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Abstract
LetMn,r = (

∑n
i=1 qix

r
i )

1
r , r �= 0, andMn,0 = limr→0Mn,r be the weighted power means of

n non-negative numbers xi , 1 ≤ i ≤ n, with qi > 0 satisfying
∑n

i=1 qi = 1. For r > s, a
result of Cartwright and Field shows that when r = 1, s = 0,

r – s
2xn

σn ≤ Mn,r –Mn,s ≤ r – s
2x1

σn,

where x1 = min{xi}, xn =max{xi}, σn =
∑n

i=1 qi(xi –Mn,1)2. In this paper, we determine
all the pairs (r, s) such that the right-hand side inequality above holds and all the pairs
(r, s), –1/2 ≤ s≤ 1 such that the left-hand side inequality above holds.
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1 Introduction
Let Mn,r(x; q) be the weighted power means: Mn,r(x; q) = (

∑n
i=1 qixr

i ) 1
r , where Mn,0(x; q)

denotes the limit of Mn,r(x; q) as r → 0, x = (x1, . . . , xn), q = (q1, . . . , qn) with xi ≥ 0, qi > 0 for
all 1 ≤ i ≤ n and

∑n
i=1 qi = 1. We further define An(x; q) = Mn,1(x; q), Gn(x; q) = Mn,0(x; q),

σn =
∑n

i=1 qi(xi –An)2. We shall write Mn,r for Mn,r(x; q) and similarly for other means when
there is no risk of confusion.

The following elegant refinement of the well-known arithmetic-geometric mean in-
equality is given by Cartwright and Field in [1]:

σn

2xn
≤ An – Gn ≤ σn

2x1
. (1.1)

Naturally, one considers the following generalization of (1.1) on bounds for the differ-
ences of means:

r – s
2xn

σn ≤ Mn,r – Mn,s ≤ r – s
2x1

σn, r > s. (1.2)

It is shown in [2, Theorem 3.2] that when r = 1 (resp. s = 1), inequalities (1.2) hold if and
only if –1 ≤ s < 1 (resp. 1 < r ≤ 2). Moreover, it is shown in [2] that the constant (r – s)/2 is
best possible when either inequality in (1.2) is valid. However, neither inequality in (1.2)
is valid for all r, s and a necessary condition on r, s such that either inequality of (1.2) is
valid is given in Lemma 2.3 in Sect. 2.
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In this paper, we determine all the pairs (r, s) such that the right-hand side of (1.2) holds
and on all the pairs (r, s), –1/2 ≤ s ≤ 1 such that the left-hand side of (1.2) holds. In Sect. 3
we will prove the following theorem.

Theorem 1.1 Let r > s and x1 = min{xi}, xn = max{xi}. The right-hand side of (1.2) holds if
and only if 0 ≤ r + s ≤ 3, r ≤ 2, s ≥ –1. When –1/2 ≤ s ≤ 1, the left-hand side of (1.2) holds
if and only if 0 ≤ r + s ≤ 3, r ≥ 1. Moreover, in all these cases we have equality if and only
if x1 = x2 = · · · = xn.

2 Lemmas
Our first lemma gathers known results on inequalities (1.2).

Lemma 2.1 Let r > s and x1 = min{xi}, xn = max{xi}. Both inequalities in (1.2) hold when
1 ≤ r ≤ 2, –1 ≤ s ≤ 1. The right-hand side of (1.2) holds for s = 0 if and only if 0 < r ≤ 2, the
left-hand side of (1.2) holds for s = 0 if and only if 1 ≤ r ≤ 3. Moreover, in all these cases we
have equality if and only if x1 = x2 = · · · = xn.

Proof As shown in [2, Theorem 3.2] both inequalities in (1.2) are valid when –1 ≤ s < 1 = r
and s = 1 < r ≤ 2. The first assertion of the lemma follows from the observation that when
either inequality in (1.2) is valid for r > r′ and r′ > s, then it is valid for r > s. The second
assertion of the lemma is [3, Theorem 2]. The cases for equalities also follow from [2,
Theorem 3.2] and [3, Theorem 2]. �

Our next lemma establishes some auxiliary results needed in the proof of (and remarks
on) Lemma 2.3.

Lemma 2.2
(i). Let r > 1, s < 0. We define, for 0 < y ≤ 1,

gr,s(y) = y1/r–1 –
(r – s)(1 – y)

2
. (2.1)

Then gr,s(y) is minimized at

y0(r, s) =
(

2(1 – 1/r)
r – s

)1/(2–1/r)

. (2.2)

(ii). The function h(z) = (1 + z)1+zz–z is an increasing function of z > 0.

