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Abstract
In the present paper, we give the global Lq estimates for maximal operators
generated by multiparameter oscillatory integral St,Φ , which is defined by

St,Φ f (x) = (2π )–n
∫
Rn

eix·ξ ei(t1φ1(|ξ1|)+t2φ2(|ξ2|)+···+tnφn(|ξn|)) f̂ (ξ )dξ , x ∈R
n,

where n ≥ 2 and f is a Schwartz function in S(Rn), t = (t1, t2, . . . , tn),
Φ = (φ1,φ2, . . . ,φn), φi (i = 1, 2, 3, . . . ,n) is a function on R

+ →R, which has a suitable
growth condition. These estimates are apparently good extensions to the results of
Sjölin and Soria (J. Math. Anal. Appl 411:129–143, 2014) for the multiparameter
fractional Schrödinger equation.
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1 Introduction and main results
Let f be a Schwartz function in S(Rn) and

Stf (x) = u(x, t) = (2π )–n
∫
Rn

eix·ξ+it|ξ |a f̂ (ξ ) dξ , (x, t) ∈ R
n ×R.

It is well known that Stf (x) is the solution of the fractional Schrödinger equation

⎧⎨
⎩

i∂tu + (–�)a/2u = 0, (x, t) ∈R
n ×R,

u(x, 0) = f (x).
(1.1)

Here f̂ denotes the Fourier transform of f defined by f̂ (ξ ) =
∫
Rn e–iξ ·xf (x) dx.

We recall the homogeneous Sobolev space Ḣs(Rn) (s ∈R), which is defined by

Ḣs(
R

n) =
{

f ∈ S ′ : ‖f ‖Hs =
(∫

Rn
|ξ |2s∣∣f̂ (ξ )

∣∣2 dξ

)1/2

< ∞
}

,
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and the non-homogeneous Sobolev space Hs(Rn) (s ∈R), which is defined by

Hs(
R

n) =
{

f ∈ S ′ : ‖f ‖Hs =
(∫

Rn

(
1 + |ξ |2)s∣∣f̂ (ξ )

∣∣2 dξ

)1/2

< ∞
}

.

Maximal operator S∗f associated with the family of operators {St}0<t<1 is defined by

S∗f (x) = sup
0<t<1

∣∣Stf (x)
∣∣, x ∈R

n.

It is well known that if a = 2, u is the solution of the Schrödinger equation
⎧⎨
⎩

i∂tu – �u = 0, (x, t) ∈ R
n ×R,

u(x, 0) = f (x).
(1.2)

In 1979, Carleson [4] proposed a problem: if f ∈ Hs(Rn) for which s does

lim
t→0

u(x, t) = f (x), a.e. x ∈R
n. (1.3)

Carleson first considered this problem for dimension n = 1 in [4] and showed that the
convergence (1.3) holds for f ∈ Hs(R) with s ≥ 1

4 , which is sharp was shown by Dahlberg
and Kenig [8]. The higher dimensional case of convergence (1.3) has been studied by sev-
eral authors, see [1, 2, 9, 11–13, 24, 25, 30, 34, 35] for example. In fact, by a standard
argument, for f ∈ Hs(Rn), the pointwise convergence (1.3) follows from the local estimate

∥∥S∗f
∥∥

Lq(Bn) ≤ C‖f ‖Hs(Rn), f ∈ Hs(
R

n), (1.4)

for some q ≥ 1 and s ∈R. Here Bn is the unit ball centered at the origin in R
n. On the other

hand, the global estimates are of independent interest since they reveal global regularity
properties of the corresponding oscillatory integrals. Next, we recall the global estimate

∥∥S∗f
∥∥

Lq(Rn) ≤ C‖f ‖Hs(Rn). (1.5)

Estimate (1.5) and related questions have been well studied in literature, see, e.g., Carbery
[3], Cowling [7], Kenig and Ruiz [21], Kenig, Ponce, and Vega [20], Rogers and Villarroya
[29], Rogers [28], Sjölin [30–32], and so on.

For n ≥ 2 and a multiindex a = (a1, a2, . . . , an), with aj > 1 and f being a Schwartz function
in S(Rn), we set

Stf (x) = (2π )–n
∫
Rn

eix·ξ ei(t1|ξ1|a1 +t2|ξ2|a2 +···+tn|ξn|an ) f̂ (ξ ) dξ , x ∈R
n,

where t = (t1, t2, . . . , tn) ∈R
n. For n ≥ 2, the local maximal operator M∗ is defined by

M∗f (x) = sup
0<ti<1

∣∣Stf (x)
∣∣, x ∈R

n,

and the global maximal operator M∗∗ is defined by

M∗∗f (x) = sup
ti∈R

∣∣Stf (x)
∣∣, x ∈ R

n.
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The global estimate

∥∥M∗∗f
∥∥

Lq(Rn) ≤ C‖f ‖Ḣs(Rn) (1.6)

and

∥∥M∗f
∥∥

Lq(Rn) ≤ C‖f ‖Hs(Rn). (1.7)

In 2014, Sjolin and Soria [32] obtained the following results.

Theorem A ([32]) Assume n ≥ 2. Then, for every a, inequality (1.6) holds if and only if
4 ≤ q < ∞ and s = n( 1

2 – 1
q ).

