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Abstract
An efficient inner approximation algorithm is presented for solving the generalized
linear multiplicative programming problem with generalized linear multiplicative
constraints. The problem is firstly converted into an equivalent generalized geometric
programming problem, then some magnifying-shrinking skills and approximation
strategies are used to convert the equivalent generalized geometric programming
problem into a series of posynomial geometric programming problems that can be
solved globally. Finally, we prove the convergence property and some practical
application examples in optimal design domain, and arithmetic examples taken from
recent literatures and GLOBALLib are carried out to validate the performance of the
proposed algorithm.
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1 Introduction
In this paper, we focus on the following generalized linear multiplicative programming
problem:

(GLMP) :

⎧
⎪⎪⎨

⎪⎪⎩

min φ0(y) =
∑P0

j=1 c0j
∏T0j

t=1(f0jt(y))γ0jt

s.t. φi(y) =
∑Pi

j=1 cij
∏Tij

t=1(fijt(y))γijt ≤ 0, i = 1, 2, . . . , M,

y ∈ Y 0 = {0 < y0
i
≤ yi ≤ y0

i , i = 1, 2, . . . , N},

where cij, γijt , i = 0, 1, . . . , M, j = 1, 2, . . . , pi, t = 1, 2, . . . , Tij are all arbitrary real num-
bers; pi, Tij, i = 0, 1, . . . , M, j = 1, 2, . . . , pi are all positive integers and fijt(y), i = 0, 1, . . . , M,
j = 1, 2, . . . , pi, t = 1, 2, . . . , Tij are all affine functions defined on RN such that fijt(y) > 0 for
all y ∈ Y 0. Furthermore, we suppose that the interior of the feasible region for (GLMP) is
not empty. Problem (GLMP) and its special cases are ubiquitous in optimal design appli-
cations, including power control, optimal doping profile, production planning, chemical
equilibrium, heat exchanger network, digital circuit gate sizing, VLSI chip design, truss
design, and so on [1–8]. And on the other hand, problem (GLMP) which corresponds
to a nonlinear optimization problem with generalized linear multiplicative objective and
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constraint functions includes a large class of mathematical programs such as general-
ized geometric programming, multiplicative programming, sum of linear ratios problems,
quadratic programming et al. [9–12]. Thus in this context, an algorithmic study of prob-
lem (GLMP) makes some theoretical and practical significance.

Algorithms for solving the special form of problem (GLMP) emerged endlessly. They
are mainly classified as primal-based algorithms that directly solve the primal problem,
dual-based algorithms that solve the dual problem, and adapted general nonlinear pro-
gramming methods [13–15]. Recently, many works aimed at globally solving special forms
of (GLMP) are presented, for example, global algorithms for signomial geometric pro-
gramming problems, branch and bound algorithms for multiplicative programming with
linear constraints, branch and reduction methods for quadratic programming problems,
and sum of ratios problems are all in this category [16–21]. Despite these various contri-
butions to their special forms, however, optimization algorithms for solving the general
case of (GLMP) are still scarce. As far as we know, only [9] consider this general case, but
only for (GLMP) with geometric constraints.

In this paper, we present an inner approximation algorithm for solving generalized linear
multiplicative programming problem described as (GLMP). The (GLMP) is first converted
into a generalized geometric programming problem, then the inner approximation algo-
rithm relying on arithmetic-geometric mean inequality and magnifying-shrinking tech-
niques is established. The algorithm works by solving a series of posynomial geometric
programming problems. This strategy can be realized owing to the fact that recently de-
veloped solution methods can solve even large-scale posynomial geometric programming
problems extremely efficiently and reliably [22]. The convergence property is proved and
some examples taken from practical applications and recent literatures are performed to
verify the efficiency of the presented algorithm. The experimental results show that the
presented algorithm has a better capability to solve the (GLMP).

The remainder of this paper is organized in the following way. In Sect. 2, the equivalent
generalized geometric programming problem is established and the inner approximation
algorithm for solving (GLMP) is designed by utilizing arithmetic-geometric mean inequal-
ity and condensation techniques. The convergence property and error analysis of the al-
gorithm are discussed in Sect. 3. Section 4 computationally investigates the performance
of the inner approximation algorithm by solving some selective test examples. Some con-
cluding remarks are proposed in the last section.