Proof Note first that as s < 0, we have r + 2/r – s > r + 2/r > 2. This implies that 2(1–1/r)
r–s < 1,

which in turn implies that 0 < y0(r, s) < 1. Now one checks that y0(r, s) is the only root of
g ′

r,s(y) = 0. As it is easy to see that g ′′
r,s(y0(r, s)) > 0, the assertion of the lemma on (i) follows

from this. To prove (ii), one calculates directly the logarithmic derivative of the function
h(z) is positive for z > 0. This completes the proof of the lemma. �

We define

F(x1, . . . , xn, q1, . . . , qn) = Mn,r – Mn,s –
r – s

2
σn. (2.3)



Gao Journal of Inequalities and Applications        (2018) 2018:349 Page 3 of 13

It is easy to see that the right-hand side of (1.2) is equivalent to F ≤ 0 for 1 = x1 < x2 <
· · · < xn–1 < xn and the left-hand side of (1.2) is equivalent to F ≥ 0 for 0 < x1 < x2 < · · · <
xn–1 < xn = 1. We expect the extreme values of F occur at n = 2 with one of the xi or qi

taking a boundary value. Based on this consideration, to establish inequalities (1.2), we
prove the following necessary condition.

Lemma 2.3 Let r > s �= 0. A necessary condition for the right-hand side of (1.2) to hold is
that 0 ≤ r + s ≤ 3, r ≤ 2, s ≥ –1. A necessary condition for the left-hand side of (1.2) to hold
is that 0 ≤ r + s ≤ 3, r ≥ 1, rs ≤ 2, and

r – s
2

≤
(

2 –
1
r

)2– 1
r
(

1 –
1
r

)–(1– 1
r )

, (2.4)

when s < 0, where we define 00 = 1.

Proof Note first that it is shown in [2, Lemma 3.1] that a necessary condition for either
inequality of (1.2) to hold is that 0 ≤ r + s ≤ 3. Now we let n = 2, x1 = x, x2 = 1, q1 = q, and
F be defined as in (2.3) to see that

lim
q→0+

F(x, 1, q, 1 – q)
q

=
xr – 1

r
–

xs – 1
s

–
r – s

2
(x – 1)2,

lim
q→1–

F(x, 1, q, 1 – q)
1 – q

=
x – x1–s

s
–

x – x1–r

r
–

r – s
2

(x – 1)2.

As the first (second) right-hand side expression above is positive when r > 2 (s < –1) and
x → +∞, we conclude that in order for the right-hand side of (1.2) to hold, it is necessary
to have r ≤ 2 and s ≥ –1. Moreover, the first (second) right-hand side expression above is
negative when s > 0, rs > 2 (r < 1), and x = 0. We then conclude that in order for the left-
hand side of (1.2) to hold, it is necessary to have r ≥ 1 and rs ≤ 2 (note that when s < 0,
this condition is also satisfied).

On the other hand, when s < 0, we have

lim
x→0+

F(x, 1, q, 1 – q) = (1 – q)1/r –
(r – s)q(1 – q)

2
.

For the left-hand side of (1.2) to hold for s < 0, the expression above needs to be non-
negative. By setting y = 1–q, we see that this is equivalent to showing gr,s(y) is non-negative
for 0 < y ≤ 1, where gr,s(y) is given in (2.1). Note that the case r = 1 of (2.4) implies that
s ≥ –1, a condition already given in [2, Theorem 3.2], we may further assume that r > 1. It
follows from Lemma 2.2 that gr,s(y) is minimized at y0(r, s), where y0(r, s) is given in (2.2).
Substituting this value in (2.1), one checks easily that it is necessary to have (2.4) in order
for the expression in (2.1) to be non-negative for 0 < y ≤ 1 and the assertion of the lemma
now follows. �

We remark here that inequality (2.4) implies that it is not possible for the left-hand side
of (1.2) to hold for r > 1 and all s < 0. In fact, by setting z = 1 – 1/r, one sees from part
(ii) of Lemma 2.2 that the right-hand side of (2.4) is an increasing function of z, hence is
maximized at z = 1, with value 4. It follows then from (2.4) and the condition r + s ≥ 0
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that in order for the left-hand side of (1.2) to hold, it is necessary to have 4 ≥ (r – s)/2 ≥
(–s – s)/2 = –s, which implies that s ≥ –4.

Lemma 2.4 Let –1 ≤ s < 0, 0 ≤ q ≤ q1 ≤ 1, 0 < x0 < 1, x0 ≤ x–s ≤ 1. Then

q + (1 – q)x–s ≤ xα1

for any α1 ≥ 0 satisfying α1 ≤ α0, where

α0 =
–s ln((1 – q1)x0 + q1)

ln x0
.

Proof We let y = x–s and α = –α0/s, so that 0 ≤ α < 1. It suffices to show that g(y) ≥ 0 for
x0 ≤ y ≤ 1, where

g(y) = yα –
(
q1 + (1 – q1)y

)
.