Theorem B ([32]) Assume n ≥ 2. Then, for every a and for 2 < q < 4, inequality (1.7) holds
if and only if s ≥ n

2 – |a|
4 + |a|

q – n
q .

Multiparameter singular integrals and related operators have been well studied and
raised considerable attention in harmonic analysis, which can been seen in the work of
Stein and Fefferman in [14–17], and so on. In the present paper, we consider the maximal
estimates associated with multiparameter oscillatory integral St,Φ defined by

St,Φ f (x) = (2π )–n
∫
Rn

eix·ξ ei(t1φ1(|ξ1|)+t2φ2(|ξ2|)+···+tnφn(|ξn|)) f̂ (ξ ) dξ , x ∈R
n.

Here, n ≥ 2 and f is a Schwartz function in S(Rn), Φ = (φ1,φ2, . . . ,φn), φi (i = 1, 2, 3, . . . , n)
is a function on R

+ →R. For n ≥ 2, the local maximal operator M∗
Φ is defined by

M∗
Φ f (x) = sup

0<ti<1

∣∣St,Φ f (x)
∣∣, x ∈R

n,

and the global maximal operator M∗∗
Φ is defined by

M∗∗
Φ f (x) = sup

ti∈R

∣∣St,Φ f (x)
∣∣, x ∈R

n.

The global estimates of maximal operators M∗
Φ and M∗∗

Φ are defined by

∥∥M∗∗
Φ f

∥∥
Lq(Rn) ≤ C‖f ‖Ḣs(Rn) (1.8)

and

∥∥M∗
Φ f

∥∥
Lq(Rn) ≤ C‖f ‖Hs(Rn). (1.9)

Assume that φ : R+ →R satisfies:
(H1) There exists m1 > 1 such that |φ′(r)| ∼ rm1–1 and |φ′′(r)|� rm1–2 for all 0 < r < 1;
(H2) There exists m2 > 1 such that |φ′(r)| ∼ rm2–1 and |φ′′(r)|� rm2–2 for all r ≥ 1;
(H3) Either φ′′(r) > 0 or φ′′(r) < 0 for all r > 0.
Now we state our main results as follows.
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Theorem 1.1 Assume that n ≥ 2 and φi (i = 1, 2, 3, . . . , n) satisfies (H1)–(H3). If 4 ≤ q < ∞
and s = n( 1

2 – 1
q ), then the global estimate (1.8) holds.

Theorem 1.2 Let m = (m1,2, m2,2, . . . , mn,2) and set |m| = m1,2 + m2,2 + · · · + mn,2. Assume
that n ≥ 2 and φi (i = 1, 2, 3, . . . , n) satisfies (H1)–(H3) with mi,1 > 1, mi,2 > 1. Then, for every
m, inequality (1.9) holds if 2 < q < 4 and s ≥ n

2 – |m|
4 + |m|

q – n
q .

Remark 1.1 There are many elements φ satisfying conditions (H1)–(H3), for instance,
the fractional Schrödinger equation (φ(r) = ra), or (φ(r) = (1 + r2) a

2 ), (a ≥ 1), the Beam
equation (φ(r) =

√
1 + r4), the fourth-order Schrödinger equation (φ(r) = r2 + r4), iBq

(φ(r) = r
√

1 + r2), and so on (see [5, 6, 18, 19, 22, 23, 27], and the references therein). Hence,
Theorem 1.1 and Theorem 1.2 imply the sufficiency part of Theorem A and Theorem B,
respectively. However, due to the complexity of the symbol φ, we cannot obtain the ne-
cessities of the range of q in Theorem 1.1 and Theorem 1.2.

This paper is organized as follows. The proofs of Theorem 1.1 and Theorem 1.2 are
given in Sect. 2 and Sect. 3, respectively. To prove Theorem 1.1 and Theorem 1.2, we next
need the following important lemmas, which play a key role in proving Theorem 1.1 and
Theorem 1.2, respectively. The proof of Lemma 1.4 is given in Sect. 4.

Lemma 1.3 ([26]) Assume that φ satisfies (H1)–(H3) with m1 > 1, m2 > 1. 1
2 ≤ s < 1 and

μ ∈ C∞
0 (R). Then

∣∣∣∣
∫
R

eixξ+itφ(|ξ |)|ξ |–sμ

(
ξ

N

)
dξ

∣∣∣∣ ≤ C
1

|x|1–s

for x ∈R \ {0}, t ∈R, and N = 1, 2, 3, . . . . Here the constant C may depend on s and m1, m2,
and μ but not on x, t, or N .

Remark 1.2 The proof of Lemma 1.3 is similar to that of Lemma 2.1 in [10].

Lemma 1.4 Assume that φ satisfies (H1)–(H3) with m1 > 1, m2 > 1. 1
2 ≤ α ≤ m2

2 , –1 < d <
1, and μ ∈ C∞

0 (R). Then

∣∣∣∣
∫
R

ei(dφ(|ξ |)–xξ )

(1 + ξ 2) α
2

μ

(
ξ

N

)
dξ

∣∣∣∣ ≤ C
1

|x|β (1.10)

for x ∈ R \ {0} and N = 1, 2, 3, . . . , where β = α+ m2
2 –1

m2–1 . Here the constant C may depend on
α and m1, m2, and μ but not on x, d, and N .

