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1 Introduction
Let M,,,(x;q) be the weighted power means: M,,.(x;q) = (3_1-, gix" )%, where M, o(x;q)
denotes the limit of M, . (x;q) as ¥ — 0,x = (x1,...,%,), q = (41, - - -, g») Withx; > 0, ¢g; > O for
alll <i<mand ) !, q;=1. We further define A,,(x; q) = M,,,1(x; @), G1(X; q) = M,,0(x; q),
o, = Z?zl qi(x;—A,)%. We shall write M,,, for M,, .(x; q) and similarly for other means when
there is no risk of confusion.

The following elegant refinement of the well-known arithmetic-geometric mean in-
equality is given by Cartwright and Field in [1]:

On Op

SAn - Gn =—. (11)
2%, 2x1

Naturally, one considers the following generalization of (1.1) on bounds for the differ-
ences of means:
r—s r—s

o, On <My —Mys < ﬂom r>s. (1.2)

It is shown in [2, Theorem 3.2] that when r = 1 (resp. s = 1), inequalities (1.2) hold if and
onlyif -1 <s<1 (resp. 1 < r < 2). Moreover, it is shown in [2] that the constant (r —s)/2 is
best possible when either inequality in (1.2) is valid. However, neither inequality in (1.2)
is valid for all r, s and a necessary condition on r, s such that either inequality of (1.2) is
valid is given in Lemma 2.3 in Sect. 2.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


https://doi.org/10.1186/s13660-018-1948-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1948-8&domain=pdf
mailto:penggao@buaa.edu.cn

Gao Journal of Inequalities and Applications (2018) 2018:349 Page20of 13

In this paper, we determine all the pairs (r, s) such that the right-hand side of (1.2) holds
and on all the pairs (r,s), —1/2 < s < 1 such that the left-hand side of (1.2) holds. In Sect. 3
we will prove the following theorem.

Theorem 1.1 Letr > s and x; = min{x;}, x, = max{x;}. The right-hand side of (1.2) holds if
andonly if 0 <r+s<3,r<2,s>-1. When —1/2 < s < 1, the left-hand side of (1.2) holds
if and only if 0 <r +s <3, r > 1. Moreover, in all these cases we have equality if and only
ifx1 =%y ="+ =x,.

2 Lemmas
Our first lemma gathers known results on inequalities (1.2).

Lemma 2.1 Let r > s and x; = min{x;}, x,, = max{x;}. Both inequalities in (1.2) hold when
1<r<2,-1<s<1. Theright-hand side of (1.2) holds for s = 0 ifand only if 0 <r < 2, the
left-hand side of (1.2) holds for s = 0 if and only if 1 <r < 3. Moreover, in all these cases we
have equality if and only if x1 =x3 = -+ = x,,.

Proof Asshownin [2, Theorem 3.2] both inequalities in (1.2) are valid when -1 <s<1=r
and s = 1 < r < 2. The first assertion of the lemma follows from the observation that when
either inequality in (1.2) is valid for r > 7 and r’ > s, then it is valid for r > 5. The second
assertion of the lemma is [3, Theorem 2]. The cases for equalities also follow from [2,
Theorem 3.2] and [3, Theorem 2]. O

Our next lemma establishes some auxiliary results needed in the proof of (and remarks
on) Lemma 2.3.

Lemma 2.2
(i). Letr>1,s<0. Wedefine, forO<y <1,

1/r-1 _ (r_s)(l —)’).

&) =y 5 (2.1)
Then g,5(y) is minimized at
) - (2(1 - 1/r))“ e 22)
r—s
(ii). The function h(z) = (1 + 2)1**27% is an increasing function of z > 0.
Proof Note first that as s < 0, we have 7 + 2/r —s > r + 2/r > 2. This implies that % <1,

which in turn implies that 0 < yo(7,s) < 1. Now one checks that y,(r,s) is the only root of
g.(y) = 0. As it is easy to see that g (y(r,s)) > 0, the assertion of the lemma on (i) follows
from this. To prove (ii), one calculates directly the logarithmic derivative of the function

h(z) is positive for z > 0. This completes the proof of the lemma. O
We define
r—s
FX1,. X q1s - qn) = Myy — My — —— 0y (2.3)

2
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It is easy to see that the right-hand side of (1.2) is equivalent to F <0 for 1 =x; < x; <
-+ < xy_1 <%, and the left-hand side of (1.2) is equivalentto F > 0for 0 <xj <xp <--- <
x,_1 < %, = 1. We expect the extreme values of F occur at # = 2 with one of the x; or g;
taking a boundary value. Based on this consideration, to establish inequalities (1.2), we
prove the following necessary condition.

