) →H(m) are given by

Ψ1(X ) = Q + 2
n∑

i=1

A∗
i XAi

and

Ψ2(X ) = Q – 2
n∑

i=1

B∗
i XBi.
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Note that the solutions of the matrix equation (1.1) are the fixed points of the operator
Ψ and the fixed points of the operator Ψ are the common fixed points of operators Ψ1

and Ψ2.

Theorem 4.3 The class of non-linear matrix equations (1.1) has a solution under the fol-
lowing conditions:

1. there are two positive real numbers M1 and M2 such that
∑n

i=1 AiA∗
i ≺ M1In and

∑n
i=1 BiB∗

i ≺ M2In;
2. for every ℵ1,ℵ2 ∈H(m) such that (ℵ1,ℵ2) ∈�, we have

‖ℵ1‖tr + ‖ℵ2‖tr

≤ (‖ℵ1 – ℵ2‖tr
(
1 + ‖ℵ1 – ℵ2‖tr

)
+

∥∥ℵ2 – Ψ1(ℵ1)
∥∥

tr

∥∥ℵ1 – Ψ2(ℵ2)
∥∥

tr

)

/(
2M

(
ξ

√
‖ℵ1 – ℵ2‖tr

(
1 + ‖ℵ1 – ℵ2‖tr

)
+

∥∥ℵ2 – Ψ1(ℵ1)
∥∥

tr

∥∥ℵ1 – Ψ2(ℵ2)
∥∥

tr

+
√

1 + ‖ℵ1 – ℵ2‖tr
)2),

where M = max{M1, M2} and ξ is positive real number.

Proof Since Ψ1 and Ψ2 are well defined and (ℵ1,ℵ2) ∈� implies that (Ψ1(ℵ1),Ψ2(ℵ2)),
(Ψ2(ℵ1),Ψ1(ℵ2)) ∈�, so that � on H(m) is (Ψ1,Ψ2)-closed.

We have to show that the operators Ψ1 and Ψ2 satisfy the rational type F�-contractive
conditions. For this purpose, let us consider

∥∥Ψ1(ℵ1) – Ψ2(ℵ2)
∥∥

tr = tr
(
Ψ1(ℵ1) – Ψ2(ℵ2)

)

= 2 tr

( n∑

i=1

(
A∗

i ℵ1Ai + B∗
i ℵ2Bi

)
)

= 2
n∑

i=1

tr
(
A∗

i ℵ1Ai + B∗
i ℵ2Bi

)

= 2

( n∑

i=1

tr
(
AiA∗

i ℵ1
)

+
n∑

i=1

tr
(
BiB∗

i ℵ2
)
)

= 2

(
tr

( n∑

i=1

AiA∗
i ℵ1

)
+ tr

( n∑

i=1

BiB∗
i ℵ2

))

≤ 2

(∥∥∥∥∥

n∑

i=1

AiA∗
i

∥∥∥∥∥‖ℵ1‖tr +

∥∥∥∥∥

n∑

i=1

BiB∗
i

∥∥∥∥∥‖ℵ2‖tr

)

≤ 2
(
M1‖ℵ1‖tr + M2‖ℵ2‖tr

)

≤ 2M
(‖ℵ1‖tr + ‖ℵ2‖tr

)
.

From conditions (1) and (2) of Theorem 4.3 it follows that

∥∥Ψ1(ℵ1) – Ψ2(ℵ2)
∥∥

tr

≤ (‖ℵ1 – ℵ2‖tr + ‖ℵ1 – ℵ2‖2
tr +

∥∥ℵ2 – Ψ1(ℵ1)
∥∥

tr

∥∥ℵ1 – Ψ2(ℵ2)
∥∥

tr

)
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/((
ξ

√
‖ℵ1 – ℵ2‖tr + ‖ℵ1 – ℵ2‖2

tr +
∥∥ℵ2 – Ψ1(ℵ1)

∥∥
tr

∥∥ℵ1 – Ψ2(ℵ2)
∥∥

tr

+
√

1 + ‖ℵ1 – ℵ2‖tr

)2)

�⇒
(
ξ

√
‖ℵ1 – ℵ2‖tr + ‖ℵ1 – ℵ2‖2

tr +
∥∥ℵ2 – Ψ1(ℵ1)

∥∥
tr

∥∥ℵ1 – Ψ2(ℵ2)
∥∥

tr

+
√

1 + ‖ℵ1 – ℵ2‖tr

)

/(√
‖ℵ1 – ℵ2‖tr + ‖ℵ1 – ℵ2‖2

tr +
∥∥ℵ2 – Ψ1(ℵ1)

∥∥
tr

∥∥ℵ1 – Ψ2(ℵ2)
∥∥

tr

)