Remark 1.3 Applying the result of Lemma 1.3, the proof of Lemma 1.4 is similar to that
of Lemma 2.2 in [32]. The proof of Lemma 1.4 will be given in Sect. 4.

2 The proof of Theorem 1.1
Assume that n ≥ 2, φi (i = 1, 2, 3, . . . , n) satisfies (H1)–(H3). For i = 1, 2, 3, . . . , n, let ti(x) be
a measurable function on R

n with ti(x) ∈R. Denote t(x) = (t1(x), t2(x), . . . , tn(x)), we set

St(x),Φ f (x) = (2π )–n
∫
Rn

eix·ξ ei(t1(x)φ1(|ξ1|)+t2(x)φ2(|ξ2|)+···+tn(x)φn(|ξn|)) f̂ (ξ ) dξ ,
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x ∈R
n, f ∈ S

(
R

n).

For 4 ≤ q < ∞ and s = n( 1
2 – 1

q ), that is, n
4 ≤ s < n

2 and q = 2n
n–2s . By linearizing the maximal

operator (see [30]) to prove the global estimate (1.8) holds, it suffices to show that

‖St(x),Φ f ‖Lq(Rn) ≤ C‖f ‖Ḣs = C
(∫

Rn
|ξ |2s∣∣f̂ (ξ )

∣∣2 dξ

)1/2

. (2.1)

To prove (2.1) it suffices to prove that

‖St(x),Φ f ‖Lq(Rn) ≤ C
(∫

Rn
|ξ1| 2s

n |ξ2| 2s
n | · · · |ξn| 2s

n
∣∣f̂ (ξ )

∣∣2 dξ

)1/2

. (2.2)

Let g(ξ ) = |ξ1| s
n |ξ2| s

n · · · |ξn| s
n f̂ (ξ ), then we have

St(x),Φ f (x) =
∫
Rn

eix·ξ ei(t1(x)φ1(|ξ1|)+t2(x)φ2(|ξ2|)+···+tn(x)φn(|ξn|))|ξ1|– s
n |ξ2|– s

n · · · |ξn|– s
n g(ξ ) dξ

= RΦg(x), (2.3)

where

RΦg(x) =
∫
Rn

eix·ξ ei(t1(x)φ1(|ξ1|)+t2(x)φ2(|ξ2|)+···+tn(x)φn(|ξn|))|ξ1|– s
n |ξ2|– s

n · · · |ξn|– s
n g(ξ ) dξ .

To prove (2.2) it suffices to prove that

‖RΦg‖Lq(Rn) ≤ C‖g‖L2(Rn) (2.4)

for g continuous and rapidly decreasing at infinity. We take a real-valued function ρ ∈
C∞

0 (Rn) such that ρ(x) = 1 if |x| ≤ 1 and ρ(x) = 0 if |x| ≥ 2. And we choose a real-valued
function ψ ∈ C∞

0 (R) such that ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 2, and set σ (ξ ) =
ψ(ξ1)ψ(ξ2) · · ·ψ(ξn). For ξ ∈R

n and N = 1, 2, 3, . . . , we set ρN (x) = ρ( x
N ) and σN (ξ ) = σ ( ξ

N ).
For x ∈R

n, g ∈ L2(Rn), and for N = 1, 2, 3, . . . , we define

RN ,Φg(x) = ρN (x)
∫
Rn

eix·ξ ei(t1(x)φ1(|ξ1|)+t2(x)φ2(|ξ2|)+···+tn(x)φn(|ξn|))|ξ1|– s
n |ξ2|– s

n · · ·

× |ξn|– s
n σN (ξ )g(ξ ) dξ .

The adjoint of RN ,Φ is given by

R′
N ,Φh(ξ ) = σN (ξ )|ξ1|– s

n |ξ2|– s
n · · ·

× |ξn|– s
n

∫
R2

e–ix·ξ e–i(t1(x)φ1(|ξ1|)+t2(x)φ2(|ξ2|)+···+tn(x)φn(|ξn|))ρN (x)h(x) dx,

where ξ ∈R
n and h ∈ L2(Rn). To prove (2.4) it is sufficient to prove that

‖RN ,Φg‖Lq(Rn) ≤ C‖g‖L2(Rn). (2.5)
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By duality, to prove (2.5) it suffices to show that

∥∥R′
N ,Φh

∥∥
L2(Rn) ≤ C‖h‖Lq′ (Rn), (2.6)

where 1
q + 1

q′ = 1. Thus, we have

∥∥R′
N ,Φh

∥∥2
L2(Rn) =

∫ ∣∣R′
N ,Φh(ξ )