Lemma 2.3 Let r > s # 0. A necessary condition for the right-hand side of (1.2) to hold is
that 0 <r+s <3,r <2,s> —1. A necessary condition for the left-hand side of (1.2) to hold
isthat0<r+s<3,r>1,rs<2,and

r—s 1\>7 1\ "7
—<|(2-- 1-- , (2.4)
2 r r

when s < 0, where we define 0° = 1.

Proof Note first that it is shown in [2, Lemma 3.1] that a necessary condition for either
inequality of (1.2) to hold is that 0 <r+s<3.Nowweletn=2,% =x,x, = 1,41 = ¢, and
F be defined as in (2.3) to see that

F ;1, ’1_ V_l xg_l _
lim & Lal=9) ¥-1 -1y,
q—0* q r $ 2
lim F@bal-a) x-a7 x-a ros o
q—1- l—q N r 2

As the first (second) right-hand side expression above is positive when r > 2 (s < —1) and
x — +00, we conclude that in order for the right-hand side of (1.2) to hold, it is necessary
to have r < 2 and s > —1. Moreover, the first (second) right-hand side expression above is
negative when s > 0, rs > 2 (r < 1), and x = 0. We then conclude that in order for the left-
hand side of (1.2) to hold, it is necessary to have r > 1 and rs < 2 (note that when s < 0,
this condition is also satisfied).

On the other hand, when s < 0, we have

(r—s)g(1- q).

lim F(x,1,4,1-¢) = (1- )" -
x—0* 2

For the left-hand side of (1.2) to hold for s < 0, the expression above needs to be non-
negative. By setting y = 1 —¢, we see that this is equivalent to showing g, ;(y) is non-negative
for 0 <y < 1, where g, (y) is given in (2.1). Note that the case r = 1 of (2.4) implies that
s> -1, a condition already given in [2, Theorem 3.2], we may further assume that r > 1. It
follows from Lemma 2.2 that g, ;(y) is minimized at yo(r, s), where y,(r, s) is given in (2.2).
Substituting this value in (2.1), one checks easily that it is necessary to have (2.4) in order
for the expression in (2.1) to be non-negative for 0 < y < 1 and the assertion of the lemma
now follows. O

We remark here that inequality (2.4) implies that it is not possible for the left-hand side
of (1.2) to hold for r > 1 and all s < 0. In fact, by setting z = 1 — 1/r, one sees from part
(ii) of Lemma 2.2 that the right-hand side of (2.4) is an increasing function of z, hence is
maximized at z = 1, with value 4. It follows then from (2.4) and the condition r + s > 0
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that in order for the left-hand side of (1.2) to hold, it is necessary to have 4 > (r — 5)/2 >
(—s —8)/2 = —s, which implies that s > —4.

Lemma2.4 Let-1<s5s<0,0<q<q1<1,0<x0<1,x <x*<1.Then
q+(1-qx~ <x

for any oy > 0 satisfying oy < «o, where

—sIn((1 - q1)x0 + q1)

0o =
Inxg

Proof Welet y =x~* and = —ap/s, so that 0 < « < 1. It suffices to show that g(y) > 0 for
x9 <y <1, where

20) =% = (q1 + 1= q1)y).