2 Equivalent problem and algorithm development
In this section, the original problem (GLMP) is first transformed into an equivalent gen-
eralized geometric programming problem (EGGP) through variable substitution. And for
convenience, problem (EGGP) will be further converted into generalized geometric pro-
gramming with standard form described as formulation (Q). Then our focus will be shifted
to solving the equivalent problem (Q). By utilizing the arithmetic-geometric mean in-
equality and condense techniques based on first order Taylor expansion, we can construct
a posynomial geometric programming auxiliary problem (AQ) of the reformulated prob-
lem (Q) at each iterative point. Based on this, the proposed algorithm will be developed.
The proposed algorithm works by solving a sequence of posynomial geometric program-
ming problems.
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2.1 Equivalent problem
To solve the problem, we will first transform the (GLMP) into an equivalent problem
(EGGP), where the objective and constraint functions are all generalized polynomial func-
tions. To explain how such a reformulation is possible, we first compute zijt = miny∈Y 0 fijt(y),
zijt = maxy∈Y 0 fijt(y), then introduce some auxiliary variables zijt such that 0 < zijt ≤ zijt ≤ zijt

for each i = 0, 1, . . . , M, j = 1, 2, . . . , pi, t = 1, 2, . . . , Tij, and define vector z and an initial box
Z0 as follows:

z = {z011, z012, . . . , z01T01 , z021, z022, . . . , z02T02 , . . . , z0p01, z0p02, . . . , z0p0T0p0
,

z111, z112, . . . , z11T11 , z121, z122, . . . , z12T12 , . . . , z1p11, z1p12, . . . , z1p1T1p1
, . . . ,

zM11, zM12, . . . , zM1TM1 , zM21, zM22, . . . , zM2TM2 , . . . , zMpM1, zMpM2, . . . ,

zMpMTMpM
} ∈ Rs,

Z0 =
{

z ∈ Rs | 0 < zijt ≤ zijt ≤ zijt , i = 0, 1, . . . , M, j = 1, 2, . . . , pi, t = 1, 2, . . . , Tij
}

,

where s =
∑m

i=0
∑pi

j=1 Tij.
For convenience in exposition, we reintroduce some new notations as follows:

T+
i =

{
(j, t) | cijtγijt > 0, j = 1, 2, . . . , pi, t = 1, 2, . . . , Tij

}
, i = 0, 1, 2, . . . , M,

T–
i =

{
(j, t) | cijtγijt < 0, j = 1, 2, . . . , pi, t = 1, 2, . . . , Tij

}
, i = 0, 1, 2, . . . , M.

With these new notations, problem (GLMP) can be further equivalently reformulated as
the following problem:

(EP) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑P0

j=1 c0j
∏T0j

t=1(z0jt)γ0jt

s.t. fijt(y) – zijt ≤ 0, (j, t) ∈ T+
i , i = 0, 1, 2, . . . , M,

zijt – fijt(y) ≤ 0, (j, t) ∈ T–
i , i = 0, 1, 2, . . . , M,

∑Pi
j=1 cij

∏Tij
t=1(yijt)γijt ≤ 0, i = 1, 2, . . . , M,

y ∈ Y 0, z ∈ Z0.

Upon the monotonicity of the function in problem (EP), it is not too hard to find that
problems (GLMP) and (EP) have the same optimal solutions in the sense of the following
theorem.

Theorem 1 y∗ is an optimal solution for the (GLMP) if and only if (y∗, z∗) is an optimal
solution of (EP), where z∗

ijt = fijt(y∗), i = 0, 1, . . . , M, j = 1, 2, . . . , pi, t = 1, 2, . . . , Tipj .

Proof This theorem is quite easy to verify from the constructing process of problem (EP),
thus the proof is omitted here. �

For convenience and without loss of generality, we can reformulate problem (EP) as the
following generalized geometric programming problem (EGGP) by performing notation
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substitution.