∣∣2 dξ =
∫
Rn

∫
Rn

KN (x, y)ρN (x)ρN (y)h(x)h(y) dx dy, (2.7)

where

KN (x, y) = K1
N (x, y)K2

N (x, y) · · ·Kn
N (x, y) (2.8)

and

Ki
N (x, y) =

∫
R

|ξi|– 2s
n ei(yi–xi)ξi ei(ti(y)–ti(x))φ(|ξi|)ψN (ξi)2 dξi, (2.9)

where i = 1, 2, . . . , n and N = 1, 2, . . . . Since n
4 ≤ s < n

2 , we have 1
2 ≤ 2s

n < 1. Therefore, by
Lemma 1.3, (2.9), and (2.8), we obtain

∣∣KN (x, y)
∣∣ ≤ C

1
|x1 – y1|1– 2s

n

1
|x2 – y2|1– 2s

n
· · · 1

|xn – yn|1– 2s
n

. (2.10)

We define

Pif (x1, x2, . . . , xn) =
∫
R

1
|xi – yi|1– 2s

n
f (x1, . . . , xi–1, yi, xi+1, . . . , xn) dyi,

i = 1, 2, . . . , n. Thus, by (2.7) and (2.10), we obtain

∫ ∣∣R′
N ,Φh(ξ )

∣∣2 dξ

≤ C
∫
Rn

∫
Rn

1
|x1 – y1|1– 2s

n

1
|x2 – y2|1– 2s

n
· · · 1

|xn – yn|1– 2s
n

∣∣h(x)
∣∣∣∣h(y)

∣∣dx dy

= C
∫
Rn

(∫
R

∫
R

∫
R

∫
R

1
|xn – yn|1– 2s

n

1
|xn–1 – yn–1|1– 2s

n
· · · 1

|x3 – y3|1– 2s
n

× 1
|x2 – y2|1– 2s

n

(∫ 1
|x1 – y1|1– 2s

n

∣∣h(y1, y2, . . . , yn)
∣∣dy1

)
dy2 dy3 · · · dyn

)∣∣h(x)
∣∣dx

= C
∫
Rn

PnPn–1 · · ·P2P1|h|(x)
∣∣h(x)

∣∣dx. (2.11)

Invoking Hölder’s inequality, we get

∫ ∣∣R′
N ,Φh(ξ )

∣∣2 dξ ≤ C
∥∥PnPn–1 · · ·P2P1|h|∥∥Lq(Rn)‖h‖Lq′ (Rn). (2.12)
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Since q = 2n
n–2s , it follows that q′ = 2n

n+2s and the fact 1
q = 1

q′ – 2s
n . Denote by Iσ the Riesz

potential of order σ , which is defined by

Iσ (f )(u) =
∫
R

f (v)
|u – v|1–σ

dv.

Applying the fact Is is bounded from Lq′ (R) to Lq(R), we have

(∫
R

∣∣Pjh(x)
∣∣q dxj

)1/q

≤ C
(∫

R

∣∣h(x)
∣∣q′

dxj

)1/q′

, (2.13)

where j = 1, 2, . . . , n. By (2.13) and Minkowski’s inequality, we have

∥∥PnPn–1 · · ·P2P1|h|∥∥Lq(Rn) ≤ C‖h‖Lq′ (Rn). (2.14)

Therefore, (2.6) follows from (2.12) and (2.14). Now we complete the proof of Theorem 1.1.

3 The proof of Theorem 1.2
Assume that n ≥ 2, φi (i = 1, 2, 3, . . . , n) satisfies (H1)–(H3) with mi,1 > 1, mi,2 > 1. For every
m = (m1,2, m2,2, . . . , mn,2) and 2 < q < 4, we will prove that inequality (1.9) holds if s = n

2 –
|m|
4 + |m|

q – n
q , where |m| = m1,2 +m2,2 + · · ·+mn,2. For i = 1, 2, 3, . . . , n, let ti(x) be a measurable

function on R
n with 0 < ti(x) < 1. Denote t(x) = (t1(x), t2(x), . . . , tn(x)), we set

St(x),Φ f (x) =
∫
Rn

eix·ξ ei(t1(x)φ1(|ξ1|)+t2(x)φ2(|ξ2|)+···+tn(x)φn(|ξn|)) f̂ (ξ ) dξ , x ∈R
n, f ∈ S

(
R

n).

By linearizing the maximal operator, to prove the global estimate (1.9) it suffices to show
that

‖St(x),Φ f ‖Lq(Rn) ≤ C‖f ‖Hs = C
(∫

Rn

(
1 + |ξ |2)s∣∣f̂ (ξ )

∣∣2 dξ

)1/2

. (3.1)

Since s = n
2 – |m|

4 + |m|
q – n

q = n 1
2 – m1,2+m2,2+···+mn,2

4 + m1,2+m2,2+···+mn,2
q – n 1

q =: s1 + s2 + · · · + sn,
where si = 1

2 – mi,2
4 + mi,2

q – 1
q , i = 1, 2, . . . , n. Therefore, to prove (3.1) it suffices to prove that

‖St(x),Φ f ‖Lq(Rn) ≤ C
(∫

R2

(
1 + |ξ1|2

)s1(1 + |ξ2|2
)s2 | · · · |(1 + |ξn|2

)sn ∣∣f̂ (ξ )
∣∣2 dξ

)1/2

. (3.2)