It is easy to see that g(y) is a concave function of y and g(1) = g(x0) = 0, hence the desired
result follows. �

Lemma 2.5 Let –1 ≤ s < 0, 2 < r ≤ 3 – s, 1 – s2 ≤ (r – 1)(r – 2). Suppose that there exists a
number q2, 1/2 ≤ q2 ≤ 1 such that

α2

s
:=

(1 – s2)q2

(r – 1)(r – 2)(1 – q2)
≤ 1.

Then, for q2 ≤ q ≤ 1, 0 < x ≤ 1,

(1 – s)
(
q(1 + s)xs + (2 – s)(1 – q)

) ≥ xα2 (r – 1)
(
–q(r + 1)xr + (r – 2)(1 – q)

)
. (2.5)

Proof As the expressions in (2.5) are linear functions of q, it suffices to prove inequal-
ity (2.5) for q = q2, 1. The case q = 1 is trivial and when q = q2, we set y = xs to see that
inequality (2.5) follows from h(y) ≥ 0 for y ≥ 1, where

h(y) = (1 – s)
(
q2(1 + s)y + (2 – s)(1 – q2)

)
– yα2/s(r – 1)(r – 2)(1 – q2).

As α2/s ≤ 1, it is easy to see that h(y) is minimized at y = 1 with a positive value and this
completes the proof. �

For r > s, r2 + s2 �= 0, 0 ≤ q < 1, x > 0, we define

F1(x, q) =
(
qxr + 1 – q

)(1–r)/rxr–1 –
(
qxs + 1 – q

)(1–s)/sxs–1 – (r – s)(1 – q)(x – 1), (2.6)

F2(x, q) = (r – 1)
(
q + (1 – q)x–r) 1–2r

r x–r–1

+ (1 – s)
(
q + (1 – q)x–s) 1–2s

s x–s–1 – (r – s). (2.7)

As we can see in some part of Theorem 1.1, we need F2(x, q) ≥ 0 for 0 < x ≤ 1 and vari-
ous q. The following lemma gives a sufficient condition for this.
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Lemma 2.6 Let –1 < s < 0, 2 < r ≤ 3 – s, 0 < x ≤ 1, 0 ≤ a, b < 1. If for a ≤ q < b,

q + (1 – q)x–s ≤ xα1 ,

(1 – s)
(
q(1 + s)xs + (2 – s)(1 – q)

) ≥ xα2 (r – 1)
(
–q(r + 1)xr + (r – 2)(1 – q)

)
.

(2.8)

Then F2(x, q) ≥ 0 for a ≤ q < b when c(r, s,α1,α2) ≤ 0, where F2(x, q) is defined in (2.7) and

c(r, s,α1,α2) = c0(r, s) +
(
(r – 1)(2r – 1)(1 – 3s) + (3r – 1)(1 – 2s)(1 – s)

)α1

s

+ (2r – 1)(r – 1)α2, (2.9)

c0(r, s) = r3 – (5 + 4s)r2 +
(
2 + 6s + 3s2)r – s(2 + s).

Proof As in this case limx→0+ F2(x, q) > 0, F2(1, q) = 0, we only need to show that the values
of F2 at points satisfying

∂F2

∂x
= 0

are non-negative.
Calculation shows that at these points we have

(
qxr + 1 – q

) 1–3r
r xr–2

=
(1 – s)(q(1 + s)xs + (2 – s)(1 – q))

(r – 1)(–q(r + 1)xr + (r – 2)(1 – q))
(
q + (1 – q)x–s) 1–3s

s x–1–2s. (2.10)

If –q(r + 1)xr + (r – 2)(1 – q) ≤ 0, then no such points exist. Hence we may assume that
–q(r + 1)xr + (r – 2)(1 – q) > 0. Applying (2.8) in (2.10), we find that

(
qxr + 1 – q

) 1–3r
r ≥ x

1–3s
s α1+α2+1–2s–r.

We write α3 = 1–3s
s α1 + α2 so that the above inequality implies that

qxr + 1 – q ≤ x
r(α3+1–2s–r)

1–3r .

We now apply the arithmetic-geometric inequality and the above estimation to see that

F2(x, q)
r – s

=
r – 1
r – s

(
qxr + 1 – q

) 1–2r
r xr–2 +

1 – s
r – s

(
q + (1 – q)x–s) 1–2s

s x–1–s – 1

≥ r – 1
r – s

x(α3+1–2s–r)(1–2r)/(1–3r)xr–2 +
1 – s
r – s

x(1–2s)α1/sx–1–s – 1

≥ x(α3+1–2s–r)(1–2r)(r–1)/((1–3r)(r–s)) · x((r–1)(r–2)–(1–s2))/(r–s) · x(1–2s)α1(1–s)/(s(r–s)) – 1

= xc(r,s,α1,α2)/((r–s)(3r–1)) – 1.