≤ 1√‖Ψ1(ℵ1) – Ψ2(ℵ2)‖tr

�⇒ ξ +
√

1 + ‖ℵ1 – ℵ2‖tr√‖ – ℵ2‖tr + ‖ℵ1 – ℵ2‖2
tr + ‖ℵ2 – Ψ1()‖‖ℵ1 – Ψ2(ℵ2)‖tr

≤ 1√‖Ψ1(ℵ1) – Ψ2(ℵ2)‖tr

�⇒ ξ –
1√‖Ψ1(ℵ1) – Ψ2(ℵ2)‖tr

≤ –
1√

‖ℵ1–ℵ2‖tr+‖ℵ1–ℵ2‖2
tr+‖ℵ2–Ψ1(ℵ1)‖tr‖ℵ1–Ψ2(ℵ2)‖tr

1+‖ℵ1–ℵ2‖tr

= –
1√

‖ℵ1 – ℵ2‖tr + ‖ℵ2–Ψ1(ℵ1)‖tr‖ℵ1–Ψ2(ℵ2)‖tr
1+‖ℵ1–ℵ2‖tr

.

Let F : [0,∞) → R be the mapping defined by F(κ1) = – 1√
κ1

. Then F ∈ F and the above
inequality becomes

ξ + F
(∥∥Ψ1(ℵ1) – Ψ2(ℵ2)

∥∥
tr

) ≤F
(

‖ℵ1 – ℵ2‖tr +
‖ℵ2 – Ψ1(ℵ1)‖tr‖ℵ1 – Ψ2(ℵ2)‖tr

1 + ‖ℵ1 – ℵ2‖tr

)
.

Thus

ξ + F(d
(
Ψ1(ℵ1),Ψ2(ℵ2)

) ≤ F
(

d(ℵ1,ℵ2) +
d(ℵ2,Ψ1(ℵ1))d(ℵ1,Ψ2(ℵ2))

1 + d(ℵ1,ℵ2)

)
.

That is, the pair (Ψ1,Ψ2) is rational FR-contractive. Thus from Theorem 3.3, there is a
common fixed point of Ψ1 and Ψ2, say ℵ∗, i.e., Ψ1(ℵ∗) = Ψ2(ℵ∗) = ℵ∗. Consequently, Ψ has
a fixed point and hence the class of non-linear matrix equation (1.1) has a solution. �

The next existence result ensures the uniqueness of solution to the non-linear matrix
equation (1.1) and the proof is similar to the proof of Theorem 4.3, so we omit it.

Theorem 4.4 Under the condition (1) of Theorem 4.3, the class of non-linear matrix equa-
tions (1.1) has a unique solution if for every ℵ1,ℵ2 ∈H(m) such that (ℵ1,ℵ2) ∈�, we have

‖ℵ1‖tr + ‖ℵ2‖tr

≤ (‖ℵ1 – ℵ2‖tr
(
1 + ‖ℵ1 – ℵ2‖tr

)
+

∥∥ℵ2 – Ψ1(ℵ1)
∥∥

tr

∥∥ℵ1 – Ψ2(ℵ2)
∥∥

tr

)
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/(
2M

(
ξ

√
‖ℵ1 – ℵ2‖tr

(
1 + ‖ℵ1 – ℵ2‖tr

)
+

∥∥ℵ2 – Ψ1(ℵ1)
∥∥

tr

∥∥ℵ1 – Ψ2(ℵ2)
∥∥

tr

+ 2
√

1 + ‖ℵ1 – ℵ2‖tr
)2),

where M = max{M1, M2} and ξ is positive real number.

Define the operator Φ : H(m) →H(m) by

Φ(ℵ) = Q +
n∑

i=1

A∗
i Υ (ℵ)Ai.

Note that the solutions of the matrix equation (1.2) coincide with the fixed points of the
operator Φ(ℵ).

Theorem 4.5 The class of non-linear matrix equations (1.2) has a solution under the fol-
lowing conditions:

(1) there is a real positive real number M with
∑n

i=1 AiA∗
i ≺ MIn;

(2) for every ℵ1,ℵ2 ∈H(m) such that (ℵ1,ℵ2) ∈� and∑n
i=1 A∗

i Υ (ℵ1)Ai �= ∑n
i=1 A∗

i Υ (ℵ2)Ai, we have

∥∥tr
(
Υ (ℵ1) – Υ (ℵ2)

)∥∥
tr

≤ (‖ℵ1 – ℵ2‖tr
(
1 + ‖ℵ1 – ℵ2‖tr

)
+

∥∥ℵ2 – Φ(ℵ1)
∥∥

tr

∥∥ℵ1 – Φ(ℵ2)
∥∥

tr

)

/(
M

(
ξ

√
‖ℵ1 – ℵ2‖tr

(
1 + ‖ℵ1 – ℵ2‖tr

)
+

∥∥ℵ2 – Φ(ℵ1)
∥∥

tr

∥∥ℵ1 – Φ(ℵ2)
∥∥

tr

+
√

1 + ‖ℵ1 – ℵ2‖tr
)2),

where ξ is positive real number.