Let g(ξ ) = (1 + |ξ1|2)
s1
2 (1 + |ξ2|2)

s2
2 · · · (1 + |ξn|2)

sn
2 f̂ (ξ ), then we have

St(x),Φ f (x) = RΦg(x), (3.3)

where

RΦg(x) =
∫
Rn

eix·ξ ei(t1(x)φ1(|ξ1|)+t2(x)φ2(|ξ2|)+···+tn(x)φn(|ξn|))(1 + |ξ1|2
)– s1

2
(
1 + |ξ2|2

)– s2
2 · · ·

× (
1 + |ξn|2

)– sn
2 g(ξ ) dξ .
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By (3.3), to prove (3.2) it is sufficient to show that

‖RΦg‖Lq(Rn) ≤ C‖g‖L2(Rn) (3.4)

for g continuous and rapidly decreasing at infinity. We take a real-valued function ρ ∈
C∞

0 (Rn) such that ρ(x) = 1 if |x| ≤ 1 and ρ(x) = 0 if |x| ≥ 2. And we choose a real-valued
function ψ ∈ C∞

0 (R) such that ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 2, and set σ (ξ ) =
ψ(ξ1)ψ(ξ2) · · ·ψ(ξn) for ξ ∈R

n. For N = 1, 2, 3, . . . , we set ρN (x) = ρ( x
N ) and σN (ξ ) = σ ( ξ

N ).
For x ∈R

n, g ∈ L2(Rn), and N = 1, 2, 3, . . . , we define

RN ,Φg(x) = ρN (x)
∫
Rn

eix·ξ ei(t1(x)φ1(|ξ1|)+t2(x)φ2(|ξ2|)+···+tn(x)φn(|ξn|))(1 + |ξ1|2
)– s1

2
(
1 + |ξ2|2

)– s2
2

× · · · × (
1 + |ξn|2

)– sn
2 σN (ξ )g(ξ ) dξ .

The adjoint of RN ,Φ is given by

R′
N ,Φh(ξ ) = σN (ξ )

(
1 + |ξ1|2

)– s1
2
(
1 + |ξ2|2

)– s2
2 · · · (1 + |ξn|2

)– sn
2

∫
R2

e–ix·ξ e–it1(x)φ1(|ξ1|)

× e–i(t2(x)φ2(|ξ2|)+···+tn(x)φn(|ξn|))ρN (x)h(x) dx,

where ξ ∈R
n and h ∈ L2(Rn). To prove (3.4) it suffices to prove that

‖RN ,Φg‖Lq(Rn) ≤ C‖g‖L2(Rn). (3.5)

By duality, to prove (3.5) it is sufficient to show that

∥∥R′
N ,Ωh

∥∥
L2(Rn) ≤ C‖h‖Lq′ (Rn), (3.6)

where 1
q + 1

q′ = 1. Thus, we have

∥∥R′
N ,Φh

∥∥2
L2(Rn) =

∫ ∣∣R′
N ,Φh(ξ )

∣∣2 dξ =
∫
Rn

∫
Rn

KN (x, y)ρN (x)ρN (y)h(x)h(y) dx dy, (3.7)

where

KN (x, y) = K1
N (x, y)K2

N (x, y) · · ·Kn
N (x, y), (3.8)

and

Ki
N (x, y) =

∫
R

(
1 + ξ 2

i
)–si ei(yi–xi)ξi ei(ti(y)–ti(x))φ(|ξi|)ψN (ξi)2 dξi, (3.9)

where i = 1, 2, . . . , n and N = 1, 2, . . . . Denote αi = 2si, since si = 1
2 – mi,2

4 + mi,2
q – 1

q , i =
1, 2, . . . , n, and 2 < q < 4, it follows that 1

2 < αi < mi,2
2 , i = 1, 2, . . . , n. Therefore, by (3.9) and

Lemma 1.4, we obtain

∣∣Ki
N (x, y)

∣∣ ≤ C
1

|xi – yi|βi
, (3.10)
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where βi = αi+
mi,2

2 –1
mi,2–1 . Denote σi = 1 – βi, we define

Pif (x1, x2, . . . , xn) =
∫
R

1
|xi – yi|1–σi

f (x1, . . . , xi–1, yi, xi+1, . . . , xn) dyi,

i = 1, 2, . . . , n. Thus, by (3.7), (3.8), and (3.10), we obtain

∫ ∣∣R′
N ,Φh(ξ )

∣∣2 dξ

≤ C
∫
Rn

∫
Rn

1
|x1 – y1|1–σ1

1
|x2 – y2|1–σ2

· · · 1
|xn – yn|1–σn

∣∣h(x)
∣∣∣∣h(y)

∣∣dx dy

= C
∫
Rn

(∫
R

∫
R

∫
R

∫
R

1
|xn – yn|1–σn

1
|xn–1 – yn–1|1–σn–1

· · · 1
|x3 – y3|1–σ3

× 1
|x2 – y2|1–σ2

(∫ 1
|x1 – y1|1–σ1

∣∣h(y1, y2, . . . , yn)
∣∣dy1

)
dy2 dy3 · · · dyn

)∣∣h(x)
∣∣dx

= C
∫
Rn

PnPn–1 · · ·P2P1|h|(x)
∣∣h(x)

∣∣dx. (3.11)

Invoking Hölder’s inequality, we get

∫ ∣∣R′
N ,Φh(ξ )

∣∣2 dξ ≤ C
∥∥PnPn–1 · · ·P2P1|h|∥∥Lq(Rn)‖h‖Lq′ (Rn). (3.12)

Since βi = αi+
mi,2

2 –1
mi,2–1 and αi = 2si, si = 1

2 – mi,2
4 + mi,2

q – 1
q , i = 1, 2, . . . , n. It follows that βi = 2

q
and σi = 1 – βi = 1 – 2

q , 1
q = 1

q′ – σi. Thus, estimate (3.6) follows from (3.12) and estimate
(2.14) in the proof of Theorem 1.1. Now we complete the proof of Theorem 1.2.