The assertion of the lemma now follows easily. �
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Lemma 2.7 Let –1 < s < 0, 2 < r ≤ 3– s. Let c(r, s,α1,α2) be defined as in Lemma 2.6. Define

c1(r, s) = r3 – (6 + s)r2 +
(
s2 + 4

)
r – s

(
s2 – 6s + 4

)
,

c2(r, s) = (r – 1)(–1 – 2s) – (1 – s)(1 + s),

c3(r, s) = c(r, s, 0, s),

c4(r, s) = c
(

r, s, –0.0889s,
(1 – s2)s

(r – 1)(r – 2)

)

.

(2.11)

Then max1≤i≤4{ci(r, s)} ≤ 0 when –1/2 ≤ s < 0.

Proof It is easy to see that ci, 0 ≤ i ≤ 3, are all convex functions of r ≥ 2, where c0(r, s)
is defined in (2.9). Also, c4 is a convex function of r ≥ 3. Thus, it suffices to show that
ci, 1 ≤ i ≤ 3, are non-positive for –1/2 ≤ s < 0, r = 2, 3 – s and that c4 is non-positive for
–1/2 ≤ s < 0, 2 < r ≤ 3, r = 3 – s. One checks directly that maxi=1,2{ci(2, s), ci(3 – s, s)} ≤
0, c3(2, s) ≤ c0(2, s) ≤ 0, and max2<r≤3 c4(r, s) ≤ max2<r≤3 c0(r, s) ≤ max{c0(2, s), c0(3, s)} = 0.
We also have

c3(3 – s, s) = –12 – 9s + 21s2 – 6s3,

c4(3 – s, s) = –12 – 14s + 33s2 – 10s3 – 0.0889
(
18 – 66s + 54s2 – 12s3).

As both expressions on the right-hand side above are decreasing functions of s < 0, and
one checks directly that c3(3 – s, s) < 0, c4(3 – s, s) < 0 for s = –1/2, so that maxi=3,4{ci(3 –
s, s)} ≤ 0 and this completes the proof. �

3 Proof of Theorem 1.1
Throughout this section, we assume that r > s. We omit the discussions on the conditions
for equality in each inequality, we shall prove as one checks easily that the desired condi-
tions hold by going through our arguments in what follows. As the case s = 0, 1 or r = 1
has been proven in [2, Theorem 3.2] and [3, Theorem 2], we further assume r �= 1, s �= 0, 1
in what follows.

As the “only if” part of Theorem 1.1 follows from Lemma 2.3, it remains to prove the
“if” part of Theorem 1.1. We consider the right-hand side of (1.2) first. Let F be defined as
in (2.3) and x1 = 1 < x2 < · · · < xn, qi > 0, 1 ≤ i ≤ n. We have

F0(x1, . . . , xn, q1, . . . , qn) :=
∂F

qn∂xn
= M1–r

n,r xr–1
n – M1–s

n,s xs–1
n – (r – s)(xn – An).

Now the right-hand side of (1.2) follows from F ≤ 0, which in turn follows from F0 ≤ 0
as it implies F(x; q) ≤ limxn→xn–1 F(x; q). By adjusting the value of qn–1 in the expression of
limxn→xn–1 F(x; q) and repeating the process, it follows easily that F ≤ 0.

When n ≥ 3, we regard x1 = 1, xn as fixed and assume that F0 is maximized at some point
(x′; q′) = (x′

1, . . . , x′
n, q′

1, . . . , q′
n) with x′

1 = x1, x′
n = xn. Then at this point we must have

∂F0

∂xi

∣
∣
∣
∣
(x′ ;q′)

= 0, 2 ≤ i ≤ n – 1.
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Thus, the x′
i, 2 ≤ i ≤ n – 1, are solutions of the equation

f1(x) := (1 – r)M1–2r
n,r xr–1

n xr–1 – (1 – s)M1–2s
n,s xs–1

n xs–1 + r – s = 0.

It is easy to see that the above equation can have at most two different positive roots.
On the other hand, by applying the method of Lagrange multipliers, we let

F̃0(x1, . . . , xn, q1, . . . , qn,λ) = F0(x1, . . . , xn, q1, . . . , qn) – λ

( n∑

i=1

qi – 1

)

,

where λ is a constant. Then at (x′; q′) we must have

∂F̃0

∂qi

∣
∣
∣
∣
(x′ ;q′)

= 0, 1 ≤ i ≤ n.

Thus, the x′
i, 1 ≤ i ≤ n, are solutions of the equation

f2(x) :=
1 – r

r
M1–2r

n,r xr–1
n xr –

1 – s
s

M1–2s
n,s xs–1

n xs + (r – s)x – λ = 0.

As f ′
2(x) = f1(x), it follows from the mean value theorem that there is a solution of f1(x) = 0

between any two adjacent x′
i, x′

i+1, 1 ≤ i ≤ n – 1, as they are solutions of f2(x) = 0. But when
n ≥ 3, we have at least x′

2 as a solution of f1(x) = 0. This would imply that f1(x) = 0 has
at least three different positive solutions (for example, one in between x′

1 and x′
2, one in

between x′
2 and x′

3, and x′
2 itself ), a contradiction.