(EGGP) :

⎧
⎪⎪⎨

⎪⎪⎩

min ψ0(x)

s.t. ψi(x) ≤ 0, i = 1, 2, . . . , m,

x ∈ X0,

where x = (y, z) ∈ Y 0 × Z0 = X0 ⊆ Rn, n = N + s, m = M + s, all of functions ψi(x)
have the generalized polynomial form, that is to say, it can be described as ψi(x) =
∑ri

t=1 δit
∏n

j=1(xj)θitj , and thus we only consider how to solve problem (EGGP) from now
on.

2.2 Implementable algorithm
In this part, we concentrate on how to design the inner approximation algorithm for solv-
ing the (EGGP). For this, we will perform some transformation and condensation strate-
gies so that problem (EGGP) can be converted into a series of posynomial geometric pro-
gramming problems which can be easily solved by using computer tools (such as CVX,
GPLab).

To this end, we first denote all generalized polynomial functions in (EGGP) as

ψi(x) = ψ+
i (x) – ψ–

i (x) �
∑

j∈J+
i

δij

n∏

j=1

(xj)θijt –
∑

j∈J–
i

δij

n∏

j=1

(xj)θijt ,

where

J+
i = {j = 1, 2, . . . , ri | δij > 0}, J–

i = {j = 1, 2, . . . , ri | δij < 0}, i = 0, 1, 2, . . . , m.

Note that the objective function can be rewritten as

ψ0(x) =
∑r0

t=1 δ0t
∏n

j=1(xj)θ0tj

∏n
j=1(xj)–η0j

=

∑
t∈T+

0
δ0t

∏n
j=1(xj)θ0tj

∏n
j=1(xj)–η0j

+

∑
t∈T–

0
δ0t

∏n
j=1(xj)θ0tj

∏n
j=1(xj)–η0j

,

where η0j = min{0, θ0tj | t = 1, 2, . . . , r0}, j = 1, 2, . . . , n. If we denote

ψ l
0 =

∑
t∈T+

0
δ0t

∏n
j=1(x0

j )θ0tj

∏n
j=1(x0

j )–η0j
+

∑
t∈T–

0
δ0t

∏n
j=1(x0

j )θ0tj

∏n
j=1(x0

j )–η0j

and

ψu
0 =

∑
t∈T+

0
δ0t

∏n
j=1(x0

j )θ0tj

∏n
j=1(x0

j )–η0j
+

∑
t∈T–

0
δ0t

∏n
j=1(x0

j )θ0tj

∏n
j=1(x0

j )–η0j
,

then we have

ψ l
0 ≤ ψ0(x) ≤ ψu

0 .

This will imply from ψ l
0 that there exists a constant τ = –ψ l

0 + ε with sufficiently small
value ε > 0 such that ψ0(x) + τ > 0, ∀x ∈ X0. The reason for constructing the constant τ
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is that it will force the succedaneous objective function ψ0(x) + τ > 0, and it is convenient
for reformulating the following equivalent optimization problem:

(Q) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min x0

s.t. ψ+
0 (x)+τ

ψ–
0 (x)+x0

≤ 1,
ψ+

i (x)
ψ–

i (x) ≤ 1, i = 1, 2, . . . , m,

x ∈ X0, x0 ∈ [ψ l
0,ψu

0 ].

In this representation, the objective function of problem (Q) is a positive linear function,
and the constraints involve a special structure in the form of a ratio between two posyno-
mials. Given that constraints in the form of a ratio between posynomials are not allowable
in standard geometric programming [22], we attempt to approximate every posynomial
denominator in constraints with monomial functions. This can be realized by utilizing the
following arithmetic-geometric mean inequality:

Φ(x) =
l∑

i=1

vi(x) ≥ Φ̂(x) =
l∏

i=1

(
vi(x)
λi(y)

)λi(y)

,

where vi(x), i = 1, 2, . . . , l, are monomial terms, and the parameter λi(y) is obtained by com-
puting λi(y) = vi(y)