4 The proof of Lemma 1.4
To prove Lemma 1.4, we need to present the following lemma.

Lemma 4.1 (see [33], pp. 309–312) Assume that a < b and set I = [a, b]. Let F ∈ C∞(I) be
real-valued and assume that ψ ∈ C∞(I).

(i) Assume that |F ′(x)| ≥ λ > 0 for x ∈ I and that F ′ is monotonic on I . Then

∣∣∣∣
∫ b

a
eiF(x)ψ(x) dx

∣∣∣∣ ≤ C
1
λ

{∣∣ψ(b)
∣∣ +

∫ b

a

∣∣ψ ′(x)
∣∣dx

}
,

where C does not depend on F , ψ , or I .
(ii) Assume that |F ′′(x)| ≥ λ > 0 for x ∈ I . Then

∣∣∣∣
∫ b

a
eiF(x)ψ(x) dx

∣∣∣∣ ≤ C
1

λ1/2

{∣∣ψ(b)
∣∣ +

∫ b

a

∣∣ψ ′(x)
∣∣dx

}
,

where C does not depend on F , ψ , or I .

Proof of Lemma 1.4 By conditions (H1) and (H2), there exist positive constants Ci (i =
1, 2, . . . , 6) so that for r ≥ 1 and m2 > 1 such that

C1rm2–1 ≤ ∣∣φ′(r)
∣∣ ≤ C2rm2–1 and

∣∣φ′′(r)
∣∣ ≥ C3rm2–2, (4.1)
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and for 0 < r < 1 and m1 > 1 such that

C4rm1–1 ≤ ∣∣φ′(r)
∣∣ ≤ C5rm1–1 and

∣∣φ′′(r)
∣∣ ≥ C6rm1–2. (4.2)

Set

J =
∫
R

ei(dφ(|ξ |)–xξ )

(1 + ξ 2) α
2

μ

(
ξ

N

)
dξ .

To prove Lemma 1.4, it suffices to show that there exists a constant C such that for x ∈
R \ {0}, β = α+ m2

2 –1
m2–1 and N ∈N,

|J| ≤ C
1

|x|β , (4.3)

where C depends only on α, m1, m2, Ci (i = 1, 2, . . . , 6), and μ.
Without loss of generality, we may assume ξ , d > 0. Denote ψ(ξ ) = (1 + ξ 2)– α

2 μ( ξ

N ), then
we have

max
ξ≥0

∣∣ψ(ξ )
∣∣ +

∫ ∞

0

∣∣ψ ′(ξ )
∣∣dξ ≤ C. (4.4)

In fact, since μ ∈ C∞
0 (R) and 1

2 ≤ α ≤ m2
2 , we get

max
ξ≥0

∣∣ψ(ξ )
∣∣ ≤ C. (4.5)

Noting that

ψ ′(ξ ) = –αξ
(
1 + ξ 2)– α

2 –1
μ

(
ξ

N

)
+

(
1 + ξ 2)– α

2 1
N

μ′
(

ξ

N

)
, (4.6)

we have

∫ ∞

0

∣∣ψ ′(ξ )
∣∣dξ ≤ α

∫ ∞

0
ξ
(
1 + ξ 2)– α

2 –1
∣∣∣∣μ

(
ξ

N

)∣∣∣∣dξ

+
∫ ∞

0

(
1 + ξ 2)– α

2 1
N

∣∣∣∣μ′
(

ξ

N

)∣∣∣∣dξ

=: G1 + G2. (4.7)

Since μ ∈ C∞
0 (R) and 1

2 ≤ α ≤ m2
2 , we obtain

G1 ≤ C
∫ ∞

0
ξ
(
1 + ξ 2)– α

2 –1 dξ = C
∫ ∞

0

(
1 + ξ 2)– α

2 –1 d
(
1 + ξ 2) = C (4.8)

and

G2 ≤ C
∫ ∞

0

1
N

∣∣∣∣μ′
(

ξ

N

)∣∣∣∣dξ ≤ C. (4.9)
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By (4.7), (4.8), and (4.9), we get

∫ ∞

0

∣∣ψ ′(ξ )
∣∣dξ ≤ C. (4.10)

Therefore, (4.4) follows from (4.5) and (4.10).
To estimate (4.3), we choose a positive constant M such that M = max{( 1

δ
)m2–1, 2C5, 2},

where δ is a small positive constant such that δm2–1C2 ≤ 1
2 . Below, we show (4.3) by dividing

two cases |x| ≥ M and |x| < M.
Case (I): |x| ≥ M. Let F(ξ ) = dφ(ξ ) – xξ , we have

F ′(ξ ) = dφ′(ξ ) – x, F ′′(ξ ) = dφ′′(ξ ).