Therefore, it remains to show F0 ≤ 0 for n = 2. In this case, we let 1 = x1 < x2 = x, 0 < q2 =
q < 1, q1 = 1 – q to see that F0 = F1(x, q), where F1(x, q) is defined in (2.6).

Note that F2(x, q) = (1 – q)–1∂F1/∂x, where F2(x, q) is defined in (2.7). As F1(1, q) = 0, we
see that it suffices to show that F2(x, q) ≤ 0 for x ≥ 1.

We now divide the proof of the right-hand side of (1.2) for r > s �= 0 satisfying 0 ≤ r + s ≤
3, r ≤ 2, s ≥ –1 into several cases. As the case –1 ≤ s ≤ 1 ≤ r ≤ 2 follows directly from
Lemma 2.1, we only consider the remaining cases in what follows, and we show in these
cases F2(x, q) ≤ 0 or equivalently, F2(x, q)/(r – s) + 1 ≤ 1. Note that

F2(x, q)
r – s

+ 1 =
r – 1
r – s

(
q + (1 – q)x–r) 1–2r

r x–r–1 +
1 – s
r – s

(
q + (1 – q)x–s) 1–2s

s x–s–1. (3.1)

One checks that in all the following cases, we have (r – 1)(1 – s) ≤ 0. Therefore, it follows
from the arithmetic-geometric mean inequality with non-positive weights that the right-
hand side expression in (3.1) is less than or equal to

(
q + (1 – q)x–r)(1–2r)(r–1)/(r(r–s))(q + (1 – q)x–s)(1–2s)(1–s)/(s(r–s))x(s2–r2)/(r–s)

=
(
qxr + 1 – q

)(1–2r)(r–1)/(r(r–s))(qxs + 1 – q
)(1–2s)(1–s)/(s(r–s))xr+s–3. (3.2)

Thus, it suffices to show that either side expression in (3.2) is ≤ 1.
Case 1. 0 < s ≤ 1/2 ≤ r < 1.
Each factor of the left-hand side expression in (3.2) is ≤ 1, hence their product is ≤ 1.
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Case 2. 0 < s < r ≤ 1/2.
It is well known that r �→ Mn,r is an increasing function of r and –r < –s. So we have

(
q + (1 – q)x–r)–1/r ≤ (

q + (1 – q)x–s)–1/s.

We also have (1 – 2r)(1 – r) ≤ (1 – 2s)(1 – s). Therefore,

(
q + (1 – q)x–r)(1–2r)(r–1)/(r(r–s))(q + (1 – q)x–s)(1–2s)(1–s)/(s(r–s))

≤ (
q + (1 – q)x–s)((1–2r)(1–r)–(1–2s)(1–s))/(–s(r–s)) ≤ 1,

which implies that the left-hand side expression of (3.2) is ≤ 1.
Case 3. 1/2 ≤ s < r < 1.
Note that

q + (1 – q)x–r ≤ q + (1 – q)x–s,

so that the left-hand side expression of (3.2) is less than or equal to

(
q + (1 – q)x–s)(1–2r)(r–1)/(r(r–s))(q + (1 – q)x–s)(1–2s)(1–s)/(s(r–s))x(s2–r2)/(r–s)

=

⎧
⎨

⎩

(q + (1 – q)x–s)1/(rs)–2x(s2–r2)/(r–s) ≤ 1, 1
rs ≥ 2,

(qxs + 1 – q)1/(rs)–2x–1/r–r+s ≤ 1, 1
rs ≤ 2.

This implies that the left-hand side expression of (3.2) is ≤ 1.
Case 4. 1 < s < r ≤ 3 – s = min{2, 3 – s}.
Note that

qxr + 1 – q ≥ qxs + 1 – q ≥ 1, (1 – 2r)(r – 1) ≤ 0.

It follows that

(
qxr + 1 – q

)(1–2r)(r–1)/(r(r–s))(qxs + 1 – q
)(1–2s)(1–s)/(s(r–s))xr+s–3

≤ (
qxs + 1 – q

)(1–2r)(r–1)/(r(r–s))(qxs + 1 – q
)(1–2s)(1–s)/(s(r–s))xr+s–3

=
(
qxs + 1 – q

)1/(rs)–2xr+s–3 ≤ 1,

which implies that the right-hand side expression of (3.2) is ≤ 1.
Case 5. s < 0 < r < 1, r + s ≥ 0.
When r ≥ 1/2, each factor of the left-hand side of (3.2) is ≤ 1, hence their product is ≤ 1.

If 0 < r < 1/2, then again it follows from the fact that r �→ Mn,r is an increasing function of
r that

(
qxr + 1 – q

)1/r ≥ (
qxs + 1 – q

)1/s ≥ 1.