Φ(y) so that Φ̂(x) is a best local monomial approximation of Φ(x) near each
fixed point y [22]. Based on this, the unallowable constraints of posynomial ratios form
Ψ (x)
Φ(x) ≤ 1 can be approximated with Ψ (x)

Φ̂(x)
≤ 1. Applying this skill into all inapposite con-

straints of problem (Q), we can obtain the following auxiliary problem (AQ) which can be
efficiently solved globally [22]:

(AQ) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min x0

s.t. ψ+
0 (x)+τ

ψ̃0(x,x0) ≤ 1,
ψ+

i (x)
ψ̃i(x) ≤ 1, i = 1, 2, . . . , m,

x ∈ X0, x0 ∈ [ψ l
0,ψu

0 ],

where ψ̃0(x, x0) equals ψ–
0 (x) + x0 if ψ–

0 (x) + x0 is monomial, and ψ̃0(x, x0) is the monomial
approximation of ψ–

0 (x) + x0 if ψ–
0 (x) + x0 is posynomial; ψ̃i(x) equals ψ–

i (x) if ψ–
i (x) is

monomial, and ψ̃i(x) is the monomial approximation of ψ–
i (x) if ψ–

i (x) is posynomial.
Based on the discussion above, now we can summarize the proposed algorithm for solv-

ing the (GLMP) as follows:
Step 1. (Initialization) Reformulate the initial problem as the equivalent form described

in problem (Q), then choose a feasible point x(0) and x(0)
0 (if necessary) as the

starting point, give out the solution accuracy ϑ ≥ 0, and set iteration counter
k := 0.

Step 2. (Inner approximation) At the kth iteration, replace each constraint with its inner
approximation by computing the value of λi(y) at (x(k–1)

0 , x(k–1)), if necessary.
Step 3. (Posynomial condensation) Construct the auxiliary problem (AQ) and solve it to

obtain (x(k)
0 , x(k)).

Step 4. (Termination) If ‖xk
0 – xk–1

0 ‖ ≤ ϑ , then the algorithm can be terminated.
Otherwise, set k := k + 1 and return to Step 2.
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Remark 1 When performing the algorithm described above, one should choose a feasible
interior point as the starting point. However, in the practical implementation, we often
select an arbitrary point as the starting point when it is difficult to find a feasible interior
point for some large-scale (GLMP) problems. This is mainly because the tool (GGPLab)
we used for solving (AQ) can quickly produce a feasible interior point of problem (Q) [22].

3 Convergence property analysis
In this section, we will briefly take into account the convergence properties of the above al-
gorithm and evaluate the errors in objective and constraint functions produced by mono-
mial approximation.

Theorem 2 The proposed algorithm either terminates within finite iterations with an KKT
point for problem (GLMP) to be found, or the limit of any convergent sequence is a KKT
point of the (GLMP).

Proof First, according to the construction process of monomial approximation, we can
easily verify that

ψ+
0 (x) + τ

ψ–
0 (x) + x0

≤ ψ+
0 (x) + τ

ψ̃0(x, x0)
,

ψ+
i (x)

ψ–
i (x)

≤ ψ+
i (x)

ψ̃i(x)
, i = 1, 2, . . . , m, (1)

and

ψ+
0 (xk) + τ

ψ–
0 (xk) + xk

0
=

ψ+
0 (xk) + τ

ψ̃0(xk , xk
0)

,
ψ+

i (xk)
ψ–

i (xk)
=

ψ+
i (xk)

ψ̃i(xk)
, i = 1, 2, . . . , m. (2)

Second, we can also prove that

	
(

ψ+
0 (xk) + τ

ψ–
0 (xk) + xk

0

)

= 	
(

ψ+
0 (xk) + τ

ψ̃0(xk , xk
0)

)

,

	
(

ψ+
i (xk)

ψ–
i (xk)

)

= 	
(

ψ+
i (xk)

ψ̃i(xk)

)

, i = 1, 2, . . . , m.