Denote ρ = ( |x|
d )

1
m2–1 , then we have δρ ≥ 1. In fact, noting that |x| ≥ ( 1

δ
)m2–1, 0 < d < 1,

m2 > 1, and |x|
d > |x|, it follows that δρ > δ|x| 1

m2–1 ≥ 1. We choose a large positive constant

λ such that λ ≥ max{( 2
C1

)
1

m2–1 , δ}. Denote

I1 = [0, δρ], I2 = [δρ,λρ], I3 = [λρ,∞).

Thus, we obtain

|J| =
∣∣∣∣
∫ ∞

0
eiF(ξ )ψ(ξ ) dξ

∣∣∣∣ ≤
3∑

j=1

∣∣∣∣
∫

Ij

eiF(ξ )ψ(ξ ) dξ

∣∣∣∣ =:
3∑

j=1

Jj. (4.11)

Firstly, we estimate J1. We will show that the following estimate holds:

∣∣F ′(ξ )
∣∣ ≥ |x|

2
, ξ ∈ [0, δρ]. (4.12)

Now we divide the verification of (4.12) into two cases according to the value of ξ .
Case (I-a): ξ ∈ [0, 1). Since m1 > 1 and 0 < d < 1, we have

d
∣∣φ′(ξ )

∣∣ ≤ C5 dξm1–1 ≤ C5 ≤ M
2

≤ |x|
2

. (4.13)

By (4.13), if ξ ∈ [0, 1), we get

∣∣F ′(ξ )
∣∣ ≥ |x| – d

∣∣φ′(ξ )
∣∣ ≥ |x|

2
. (4.14)

Case (I-b): ξ ∈ [1, δρ]. Since m2 > 1, we have

d
∣∣φ′(ξ )

∣∣ ≤ C2 dξm2–1 ≤ C2 dδm2–1 |x|
d

≤ C2δ
m2–1|x| ≤ |x|

2
. (4.15)

By (4.15), we get

∣∣F ′(ξ )
∣∣ ≥ |x| – d

∣∣φ′(ξ )
∣∣ ≥ |x|

2
. (4.16)
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Therefore (4.12) follows from (4.14) and (4.16). Since φ′ is monotonic on R
+ by condition

(H3) and d > 0, it follows that F ′ is monotonic on ξ ∈ I1. Thus, by (i) of Lemma 4.1 and
estimate (4.12), (4.4), we have

|J1| ≤ C
1
|x| ≤ C

1
|x|β , (4.17)

where we use |x| ≥ 2 and the fact 1
2 ≤ β ≤ 1. Next we prove estimate J3. Since ξ ≥

λ( |x|
d )

1
m2–1 > 1 and λ ≥ ( 2

C1
)

1
m2–1 ,

d
∣∣φ′(ξ )

∣∣ ≥ C1 dξm2–1 ≥ C1 dλm2–1 |x|
d

≥ 2|x|,

it follows that

∣∣F ′(ξ )
∣∣ ≥ 2|x| – |x| = |x|, ξ ∈ [λρ,∞). (4.18)

Thus, by (i) of Lemma 4.1 and estimate (4.18), (4.4), we have

|J3| ≤ C
1
|x| ≤ C

1
|x|β , (4.19)

where we use |x| ≥ 2 and the fact 1
2 ≤ β ≤ 1. Now, we give estimate J2. Since ξ ∈ I2, we

have |ξ | ≥ 1. By (4.1), we obtain

∣∣F ′′(ξ )
∣∣ ≥ d

∣∣φ′′(ξ )
∣∣ ≥ C3 dξm2–2 ≥ C3 d

( |x|
d

) m2–2
m2–1

. (4.20)

We first prove that the following estimate holds:

max
I2

|ψ | +
∫

I2

∣∣ψ ′∣∣dξ ≤ C
( |x|

d

)– α
m2–1

. (4.21)

In fact, since μ ∈ C∞
0 (R) and 1

2 ≤ α ≤ m2
2 , we get

max
ξ∈A2

∣∣ψ(ξ )
∣∣ ≤ C(δρ)–α = Cδ–α(ρ)–α = Cδ–α

( |x|
d

)– α
m2–1

. (4.22)

By (4.6), we have

∫
A2

∣∣ψ ′(ξ )
∣∣dξ ≤ α

∫
A2

ξ
(
1 + ξ 2)– α

2 –1
∣∣∣∣μ

(
ξ

N

)∣∣∣∣dξ +
∫

A2

(
1 + ξ 2)– α

2 1
N

∣∣∣∣μ′
(

ξ

N

)∣∣∣∣dξ

=: L1 + L2. (4.23)

Since μ ∈ C∞
0 (R) and 1

2 ≤ α ≤ m2
2 , we obtain

L1 ≤ C
∫

A2

ξ
(
1 + ξ 2)– α

2 –1 dξ ≤ C
∫ λρ

δρ

ξ–α–1 dξ = C
( |x|

d

)– α
m2–1

(4.24)
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and

L2 ≤ C(δρ)–α

∫
A2

1
N

∣∣∣∣μ′
(

ξ

N

)∣∣∣∣dξ ≤ C
( |x|

d

)– α
m2–1

. (4.25)