As (1 – 2r)(r – 1) ≤ 0 and 3 – 2(r + s) ≥ 0, it follows that

(
qxr + 1 – q

)(1–2r)(r–1)/(r(r–s))(qxs + 1 – q
)(1–2s)(1–s)/(s(r–s))xr+s–3
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≤ (
qxs + 1 – q

)(1–2r)(r–1)/(s(r–s))(qxs + 1 – q
)(1–2s)(1–s)/(s(r–s))xr+s–3

=
(
q + (1 – q)x–s)(3–2(r+s))/sx–(r+s) ≤ 1.

This now completes the proof for all the cases for the right-hand side of (1.2).
Next, we prove the left-hand side of (1.2) for 0 ≤ r + s ≤ 3, –1/2 ≤ s ≤ 1, r ≥ 1. In this

case, it suffices to show F ≥ 0 provided that we assume 0 < x1 < x2 < · · · < xn = 1. Similar
to our discussions above, one shows easily that this follows from ∂F/∂x1 ≤ 0 for n = 2,
which is equivalent to F1(x, q) ≤ 0 for 0 < x ≤ 1. Again we divide the proof into several
cases. As the case –1 ≤ s ≤ 1 ≤ r ≤ 2 follows directly from Lemma 2.1, we only consider
the remaining cases in what follows and similar to our proof of the right-hand side of (1.2)
above, it suffices to show that F2(x, q) ≥ 0 for 0 < x ≤ 1.

Case 1. 1/2 ≤ s < 1, 2 < r ≤ 3 – s.
As r – 1 > 0, it follows from the arithmetic-geometric mean inequality that the right-

hand side expression of (3.1) is greater than or equal to the expressions in (3.2). As the
factors of the right-hand side expression of (3.2) are all ≥ 1, it follows that F2(x, q) ≥ 0.

For the remaining cases, one checks easily that we have limx→0+ F2(x, q) > 0, F2(1, q) = 0
so that it suffices to show the values of F2(x, q) at points satisfying (2.10) are non-negative,
assuming that –q(r + 1)xr + (r – 2)(1 – q) > 0. Hence, in what follows, we shall only evaluate
F2(x, q) at these points satisfying the above assumption. We then note that at these points
we have

(1 – s)
(
q(1 + s)xs + (2 – s)(1 – q)

) ≥ (r – 1)
(
–q(r + 1)xr + (r – 2)(1 – q)

)
. (3.3)

This is seen by noting that the expressions in (3.3) are linear functions of q, hence it suffices
to check the validity of inequality (3.3) at q = 0, 1.

It then follows from (3.3) and (2.10) that at these points we have

(
qxr + 1 – q

) 1–3r
r xr–2 ≥ (

q + (1 – q)x–s) 1–3s
s x–1–2s =

(
qxs + 1 – q

) 1–3s
s xs–2, (3.4)

an inequality we shall assume in what follows.
Case 2. 0 < s < 1/2, 2 < r ≤ 3 – s.
Similar to the previous case, the right-hand side expression of (3.1) is greater than or

equal to the expressions in (3.2). From (3.4) we deduce that

qxr + 1 – q ≤ (
qxs + 1 – q

) r(1–3s)
s(1–3r) x

r(s–r)
1–3r .

Using this, we see that the right-hand side expression of (3.2) is greater than or equal to

(
qxs + 1 – q

)(2r–1)(r–1)(1–3s)/(s(3r–1)(r–s))(qxs + 1 – q
)(1–2s)(1–s)/(s(r–s))x–(2r–1)(r–1)/(3r–1)xr+s–3.

When 1/3 ≤ s < 1/2, we see that the first factor and the last factor above is ≥ 1, and we
write the product of the two factors in the middle as

(
q + (1 – q)x–s)(1–2s)(1–s)/(s(r–s))x(1–2s)(1–s)/(r–s)–(2r–1)(r–1)/(3r–1). (3.5)
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Note that the first factor above is now ≥ 1 and it is easy to see that

(1 – 2s)(1 – s)
r – s

≤ 1 – 2s
2 – s

≤ 1 – 2 · 1/3
2 – 1/3

≤ 2r – 1
3r – 1

≤ (2r – 1)(r – 1)
3r – 1

.

This implies that the second factor in (3.5) is also ≥ 1. Hence the right-hand side expres-
sion of (3.2) is greater than or equal to 1 and it follows that F2(x, q) ≥ 0.

When 0 < s < 1/3, it follows from (3.4) that

(
qxr + 1 – q

) 1–2r
r xr–2 ≥ (

qxr + 1 – q
)(

qxs + 1 – q
) 1–3s

s xs–2. (3.6)

If the right-hand side expression above is ≥ 1, then we have

F2(x, q) = (r – 1)
(
qxr + 1 – q

) 1–2r
r xr–2 + (1 – s)

(
q + (1 – q)x–s) 1–2s

s x–s–1 – (r – s)

≥ (r – 1) + (1 – s) – (r – s) = 0. (3.7)

If the right-hand side expression of (3.6) is ≤ 1, then it implies that

(
qxr + 1 – q

) ≤ (
qxs + 1 – q

)– 1–3s
s x–(s–2).