(3)

Finally, we know the interior of the feasible region is not empty and all constraints in prob-
lem (AQ) are geometric-convex. This will suggest that the feasible region of problem (AQ)
satisfies Slater’s constraint qualification condition. Thus based on (1)–(3) and according
to Theorem 1 in [23], we conclude that the sequent solutions of problem (AQ) converge
to the KKT point for problem (Q), thus for problem (GLMP). �

Remark 2 Although the above algorithm can only obtain a KKT point for problem (Q),
according to the special structure of the objective function of problem (Q) and the distinc-
tive characteristics described in [23], we find that the KKT point found by the proposed
algorithm is always a global optimal solution for problem (Q).

Remark 3 Suppose (x∗, x∗
0) is the final solution obtained by the presented algorithm, we

can evaluate the errors in objective and constraint functions produced by monomial ap-
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proximation by the following formulas:

Θ0 =
∣
∣
(
ψ+

0
(
x∗) + τ – ψ–

0
(
x∗) – x∗

0
)

–
(
ψ+

0
(
x∗) + τ – ψ̃0

(
x∗, x∗

0
))∣

∣

=
∣
∣ψ–

0
(
x∗) + x∗

0 – ψ̃0
(
x∗, x∗

0
)∣
∣,

Θi =
∣
∣
(
ψ+

i
(
x∗) – ψ–

i
(
x∗)) –

(
ψ+

i
(
x∗) – ψ̃i

(
x∗))∣∣

=
∣
∣ψ–

i
(
x∗) – ψ̃i

(
x∗)∣∣, i = 1, 2, . . . , m.

4 Computational experiments
To test the proposed algorithm in terms of efficiency and solution quality, we performed
some computational examples on a personal computer with Intel Xeon(R) CPU 2.40 Ghz
and 4 GB memory. The code base is written in matlab 2014a and interfaces GGPLab for
the standard geometric programming problems.

We consider some instances of problem (MIQQP) from some recent literature [9, 24–
27] and MINLPLib [28]. Among them, Examples 1, 3, and 4 are three practical applications
of (GLMP). Examples 2, 5, 6, 7, 8, and 9 are taken from recent literature for comparison
analysis. Example 10 is an example for testing the influence of the numerical experiments
for different initial points. Examples 11–13 are three examples from GLOBALLib [29], a
collection of nonlinear programming models. The last example is a generalized linear mul-
tiplicative programming problem with randomized objective and constraint functions.

Example 1 (see [24])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min x1 + x2 + x3

s.t. 833.33252x–1
1 x4x–1

6 + 100x–1
6 ≤ 1,

1250x–1
2 x5x–1

7 + x4x–1
7 – 1250x–1

2 x4x–1
7 ≤ 1,

1,250,000x–1
3 x–1

8 + x5x–1
8 – 2500x–1

3 x5x–1
8 ≤ 1,

0.0025x4 + 0.0025x6 ≤ 1,

–0.0025x4 + 0.0025x5 + 0.0025x7 ≤ 1,

0.01x8 – 0.01x5 ≤ 1,

100 ≤ x1 ≤ 10,000,

1000 ≤ x2, x3 ≤ 10,000,

10 ≤ xi ≤ 1000, i = 4, 5, . . . , 8.

This special instance of (GLMP) is first proposed to deal with the optimal design of
heat exchanger networks [30]. When performing the algorithm for solving this instance,
we choose (500, 500, 4200, 500, 400, 340, 300, 600) as the starting point, the termination
error was set to be ϑ = 1 × 10–6. The proposed algorithm terminates after 3.74 seconds
(CPU time) with solution (579.326059, 1359.9445, 5109.977472, 182.019317, 295.600901,
217.980682, 286.418416, 395.600901) and optimal value 6944.248031 to be found, and
the number of iterations is 21. While the method of Tsai and Lin [24] takes nearly one
hour and forty minutes for solving this example, and they obtain a solution (578.973143,
1359.572730, 5110.701048, 181.9898, 295.5719, 218.0101, 286.4179, 395.5719) with the op-
timal value 7049.24682.
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Example 2 (see [9])

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min (x1 + x2 + 1)1.1(x1 + x2 + 2)–1.1(x1 + x2 + 3)1.2(x1 + x2 + 4)–1.2

– (x1 + x2 + 6)1.1(x1 + x2 + 5)–1.1(x1 + x2 + 8)1.2(x1 + x2 + 7)–1.2

s.t. x–1
1 x0.5

2 + x1x2 ≤ 4,

1 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2.