It is easy to see that g(y) is a concave function of y and g(1) = g(xo) = 0, hence the desired
result follows. O

Lemma2.5 Let -1 <s<0,2<r<3-s,1-5><(r-1)(r-2). Suppose that there exists a
number qy, 1/2 < qy <1 such that

oy (1-5")g

= <1
s (r=Dr-2)0-q2) ~

Then, forg, <q<1,0<x <1,

(1- s)(q(l +8)x°+(2-s5)(1- q)) >x%(r - 1)(—q(r + 1"+ (r-2)(1 - q)). (2.5)

Proof As the expressions in (2.5) are linear functions of g, it suffices to prove inequal-
ity (2.5) for g = ¢,1. The case g = 1 is trivial and when g = ¢, we set y = x° to see that
inequality (2.5) follows from k(y) > 0 for y > 1, where

h(y) = (1= 5)(q2(1 + )y + 2= )(1 - q2)) = 5" (r = 1)(r = 2)(1 - q2).

As ap/s < 1, it is easy to see that A(y) is minimized at y = 1 with a positive value and this
completes the proof. O

Forr>s,r+s2#0,0<q<1,x>0, we define

g = (@ +1-9)" "2 = (g +1-q)" e (-9 (1 - -1),  (26)

1-2r

Fz(x,q) =(r- 1)(q+ @1 _q)x—r) Tl

1-2s

+(1-9)(g+1-qx) * = (r—s). (2.7)

As we can see in some part of Theorem 1.1, we need F,(x,g) > 0 for 0 < x < 1 and vari-
ous g. The following lemma gives a sufficient condition for this.
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Lemma 2.6 Let -1<5<0,2<r<3-5,0<x<1,0<a,b<l.Iffora<qg<b,
g+(1-g)x™ <x™,
(2.8)
@1 —s)(q(l +5)x° +(2-5)(1 - q)) >x%(r— 1)(—q(r +1)x" + (r-2)(1 - q)).
Then Fy(x,q) > 0 for a < g < b when c(r,s,a1,a2) <0, where F,(x, q) is defined in (2.7) and

c(r,s,a1,02) = co(r,8) + ((r = 1)(2r = 1)(1 - 3s) + (3r — 1)(1 - 2s)(1 —s))%

+(2r=1)(r - Do, (2.9)
co(r,s) =1 — (5 +4s)r* + (2 + 65+ 352)r —8(2 +3).

Proof Asin this case limy_, o+ F2(x,q) > 0, F2(1,q) = 0, we only need to show that the values

of F, at points satisfying

K _,
ox

are non-negative.

Calculation shows that at these points we have

1-3r

(qx’ +1- q) T2

Q-9 +s)x"+(2-5(01-9))

1-3s

—s\ o 128
Dt D+ -2 gy T D) 7T (2.10)

If —q(r + 1)x" + (r — 2)(1 — g) <0, then no such points exist. Hence we may assume that
—q(r+ 1)x" + (r—2)(1 — q) > 0. Applying (2.8) in (2.10), we find that

1-3r 1-3s e
(qxr+1_q) T >xs o +ap+1-2s r

We write a3 = I’T?’Sal + g so that the above inequality implies that

r(ag+1-2s—r)
- 3
gx’ +1—-g<x" T3

We now apply the arithmetic-geometric inequality and the above estimation to see that

Fy(x,q)
r—s
- 1-2r 1-s L2
=—— (g +1-q) 7 P ——(g+Q—gx) T a1
r—s r—s
> r- 1x(ag+1—25—r)(1—2r)/(1—3r)xr—2 i 1- Sx(l—zs)al/sxflfs -1
r—s

r—s
> x(ag+1—2s—r)(1—2r)(r—1)/((1—3r)(r—s)) . x((r—l)(r—2)—(1—s2))/(r—s) . x(1—25)oz1(1—s)/(s(r—s)) -1

_ xc(r,s,oq,(xz)/((r—s)(3r—1)) _1.

The assertion of the lemma now follows easily.

Page 50f 13
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Lemma2.7 Let-1<5<0,2<r<3-s.Letc(r,s, a1, ) be defined as in Lemma 2.6. Define

ci(r,s)=r3—(6+s)r+ (52 + 4)7‘—S(S2 — 65+ 4),

co(r,s) = (r—=1)(=1-2s) = (1 —s)(1 +5),
c3(r,s) = c(r,s,0,s), (2.11)

_ 2

Then maxi<;<a{ci(r,s)} <0 when -1/2 <s<0.