Thus,

(
qxr + 1 – q

) 1–2r
r xr–2 ≥ ((

qxs + 1 – q
)– 1–3s

s x–(s–2))(1–2r)/rxr–2

=
(
q + (1 – q)x–s) (1–3s)(2r–1)

rs x
(1+2s)(1–2r)

r +r–2 ≥ 1,

where the last inequality above follows from the observation that the function r �→ (1 +
2s)(1 – 2r)/r + r – 2 is an increasing function of r ≥ 2 and hence is maximized at r = 3 – s,
in which case its value is easily shown to be negative. It follows from (3.7) that F2(x, q) ≥ 0
in this case.

Case 3. –1/2 ≤ s < 0, 2 < r ≤ 3 – s.
We divide this case into a few subcases.
Subcase 1. 0 < q ≤ 1/2.
As r �→ Mn,r is an increasing function of r and –s ≤ r since r + s ≥ 0, we have

(
q + (1 – q)x–s)–1/s ≤ (

q + (1 – q)xr)1/r . (3.8)

As 0 < q ≤ 1/2, we also have

q + (1 – q)xr ≤ qxr + 1 – q. (3.9)

We then deduce from (3.4), (3.8), and (3.9) that

(
qxr + 1 – q

) 1–3r
r xr–2 ≥ (

q + (1 – q)x–s) 1–3s
s x–1–2s ≥ (

qxr + 1 – q
)– 1–3s

r x–1–2s.

It follows that (note that 2 – 3(r + s) ≤ 0 for r ≥ 2, s ≥ –1)

qxr + 1 – q ≤ x
r(1–2s–r)
2–3(r+s) . (3.10)
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With c1(r, s) being defined in (2.11), we then deduce that

F2(x, q)
r – s

=
r – 1
r – s

(
qxr + 1 – q

) 1–2r
r xr–2 +

1 – s
r – s

(
q + (1 – q)x–s) 1–2s

s x–1–s – 1

≥ r – 1
r – s

(
qxr + 1 – q

) 1–2r
r xr–2 +

1 – s
r – s

(
qxr + 1 – q

)– 1–2s
r x–1–s – 1

≥ (
qxr + 1 – q

)((1–2r)(r–1)–(1–s)(1–2s))/(r(r–s)) · x((r–1)(r–2)–(1–s)(1+s))/(r–s) – 1

≥ x(1–2s–r)((1–2r)(r–1)–(1–s)(1–2s))/((2–3(r+s))(r–s)) · x((r–1)(r–2)–(1–s)(1+s))/(r–s) – 1

= xc1(r,s)/((r–s)(3(r+s)–2)) – 1,

where the first inequality above follows from (3.8) and (3.9), the second inequality above
follows from the arithmetic-geometric inequality, and the last inequality above follows
from (3.10). It follows from Lemma 2.7 that F2(x, q) ≥ 0 in this case.

Subcase 2. 1/2 ≤ q ≤ 1, (1 + s)xs – (2 – s) ≥ 0 or 1 – s2 ≥ (r – 1)(r – 2).
One checks that if (1 + s)xs – (2 – s) ≥ 0, then the function q �→ (1 – s)(q(1 + s)xs + (2 –

s)(1 – q))(qxr + 1 – q) – (r – 1)(–q(r + 1)xr + (r – 2)(1 – q)) is a concave function of q and
hence is minimized at q = 0, 1, with values ≥ 1.

If 1 – s2 ≥ (r – 1)(r – 2), then

(1 – s)
(
q(1 + s)xs + (2 – s)(1 – q)

) ≥ q(1 – s)(1 + s) + (1 – s)(2 – s)(1 – q)

≥ (r – 1)(r – 2).

It follows that

(1 – s)
(
q(1 + s)xs + (2 – s)(1 – q)

)(
qxr + 1 – q

)

≥ (r – 1)(r – 2)(1 – q)

≥ (r – 1)
(
–q(r + 1)xr + (r – 2)(1 – q)

)
.

Thus, in either case, we deduce from the above and (2.10) that we have

(
qxr + 1 – q

) 1–2r
r xr–2 ≥ (

q + (1 – q)x–s) 1–3s
s x–1–2s ≥ x–1–2s.