In this example, both the objective function and the constraint function are generalized
linear multiplicative functions. This example is taken from Jiao, Liu, and Zhao [9]. For
solving this problem with the branch and bound algorithm, quite a lot of CPU times need
to be consumed; however, we only expend less than two seconds for solving it to global op-
timality. In the iteration process, we select (1.5, 1.5) as the starting point, the termination
error was also set to be ϑ = 1 × 10–6.

Example 3 (see [25])

⎧
⎪⎪⎨

⎪⎪⎩

min 0.5(x1 – 10)x–1
2 – x1

s.t. x2x–1
3 + x1 + 0.5x1x3 ≤ 100,

1 ≤ xi ≤ 100, i = 1, 2, 3.

This example is a signomial geometric programming problem (special case of (GLMP))
which is used to optimize the design of a membrane separation process [25]. Lin and
Tsai solved it with a range reduction method and obtained an optimal solution with op-
timal value –83.249728. For obtaining this solution, the range reduction method spend
about 22 second (CPU time). Here, our algorithm terminated after 11 iterations and ob-
tained the optimal solution (87.614446, 8.754375, 1.413643, 19.311410) with optimal value
–85.68859, the algorithm implementation took about 0.942 seconds. In the algorithm im-
plementation, we choose the initial upper bound (100, 100, 100) as the starting point, the
termination error was set to be ϑ = 1 × 10–6.

Example 4 (see [24])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min –x1 + 0.4x0.67
1 x–0.67

7 – x2 + 0.4x0.67
2 x–0.67

8 + 10

s.t. 0.0588x5x7 + 0.1x1 ≤ 1,

4x3x–1
5 + 2x–0.71

3 x–1
5 + 0.0588x–1.3

3 x7 ≤ 1,

0.0558x6x8 + 0.1x1 + 0.1x2 ≤ 1,

4x4x–1
6 + 2x–0.71

4 x–1
6 + 0.0588x–1.3

4 x8 ≤ 1,

0.1 ≤ xi ≤ 10, i = 1, 2, . . . , 8.

This example is a mathematical model born from optimal design of a reactor. For solving
it, we select (7, 7, 7, 7, 7, 7, 7, 7) as the starting point, the termination error was set to be
ϑ = 1 × 10–6. The proposed algorithm terminates after 7.123 seconds (CPU time) with
solution (6.350802, 2.365111, 0.670723, 0.597563, 5.951950, 5.537204, 1.042703, 0.415594)
and optimal value 3.908619 to be found, and the number of iterations is 44. While Tsai and
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Lin [24] spent nearly 56 minutes and 312 seconds for solving this example and obtained a
solution (6.473164, 2.238234, 0.664955, 0.591012, 5.930263, 5.523595, 1.011611, 0.397171)
with the optimal value 3.95109.

Example 5 (see [9])

⎧
⎪⎪⎨

⎪⎪⎩

min 3.7x0.85
1 + 1.985x1 + 700.3x–0.75

2

s.t. 0.7673x0.05
2 – 0.05x1 ≤ 1,

0.1 ≤ x1 ≤ 5, 380 ≤ x2 ≤ 450.

Example 6 (see [9])

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min –x1 + 0.4x0.67
1 x0.67

3

s.t. 0.05882x3x4 + 0.1x1 ≤ 1,

4x2x–1
4 + 2x–0.71

2 x–1
4 + 0.05882x–1.3

2 x3 ≤ 1,

0.1 ≤ xi ≤ 10, i = 1, 2, 3, 4.