Proof 1t is easy to see that ¢;, 0 < i < 3, are all convex functions of r > 2, where ¢(r, s)
is defined in (2.9). Also, ¢4 is a convex function of r > 3. Thus, it suffices to show that
¢, 1 <i <3, are non-positive for —1/2 <s< 0, r = 2,3 — s and that ¢4 is non-positive for
-1/2 <s<0,2<r <3, r=3-s. One checks directly that max;-; »{c;(2,s),¢;(3 — 5,5)} <
0, c3(2,5) < ¢o(2,s5) <0, and maxy,<3 ca(r,s) < maxoe, <3 co(r,s) < max{co(2,s),co(3,5)} = 0.

We also have

c3(3—5,8) = —12 — 9s + 21s* — 6s°,

ca(3-s,5) = —12 — 14s + 335> — 10s° — 0.0889(18 — 665 + 545> — 125°).

As both expressions on the right-hand side above are decreasing functions of s < 0, and
one checks directly that ¢3(3 —s,5) <0, ca(3 —s,5) <0 for s = —1/2, so that max;_34{c;(3 —
s,5)} < 0 and this completes the proof. O

3 Proof of Theorem 1.1
Throughout this section, we assume that r > s. We omit the discussions on the conditions
for equality in each inequality, we shall prove as one checks easily that the desired condi-
tions hold by going through our arguments in what follows. As the case s=0,1 orr=1
has been proven in [2, Theorem 3.2] and [3, Theorem 2], we further assume r #1,s 70, 1
in what follows.

As the “only if” part of Theorem 1.1 follows from Lemma 2.3, it remains to prove the
“if” part of Theorem 1.1. We consider the right-hand side of (1.2) first. Let F be defined as
in(2.3)andx; =1<xy<---<x,,¢4; >0,1 <i<n Wehave

JoF

o MY ML (= ) (0, — A
qnoXxy

nr'n ms 'n

Fo(xl,...,xn,qh--.,%) =

Now the right-hand side of (1.2) follows from F < 0, which in turn follows from Fy < 0
as it implies F(x; q) <lim,,,,, , F(x;q). By adjusting the value of g,,_; in the expression of
lim,,,, , F(x;q) and repeating the process, it follows easily that F < 0.

When n > 3, weregard x; = 1, x,, as fixed and assume that F is maximized at some point

«q) =&, %,, 94, ..., q,) with x] = x1, &), = x,,. Then at this point we must have

9F,
396,' (

=0, 2<i<n-1.
x'5q')
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Thus, the x}, 2 <i < n— 1, are solutions of the equation

filx):=(1- r)M,ll;zrx:,_lx’_l -(1- S)M,lll_szsxil_lxs_1 +r—-s=0.

It is easy to see that the above equation can have at most two different positive roots.
On the other hand, by applying the method of Lagrange multipliers, we let

n
IN:O(xly«n:xn:ql;ann:)")ZFO(xlr'u:xn:qu«nyqn)_)”<Zqi_1);
i=1

where A is a constant. Then at (x’; q') we must have

dF,
i |xsq)

=0, 1<i<n

Thus, the %, 1 <i < n, are solutions of the equation

1-r 1-s
folx) = TMif’x:[lxr - TM}lfsxf[lxs +(r—s)x—1=0.

As f;(x) = fi(x), it follows from the mean value theorem that there is a solution of fi (x) = 0

H / /
between any two adjacent x}, x;, ;,

1 <i<n-1,astheyare solutions of f,(x) = 0. But when
n > 3, we have at least «;, as a solution of fi(x) = 0. This would imply that f;(x) = 0 has
at least three different positive solutions (for example, one in between %] and x5, one in
between «x/, and x5, and ;, itself), a contradiction.

Therefore, it remains to show Fy < 0 for n = 2. In this case, welet 1 =x; <xp, =x,0< gy =
q <1, q1 =1-qto see that Fy = Fi(x, q), where F;(x, q) is defined in (2.6).