Proof Since Φ is well defined and (ℵ1,ℵ2) ∈� implies that (Φ(ℵ1),Φ(ℵ2)) ∈�, � on H(m)
is Φ-closed.

We have to show that the operator Φ(ℵ1) satisfies the rational type F�-contraction (3.16).
Let ℵ = {(ℵ1,ℵ2) ∈�: Υ (ℵ1) �= Υ (ℵ2)}. If ℵ1,ℵ2 ∈ ℵ, then ℵ2 ≺ ℵ1. But Υ is an order

preserving mapping, so that Υ (ℵ2) ≺ Υ (ℵ1). Therefore,

∥∥Φ(ℵ1) – Φ(ℵ2)
∥∥

tr = tr
(
Φ(ℵ1) – Φ(ℵ2)

)

= tr

( n∑

i=1

A∗
i
(
Υ (ℵ1) – Υ (ℵ2)

)
Ai

)

=
n∑

i=1

tr
(
A∗

i
(
Υ (ℵ1) – Υ (ℵ2)

)
Ai

)

=
n∑

i=1

tr
(
AiA∗

i
(
Υ (ℵ1) – Υ (ℵ2)

))

= tr

(( n∑

i=1

AiA∗
i

)
(
Υ (ℵ1) – Υ (ℵ2)

)
)

≤
∥∥∥∥∥

n∑

i=1

AiA∗
i

∥∥∥∥∥
∥∥Υ (ℵ1) – Υ (ℵ2)

∥∥
tr,
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using condition (2) of Theorem 4.3, we get

∥∥Φ(ℵ1) – Φ(ℵ2)
∥∥

tr

≤
((∥∥∥∥∥

n∑

i=1

AiA∗
i

∥∥∥∥∥

)
‖ℵ1 – ℵ2‖tr

(
1 + ‖ℵ1 – ℵ2‖tr

)
+

∥∥ℵ2 – Φ(ℵ1)
∥∥

tr

∥∥ℵ1 – Φ(ℵ2)
∥∥

tr

)

/(
M

(
ξ

√
‖ℵ1 – ℵ2‖tr

(
1 + ‖ℵ1 – ℵ2‖tr

)
+

∥∥ℵ2 – Φ(ℵ1)
∥∥

tr

∥∥ℵ1 – Φ(ℵ2)
∥∥

tr

+
√

1 + ‖ℵ1 – ℵ2‖tr
)2).

From condition (1) of Theorem 4.3 it follows that

∥∥Φ(ℵ1) – Φ(ℵ2)
∥∥

tr

≤ (‖ℵ1 – ℵ2‖tr + ‖ℵ1 – ℵ2‖2
tr +

∥∥ℵ2 – Φ(ℵ1)
∥∥

tr

∥∥ℵ1 – Φ(ℵ2)
∥∥

tr

)

/((
ξ

√
‖ℵ1 – ℵ2‖tr + ‖ℵ1 – ℵ2‖2

tr +
∥∥ℵ2 – Φ(ℵ1)

∥∥
tr

∥∥ℵ1 – Φ(ℵ2)
∥∥

tr

+
√

1 + ‖ℵ1 – ℵ2‖tr

)2)

�⇒ ξ –
1√‖Φ(ℵ1) – Φ(ℵ2)‖tr

≤ –
1√

‖ℵ1 – ℵ2‖tr + ‖ℵ2–Φ(ℵ1)‖tr‖ℵ1–Φ(ℵ2)‖tr
1+‖ℵ1–ℵ2‖tr

.

Using F(κ1) = – 1√
κ1

∈ F, the above inequality becomes

ξ + F(d
(
Φ(ℵ1),Φ(ℵ2)

) ≤ F
(

d(ℵ1,ℵ2) +
d(ℵ2,Φ(ℵ1))d(ℵ1,Φ(ℵ2))

1 + d(ℵ1,ℵ2)

)
.

That is, Φ satisfies a rational type FR-contraction (3.16). Thus from Corollary 3.9, there
is a fixed point of Φ , say ℵ, i.e., Φ(ℵ) = ℵ. Consequently, the class of non-linear matrix
equations (1.2) has a solution. �

Theorem 4.6 Under the conditions (1) and (2) of Theorem 4.5, the class of non-linear ma-
trix equations (1.2) has a unique solution if R is transitive and H(m) is R-non-decreasing-
regular.

Proof Using Corollary 3.10 and proceeding by the same arguments of Theorem 4.3, one
can easily obtain a unique solution of the non-linear matrix equations (1.2). �

5 Conclusion
Non-linear matrix equations occur in several problems of engineering and applied math-
ematics. Some various matrix equations are faced in stability analysis, control theory and
system theory. In the current work we obtain a common fixed point theorem via ratio-
nal type FR-contractive conditions with applications to the existence of solutions to non-
linear matrix equations.
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