Example 7 (see [27])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 5.3578x2
3 + 0.8357x1x5 + 37.2392x1

s.t. 0.00002584x3x5 – 0.00006663x2x5 – 0.0000734x1x4 ≤ 1,

0.000853007x2x5 + 0.00009395x1x4 – 0.00033085x3x5 ≤ 1,

1330.3294x–1
2 x–1

5 – 0.42x1x–1
5 – 0.30586x–1

2 x2
3x–1

5 ≤ 1,

0.00024186x2x5 + 0.00010159x1x2 + 0.00007379x2
3 ≤ 1,

2275.1327x–1
3 x–1

5 – 0.2668x1x–1
5 – 0.40584x4x–1

5 ≤ 1,

0.00029955x3x5 + 0.00007992x1x3 + 0.00012157x3x4 ≤ 1,

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45, i = 3, 4, 5.

Example 8 (see [26])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min x1(–4x1 + x2 + 2) – 5x2
2

s.t. x1 – x2 ≥ 0,

(x1 + x2)(x1 – x2) ≤ 3,

x1x2 ≤ 2,

0 ≤ x1, x2 ≤ 3.

Example 9 (see [9, 27])

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min x1

s.t. x1(1 – x1) + x2(8 – x2) ≤ 16,

x1(x1 – 6) + x2(x2 – 6) ≤ –14,

1 ≤ x1, x2 ≤ 5.5.
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Figure 1 Two local solutions for Example 11 obtained by the proposed algorithm

Figure 2 Global optimal solution for Example 11

Example 10 (see Figs. 1–2)

⎧
⎨

⎩

min (x1 – 1)(x1 – 2)(x2 – 7)(x1 – 5) – (x2 – 1)(x2 – 3)(x1 – 4)2

s.t. 0.1 ≤ x1 ≤ 4.5, 0.1 ≤ x2 ≤ 4.5.

When solving this example, by selecting x0 = (0.1, 0.4) and y0 = (2, 2) as starting points
and applying the algorithm presented above, we obtained two different solutions xopt =
(4.5, 4.5) and yopt = (1.175957, 0.1) with optimal objective values 9.625 and –24.641098,
respectively. However, both of these two solutions are not the global optimal solution for
Example 11. Actually, the only global optimal solution for Example 11 is (0.1, 4.5) with
optimal value –58.905. Thus solutions xopt = (4.5, 4.5) and yopt = (1.1759570.1) just are
two local solutions. The distribution of these three solutions for Example 11 are drawn in
Figs. 1–2.

Example 11 (st-qpk1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 2x1 – 2x2
1 + 2x1x2 + 3x2 – 2x2

2

s.t. –x1 + x2 ≤ 1,

x1 – x2 ≤ 1,

–x1 + 2x2 ≤ 3,

2x1 – x2 ≤ 3,

0 ≤ x1, x2.
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Example 12 (ex8-1-7)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min (x1 – 1)2 + (x1 – x2)2 + (x2 – x3)3 + (x3 – x4)4 + (x4 – x5)4

s.t. x2
2 + x3

3 + x1 ≤ 6.24264068711929,

–x2
3 – x2

2 – x1 ≤ –6.24264068711929,

–x2
3 + x2 + x4 ≤ 0.82842712474629,

x1x5 = 2,

–5 ≤ x1, x2, x3, x4, x5 ≤ 5.

Example 13 (ex4-1-9)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min –x1 – x2

s.t. 8x3
1 – 2x4

1 – 8x2
1 + x2 ≤ 2,

32x3
1 – 4x4

1 – 88x2
1 + 96x1 + x2 ≤ 36,

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

Example 14 (Small random test)

⎧
⎪⎪⎨

⎪⎪⎩

min (c1x + m1)α1 (c2x + m2)α2 – (d1x + r1)β1 (d2x + r2)β2

s.t. (a1x + s1)γ1 (a2x + s2)γ2 – (b1x + t1)θ1 (b2x + t2)θ2 ≤ 10 + sγ1
1 sγ2

2 – tθ1
1 tθ2

2 ,

0 ≤ x ≤ 1,

where c1, c2, d1, d2, a1, a2, b1, b2 are n-dimensional row vectors randomly generated in
[0, 1], m1, m2, r1, r2, s1, s2, t1, t2 are all random real numbers between 0.001 and 1.001,
α1, α2, β1, β2, γ1, γ2, θ1, θ2 are real numbers randomly generated in [0, 1], and we choose
n-dimensional vector (0.5, 0.5, . . . , 0.5) as the starting point in each instance. The compu-
tational results of this problem are listed in Table 3.