Note that F>(x,q) = (1 — q)"10F,/9x, where F,(x, g) is defined in (2.7). As Fi(1,4) = 0, we
see that it suffices to show that F,(x,q) < 0 for x > 1.

We now divide the proof of the right-hand side of (1.2) for > s # 0 satisfying 0 < r+s <
3, r <2, s> -1 into several cases. As the case -1 <s <1 <r < 2 follows directly from
Lemma 2.1, we only consider the remaining cases in what follows, and we show in these

cases F(x,q) < 0 or equivalently, F>(x,q)/(r —s) + 1 < 1. Note that

E»(x, -1 1 1- 125
20D 1 g - ge) T I g - g) T )
r—s r—s r—s
One checks that in all the following cases, we have (r — 1)(1 —s) < 0. Therefore, it follows
from the arithmetic-geometric mean inequality with non-positive weights that the right-

hand side expression in (3.1) is less than or equal to

(1-2r)(r-1)/(r(r-s)) ( (1—23)(1—s)/(s(r—s))x(52_VZ)/(},_S)

q+(1-q}x~)
(1-2r)(r-1)/(r(r-s))
) (

(g+Q-gx™)

=(qgx" +1-¢q gx’ +1- q)(1_ZS)(I_S)/(S(r_S))x”S‘?’. (3.2)
Thus, it suffices to show that either side expression in (3.2) is < 1.
Casel.0<s<1/2<r<1.

Each factor of the left-hand side expression in (3.2) is < 1, hence their product is < 1.
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Case2.0<s<r<1/2.
It is well known that r — M,,, is an increasing function of r and —r < —s. So we have

(q +(1- q)x—r)—l/r < (q +(1- q)x—s)—lls‘

We also have (1 —2r)(1 —r) < (1 —2s)(1 —s). Therefore,

)(1—2r)(r—1)/(r(r—s)) ( )(1—25)(1—5)/(s(r—s))

qg+(1-gx”
)((1—2r)(l—r)—(l—ZS)(l—s))/(—s(r—s))

(g+Q-qx

<1

’

<(g+Q-gx~°
which implies that the left-hand side expression of (3.2) is < 1.

Case3.1/2<s<r<1.
Note that

g+1-gx7" <gq+(1-qx°,

so that the left-hand side expression of (3.2) is less than or equal to

( g+1-q) x—s)(l—Zr)(r—l)/(V(r—S)) (q +(1- q)x_s)(1—2s)(1—5)/(s(r—s))x(52_r2) J(r—s)
—5)1/(rs)-2 5, (s2-r?)/(r-s) 1
@+ A=) R <1, 22,
(qxs +1- q)l/(rs)—Zx—l/r—Hs < 1, 1 < 2.

rs

This implies that the left-hand side expression of (3.2) is < 1.
Case4.1<s<r<3-s=min{2,3 —s}.
Note that

g +1-g>qgx*+1-g>1, (1-2r)(r-1)<0.

It follows that

)12 DIt 1209609, s

(qx’+1—q gx’*+1-¢q

(1=2r)(r=1)/(r(r-s)) ( )(1—25)(1—8)/(S(V—S))xr+s—3

§(qxs+1—q) g’ +1-¢q

— (qxs +1-— q)l/(rs)—szS—B < 1’
which implies that the right-hand side expression of (3.2) is < 1.
Case5.s<0<r<1l,r+s>0.
When r > 1/2, each factor of the left-hand side of (3.2) is < 1, hence their productis < 1.
If 0 < r < 1/2, then again it follows from the fact that r +— M,,, is an increasing function of
r that

1/s

(qx’+1—q)1/rz (qxs+ 1-g)" >1.

As (1 -2r)(r—1) <0and 3 -2(r +s) > 0, it follows that

(qx, +1- q)(1—2r)(r—1)/(r(r—s))(qxs +1- q)(1—25)(1—s)/(s(r—s))xr+s,3
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(1-2r)(r=1)/(s(r-s)) ( )(1_25)(1_5)/(5(’”_5))xr+s—3

<(gx*+1-9) g +1—gq

- (q +(1- q)x—s)(3*2(V+S))/Sx—(r+s) <1

This now completes the proof for all the cases for the right-hand side of (1.2).