By (4.23), (4.24), and (4.25), we get

∫ ∞

0

∣∣ψ ′(ξ )
∣∣dξ ≤ C

( |x|
d

)– α
m2–1

. (4.26)

Therefore, (4.21) follows from (4.22) and (4.26). Thus, by (ii) of Lemma 4.1 and estimate
(4.20), (4.21), we have

|J2| ≤ d– 1
2

( |x|
d

)– m2–2
2(m2–1)

( |x|
d

)– α
m2–1

= C
d

α– 1
2

m2–1

|x|
α+ m2

2 –1
m2–1

≤ C
1

|x|β . (4.27)

Here in the last inequality we use the fact α– 1
2

m2–1 ≥ 0 and 0 < d < 1. Therefore, for |x| ≥ M,
by estimates (4.11), (4.17), (4.19), and (4.27), it follows (4.3).

Case (II): |x| < M. Now we divide the verification of (4.3) into three cases according to
the value of α for |x| < M.

Case (II-a): α > 1. Since μ ∈ C∞
0 (R) and α > 1, we get

|J| =
∣∣∣∣
∫ ∞

0

ei(dφ(|ξ |)–xξ )

(1 + ξ 2) α
2

μ

(
ξ

N

)
dξ

∣∣∣∣ ≤ C
∫ ∞

0

1
(1 + ξ 2) α

2
dξ ≤ C. (4.28)

Noting that |x| < M and 1
2 ≤ β ≤ 1, by (4.28), we have

|J| ≤ C = C|x|β 1
|x|β ≤ CMβ 1

|x|β = C
1

|x|β ,

which follows (4.3).
Case (II-b): 1

2 ≤ α < 1. By the mean value theorem, when 1
2 ≤ α < 1, we have

0 <
(
1 + ξ 2) α

2 – ξα =
(
1 + ξ 2) α

2 –
(
ξ 2) α

2 ≤ α

2
(
ξ 2) α

2 –1 ≤ ξα–2. (4.29)

By (4.29), we obtain

1
ξα

–
1

(1 + ξ 2) α
2

= O
(

1
ξα+2

)
, ξ → ∞. (4.30)

Noting that 1
2 ≤ α < 1, by (4.30), we have

∫ ∞

0

∣∣∣∣ 1
ξα

–
1

(1 + ξ 2) α
2

∣∣∣∣dξ ≤ C (4.31)

and

|J| =
∣∣∣∣
∫ ∞

0

ei(dφ(|ξ |)–xξ )

(1 + ξ 2) α
2

μ

(
ξ

N

)
dξ

∣∣∣∣ ≤
∣∣∣∣
∫ ∞

0
ei(dφ(|ξ |)–xξ )

(
1

(1 + ξ 2) α
2

–
1
ξα

)
μ

(
ξ

N

)
dξ

∣∣∣∣
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+
∣∣∣∣
∫ ∞

0
ei(dφ(|ξ |)–xξ ) 1

ξα
μ

(
ξ

N

)
dξ

∣∣∣∣
= : K1 + K2.

By (4.31), we have

|K1| ≤ C = C|x|β 1
|x|β ≤ CMβ 1

|x|β = C
1

|x|β . (4.32)

By Lemma 1.3, we obtain

|K2| ≤ C
1

|x|1–α
. (4.33)

Noting that 1
|x| > 1

M , and the fact β ≥ 1 – α, it follows from 1
2 ≤ α < 1, 1

2 ≤ β ≤ 1 that

|x|1–α = |x|β |x|1–α–β = |x|β
(

1
|x|

)β–(1–α)

≥ C|x|β . (4.34)

Therefore, by (4.33) and (4.34), we have

|K2| ≤ C
1

|x|β . (4.35)

Hence, (4.3) holds from (4.32) and (4.35).
Case (II-c): α = 1. From the proof of Lemma 1.3, noting that M ≥ 2, we may get

|J| ≤ C log

(
1
|x|

)
if 0 < |x| ≤ 1

2
(4.36)

and

|J| ≤ C if
1
2

< |x| < M. (4.37)

By (4.36) and 1
2 ≤ β ≤ 1, for 0 < |x| ≤ 1

2 , we have

|J| ≤ C log

(
1
|x|

)
≤ C

1
|x|β . (4.38)

By (4.37), for 1
2 < |x| < M, we have

|J| ≤ C = C|x|β 1
|x|β ≤ CMβ 1

|x|β = C
1

|x|β . (4.39)

Thus, for α = 1, |x| < M, by (4.38) and (4.39), we get

|J| ≤ C
1

|x|β ,

which is just estimate (4.3).
Summing up all the above estimates, we complete the proof of estimate (4.3) and finish

the proof of Lemma 1.4. �
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5 Conclusion
In this paper, by linearizing the maximal operator and duality methods, and applying the
results of Lemma 1.3 and Lemma 1.4, we obtain the maximal global Lq inequalities (1.8)
and (1.9) for multiparameter oscillatory integral St,Φ . These estimates are apparently good
extensions to maximal global Lq inequalities (1.6) and (1.7) for the multiparameter frac-
tional Schrödinger equation in [32].
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