Actually, the examples we chose in this section can be classified into four groups: Ex-
amples 1, 3, and 4 are taken from applications in optimal design; Examples 2, 5, 6, 7, 9 are
numerical tests selected from some recent literature; Example 8 is computed to illustrate
that the proposed algorithm can find just a local solution; and Example 14 is an example
randomly generated with a relative large scale. Computational results are demonstrated in
Tables 1–4 and Figs. 1–2. The computational results listed in the tables and figures show
that our algorithm can perfectly solve problem (GLMP), and for most cases it can even
attain a global optimal solution.

5 Concluding remarks
In this paper, an inner approximation algorithm is presented for solving the generalized
linear multiplicative programming problem. Local convergence property is proved and
some numerical examples taken from application domain and recent literature are per-
formed to verify the efficiency of the algorithm and quality of the solutions obtained. Re-
sults of the numerical tests show that this algorithm can effectively solve most generalized
linear multiplicative problems to global optimality although it just has local convergence
property.
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Table 1 Results of Examples 1–9 obtained by utilizing the presented method

Example Start point Iterations Error in objective Error constraint

1 (500, 500, 4200, 500, 400, 340, 300, 600) 21 0 2.2204× 10–16

2 (1.5, 1.5) 5 0 8.8818× 10–16

3 (100, 100, 100) 11 2.5070× 10–16 0
4 (7, 7, 7, 7, 7, 7, 7, 7) 44 0 0
5 (3, 400) 15 0 0
6 (0.7, 0.7, 0.7, 0.7) 8 0 0
7 (100, 40, 30, 30, 30) 5 0 2.2204× 10–16

8 (1.5, 1) 4 9.0949× 10–13 0
9 (2, 1.5) 6 3.5527× 10–15 7.1054× 10–15

Table 2 Results of the numerical comparison of Examples 5–9

Example Methods Optimal value Optimal solution CPU time

5 [9] 11.9541 (11.9604, 0.8105, 442.344) 0.416
Ours 11.3497 (11.9604, 0.681143, 436.918047) 0.13252

6 [9] –5.7416 (8.1244, 0.6027, 0.5660, 5.6352) 42.3259
Ours –9.2952 (9.6867, 0.5585, 0.1000, 5.3252) 0.8273

7 [27] 10,127.13 (78, 32.999, 29.995, 45, 36.7753) 1
Ours 10,122.49325 (78, 33, 29.9957, 45, 36.775327) 0.331298

8 [26] –15.0 (2, 1) 120.580
Ours –15.0 (2, 1) 0.3556

9 [9] 1.177081 (1.77091, 2.17715) 0.2260
[27] 1.1771243 (1.17712, 2.17712) 0.26069
Ours 1.177124 (1.177124, 2.177124) 0.18726

Table 3 Results of numerical experiments (Examples 11–13)

Example Best solution Our solution Best value Our value

11 (st-qpk1) – (1, 0) – 0
12 (ex8-1-7) (1.116635, 1.220441, 1.53779,

1.97277, 1.7911)
(1.116635, 1.220441, 1.53779,
1.97277, 1.7911)

0.0293 0.0291

13 (ex4-1-9) (2.32952, 3.1785) (2.32952, 3.1785) –5.508 –5.511

Table 4 Computational results of random Example 14

Dimension Iterations CPU time Error in objective Error in constraint

n = 5 23 9.082938 0 4.4409× 10–16

n = 10 20 14.92016 3.5527× 10–15 2.6645× 10–15

n = 20 17 36.85216 0 6.2172× 10–15

n = 30 53 239.0432 3.5527× 10–15 5.3291× 10–15

n = 50 25 257.7263 0.7698× 10–15 1.5395× 10–14

n = 70 35 740.6696 8.8818× 10–16 3.5527× 10–15

n = 80 56 1583.152 1.7764× 10–15 1.7764× 10–15

n = 100 69 2043.238 0 3.1086× 10–15
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