Next, we prove the left-hand side of (1.2) for0 <r+s<3,-1/2<s<1,r > 1. In this
case, it suffices to show F > 0 provided that we assume 0 < x; <%y < -+ <, = 1. Similar
to our discussions above, one shows easily that this follows from dF/dx; < 0 for n = 2,
which is equivalent to Fi(x,q) < 0 for 0 < x < 1. Again we divide the proof into several
cases. As the case —1 <s <1 <r <2 follows directly from Lemma 2.1, we only consider
the remaining cases in what follows and similar to our proof of the right-hand side of (1.2)
above, it suffices to show that Fo(x,q) > 0 for 0 <x < 1.

Casel.1/2<s<1,2<r<3-s.

As r—1>0, it follows from the arithmetic-geometric mean inequality that the right-
hand side expression of (3.1) is greater than or equal to the expressions in (3.2). As the
factors of the right-hand side expression of (3.2) are all > 1, it follows that F,(x,¢q) > 0.

For the remaining cases, one checks easily that we have lim,_, ¢+ F5(x,q) >0, F2(1,4) =0
so that it suffices to show the values of F;(x, q) at points satisfying (2.10) are non-negative,
assuming that —g(r + 1)x” + (r —2)(1 — q) > 0. Hence, in what follows, we shall only evaluate
F,(x, q) at these points satisfying the above assumption. We then note that at these points

we have
(1 —s)(q(l +8)x° +(2-5)(1 - q)) > (r- 1)(—q(r +1D)x" + (r-2)(1 - q)). (3.3)

This is seen by noting that the expressions in (3.3) are linear functions of g, hence it suffices
to check the validity of inequality (3.3) at g =0, 1.
It then follows from (3.3) and (2.10) that at these points we have

1-3r 1-3s 1-3s

(o +1- q)Tx’_2 >(g+1-gqx)° a1 = (q5° +1- q) s %2 (3.4)

an inequality we shall assume in what follows.
Case2.0<s<1/2,2<r<3-s.
Similar to the previous case, the right-hand side expression of (3.1) is greater than or

equal to the expressions in (3.2). From (3.4) we deduce that

r(1-3s) r(s—r,

g’ +1-q < (gx° +1-¢q) T x 13,

Using this, we see that the right-hand side expression of (3.2) is greater than or equal to

) (2r-1)(r-1)(1-3s)/(s(3r-1)(r-s)) ( ) (1—25)(1—5)/(5(7—5))x—(2r—1)(r—l)/(Sr—l) r+s—3

(¢ +1-¢ g’ +1—¢q x
When 1/3 < s < 1/2, we see that the first factor and the last factor above is > 1, and we
write the product of the two factors in the middle as

(q +(1- q)x—s)(1—25)(1—5)/(5("—5))x(1—23)(1—s)/(r—s)—(2r—1)(r—1)/(3r—1). (3.5)
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Note that the first factor above is now > 1 and it is easy to see that

1-25)1-s) 1-2s 1-2-1/3 2r-1 (@2r-1)(r-1)
< < < < .
r—s —2-s = 2-1/3 T 3r-17 3r-1

This implies that the second factor in (3.5) is also > 1. Hence the right-hand side expres-

sion of (3.2) is greater than or equal to 1 and it follows that F5(x,gq) > 0.
When 0 < s < 1/3, it follows from (3.4) that

1-2r 1-3s

(g +1-¢q) " A2 > (" +1-q)(gx* +1-¢q) ° X2 (3.6)

If the right-hand side expression above is > 1, then we have

Fyx,q) =(r—-1)(gx" +1- q)l;’zrx"2 +(1-s)(g+(1- q)x‘s)l;szsx‘s‘1 —(r—s)

>(r-1)+(1-s)-(r-s)=0. (3.7)

If the right-hand side expression of (3.6) is < 1, then it implies that

(g8 +1-q) < (qx°+1- q)_%x’(s’z).