From this we apply the arithmetic-geometric inequality to see that

F2(x, q)
r – s

=
r – 1
r – s

(
qxr + 1 – q

) 1–2r
r xr–2 +

1 – s
r – s

(
q + (1 – q)x–s) 1–2s

s x–1–s – 1

≥ r – 1
r – s

x–1–2s +
1 – s
r – s

x–1–s – 1

≥ x
c2(r,s)

r–s – 1, (3.11)

where c2(r, s) is defined in (2.11). Now Lemma 2.7 implies that F2(x, q) ≥ 0 in this case.
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Subcase 3. (1 + s)xs – (2 – s) ≤ 0, 1 – s2 ≤ (r – 1)(r – 2), and 1/2 ≤ q0 ≤ q < 1, where q0 is
defined by

(1 – s2)q0

(r – 1)(r – 2)(1 – q0)
= 1. (3.12)

In this case, Lemma 2.5 with q2 = q0 implies that (2.8) is satisfied by α1 = 0 and α2 = s,
where we set a = q0 and b = 1 in Lemma 2.6. It follows from Lemma 2.6 that F2(x, q) ≥ 0 as
long as c3(r, s) ≤ 0, where c3(r, s) is given in (2.11). As Lemma 2.7 implies that c3(r, s) ≤ 0,
we see that F2(x, q) ≥ 0 in this case.

Subcase 4. (1 + s)xs – (2 – s) ≤ 0, 1 – s2 ≤ (r – 1)(r – 2), and 1/2 ≤ q < q0, where q0 is
defined by (3.12).

In this case, we set a = 1/2 and b = q0 in Lemma 2.6. Note that as r ≤ 3 – s, it follows
from this and (3.12) that when s ≥ –1/2,

q0

1 – q0
≤ (2 – s)(1 – s)

(1 – s2)
≤ 5.

We then deduce that q0 ≤ 5/6. Note also that we have x–s ≥ (1 + s)/(2 – s) ≥ 1/5 when
s ≥ –1/2. Thus, we can take q1 = 5/6, x0 = 1/5 in Lemma 2.4 and q2 = 1/2 in Lemma 2.5 to
see that (2.8) is satisfied by α1 = –0.0889s, α2 = s(1 – s2)/((r – 1)(r – 2)). It follows from
Lemma 2.6 that F2(x, q) ≥ 0 as long as c4(r, s) ≤ 0, where c4(r, s) is given in (2.11) and
F2(x, q) ≥ 0 in this case again follows from Lemma 2.7.

4 Further discussions
We point out that Theorem 1.1 determines all the pairs (r, s), r > s such that the right-hand
side of (1.2) holds and all the pairs (r, s), –1/2 ≤ s ≤ 1 such that the left-hand side of (1.2)
holds. However, less is known for the left-hand side of (1.2) when r > s > 1 or s < –1/2. This
is partially due to the fact that our approach in the proof of Theorem 1.1 relies on showing
F1(x, q) ≤ 0 (via F2(x, q) ≥ 0) for 0 < x ≤ 1, 0 < q < 1, where F1, F2 are defined in (2.6) and
(2.7). However, it is easy to see that F1(0, q) > 0 when r > s > 1 and limx→0+ F2(x, q) < 0 when
r > 2, s < –1. It also follows from this that in order to show F2(x, q) ≥ 0 when s < –1, we
must have r ≤ 2. As Lemma 2.3 implies a necessary condition for the left-hand side of (1.2)
to hold is r ≥ 1, 0 ≤ r + s ≤ 3, we then deduce that when s ≤ –1, one can only expect to
show F2(x, q) ≥ 0 for 1 ≤ r ≤ 2, s ≥ –r ≥ –2.

On the other hand, though Theorem 1.1 only establishes the validity of the left-hand
side of (1.2) for s ≥ –1/2, one can in fact extend the validity of the left-hand side of (1.2)
for certain r > s, s < –1/2 by going through the proof of Theorem 1.1. This is given in the
following theorem.

Theorem 4.1 Let r > s and x1 = min{xi}, xn = max{xi}. The left-hand side of (1.2) holds
when (r – 1)(r – 2) ≤ 1 – s2 or when –1 < s < –1/2, 2 < r < 3 – s, max1≤i≤4{ci(r, s)} ≤ 0, where
ci(r, s), 1 ≤ i ≤ 4 is defined in (2.11). Moreover, in all these cases we have equality if and
only if x1 = x2 = · · · = xn.

Proof Once again we omit the discussions on the conditions of equality. As in the proof
of Theorem 1.1, it suffices to prove F2(x, q) ≥ 0, where F2(x, q) is defined in (2.7). When
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(r – 1)(r – 2) ≤ 1 – s2, it follows from the expression for F2(x, q)/(r – s) in (3.11) that

F2(x, q)
r – s

≥ r – 1
r – s

xr–2 +
1 – s
r – s

x–1–s – 1 ≥ x
(r–1)(r–2)–(1–s2)

r–s – 1 ≥ 0.

When –1 < s < –1/2, our assertion follows by simply combining the arguments in all the
subcases of case 3 in the proof of the left-hand side of (1.2) in Sect. 3. This completes the
proof. �
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