Thus,

1-2r _1-3s

(@ +1-q) " &= ((g¥ +1-q) x_(s_z))(l_zr)/rx’_2

(1-35)2r=1)  (1425)(1-27)

= (q + (1 - Q)x_s) " X r =2 > 1:

where the last inequality above follows from the observation that the function r > (1 +
25)(1 — 2r)/r + r — 2 is an increasing function of r > 2 and hence is maximized at r = 3 -,
in which case its value is easily shown to be negative. It follows from (3.7) that F»(x,4) > 0
in this case.

Case3.-1/2<s<0,2<r<3-s.

We divide this case into a few subcases.

Subcase 1.0 < g < 1/2.

As r+ M,, is an increasing function of r and —s < r since r + s > 0, we have

_s\—1/s n1/r
(g+1-qx?) " < (g+1-g)". (3.8)
As0< g <1/2,we also have
g+Q-gx" <gx"+1-gq. (3.9

We then deduce from (3.4), (3.8), and (3.9) that

1-3r 1-3 1-3

(@ +1-q) " ¥ ?=(qg+(1-qx") ° x> (g +1- q)_Ts 125

S
s

X

It follows that (note that 2 — 3(r +s) <0 forr > 2, s > —1)

r(1-2s-r)

qxr +1- q<x 2-3(r+s) | (310)




Gao Journal of Inequalities and Applications (2018) 2018:349

With ¢; (7, s) being defined in (2.11), we then deduce that

Fy(x,q)

r—s
r—1 1-2r 1-s 1-2s

= (" +1-q) 7 ¥+ —(q+Q-qx) ° a7 -1
r—s r—s
r—1 1-2r 1-s _1-2s

>— (g +1-q) 7 AP+ —(qg¥ +1-q) " x-1
r—s r—s

> (qx’ 11— q)((1—2r)(r—1)—(l—s)(l—zs))/(r(r—s)) - =D=2)~1-5)1+3))/(r=s) _ 1

> x(l—Zs—r)((l—Zr)(r—1)—(1—3)(1—2s))/((2—3(r+s))(r—s)) . x((r—l)(r—2)—(1—s)(1+s))/(r—s) -1

_ 510 (-9)30+5)-2) _ 1

where the first inequality above follows from (3.8) and (3.9), the second inequality above
follows from the arithmetic-geometric inequality, and the last inequality above follows
from (3.10). It follows from Lemma 2.7 that F,(x,g) > 0 in this case.

Subcase2.1/2<g<1,(1+s8)x - (2—-s5)>00r1—-s2>(r—1)(r-2).

One checks that if (1 + s)x° — (2 — s) > 0, then the function g — (1 —s)(g(1 +s)x* + (2 -
X =g)gx"+1-¢q) — (r—1)(—gq(r + 1)x" + (r — 2)(1 — q)) is a concave function of g and
hence is minimized at g = 0, 1, with values > 1.

If1-s>>(r—1)(r—2), then

(1-9)(qgl+s)x°+ (2-9)(1-q)) =g(1-s)(L+5)+ (1 -5)(2-5)(1-q)

> (r=1)(r-2).
It follows that

(1 —s)(q(l +8)x° +(2-5)(1 - q)) (qx’ +1 —q)
>(r-1)(r-2)(1-q)

> (r—1)(~q(r+ " + (r-2)(1 - q)).

Thus, in either case, we deduce from the above and (2.10) that we have

1-2r —3s
s

(@ +1-q) 7 ¥ = (q+ (L-@™) * a2 =472,

X

From this we apply the arithmetic-geometric inequality to see that

F. 4 -1 1-2r 1-s 1-2s
2 (%, q) _r (qxr+1_q) T2y (q+(1—q)x‘5) E
r—s

r—s r—s
r—-1 _,_ 1-s5
> x125+ xls_l
r—s r—s

Zx r—; _ 1, (3'11)

where ¢,(r, s) is defined in (2.11). Now Lemma 2.7 implies that F,(x, q) > 0 in this case.

Page 11 0f 13
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Subcase 3. (1 +5)x* — (2 —5) <0,1-5s> < (r—1)(r —2),and 1/2 < gqo < g < 1, where gy is
defined by

(1-sMq0 _
r-1D(r-2)1-q)

(3.12)

In this case, Lemma 2.5 with ¢, = go implies that (2.8) is satisfied by 3 =0 and 3 = s,
where we set a = gp and b = 1 in Lemma 2.6. It follows from Lemma 2.6 that F5(x,g) > 0 as
long as ¢3(r,s) <0, where ¢3(r,s) is given in (2.11). As Lemma 2.7 implies that c3(r,s) <0,
we see that Fy(x,q) > 0 in this case.

Subcase 4. (1 +8)x° — (2 —5) <0, 1 —s2 < (r—1)(r — 2), and 1/2 < q < g9, where gy is
defined by (3.12).

In this case, we set a = 1/2 and b = gy in Lemma 2.6. Note that as r < 3 — s, it follows
from this and (3.12) that when s > —1/2,

do  _ (2-5)(1-5)
1-q0~ (1-5?)

We then deduce that gy < 5/6. Note also that we have x~* > (1 + 5)/(2 — s) > 1/5 when
s> —1/2. Thus, we can take q; = 5/6, xp = 1/5 in Lemma 2.4 and ¢, = 1/2 in Lemma 2.5 to
see that (2.8) is satisfied by a; = —0.0889s, &y = s(1 — s2)/((r — 1)(r — 2)). It follows from
Lemma 2.6 that Fy(x,q) > 0 as long as c4(r,s) < 0, where c4(r,s) is given in (2.11) and
F,(x,q) > 0 in this case again follows from Lemma 2.7.

4 Further discussions

We point out that Theorem 1.1 determines all the pairs (r, s), r > s such that the right-hand
side of (1.2) holds and all the pairs (r,s), —1/2 < s < 1 such that the left-hand side of (1.2)
holds. However, less is known for the left-hand side of (1.2) whenr > s> 1 ors < —1/2. This
is partially due to the fact that our approach in the proof of Theorem 1.1 relies on showing
Fi(x,q) <0 (via F5(x,q) > 0) for 0 <x <1, 0 < g < 1, where Fy, F, are defined in (2.6) and
(2.7). However, it is easy to see that F1(0,g) > 0 when r > s > 1 and lim,_, o+ F>(x,g) < 0 when
r>2,s < —1. It also follows from this that in order to show F,(x,g) > 0 when s < -1, we
must have r < 2. As Lemma 2.3 implies a necessary condition for the left-hand side of (1.2)
toholdis 7 > 1, 0 < r + s < 3, we then deduce that when s < —1, one can only expect to
show Fy(x,q) >0for1 <r<2,s>-r>-2.

On the other hand, though Theorem 1.1 only establishes the validity of the left-hand
side of (1.2) for s > —1/2, one can in fact extend the validity of the left-hand side of (1.2)
for certain r > s, s < —1/2 by going through the proof of Theorem 1.1. This is given in the
following theorem.

Theorem 4.1 Let r > s and x; = min{x;}, x, = max{x;}. The left-hand side of (1.2) holds
when (r —1)(r —2) < 1—3s% or when -1 <s < —1/2,2 < r < 3—s, maxi<;<4{ci(r,5)} < 0, where
¢i(r,s), 1 <i <4 is defined in (2.11). Moreover, in all these cases we have equality if and

only ifx; =xy =+ = x,.

Proof Once again we omit the discussions on the conditions of equality. As in the proof
of Theorem 1.1, it suffices to prove Fy(x,q) > 0, where F,(x,q) is defined in (2.7). When
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(r—1)(r—2) <1 -5, it follows from the expression for Fy(x, q)/(r —s) in (3.11) that

F(x r—1 1-s (r=)(-2)-(1-5%)
P ,4)> 24 xil*S—IZx%—IZO.

r—-s ~ r-s r—s

When -1 < s < —1/2, our assertion follows by simply combining the arguments in all the
subcases of case 3 in the proof of the left-hand side of (1.2) in Sect. 3. This completes the
proof. O
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