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Abstract
In this article, we establish sufficient conditions on the generalized Cesáro and Orlicz
sequence spaces E such that the class SE of all bounded linear operators between
arbitrary Banach spaces with its sequence of s-numbers belonging to E generates an
operator ideal. The components of SE as a pre-quasi Banach operator ideal containing
finite dimensional operators as a dense subset and its completeness are proved.
Some inclusion relations between the operator ideals as well as the inclusion relations
for their duals are obtained. Finally, we show that the operator ideal formed by E and
approximation numbers is small under certain conditions.
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1 Introduction
The operator ideals theory is gaining importance in functional analysis, since it has many
applications in spectral theory, geometry of Banach spaces, eigenvalue distributions the-
orem, fixed point theorem, etc. Throughout this paper, by w we denote the space of all
real sequences, R denotes the real numbers, N = {0, 1, 2, . . .}, and L(U , V ) is the space of
all bounded linear operators from a normed space U into a normed space V . Some of op-
erator ideals in the class of Banach spaces or Hilbert spaces are defined by different scalar
sequence spaces. For example the ideal of compact operators is defined by the space c0 of
convergent to zero sequences and Kolmogorov numbers. Pietsch [1] examined the oper-
ator ideals formed by the classical sequence space �p (0 < p < ∞) and the approximation
numbers. He showed that the ideal of nuclear operators and the ideal of Hilbert–Schmidt
operators between Hilbert spaces are defined by �1 and �2, respectively, and the sequence
of approximation numbers. In [2], the authors studied the operator ideals constructed
by generalized Cesáro and Orlicz sequence spaces �M and approximation numbers. With
continuity in generalization, the idea of this paper is to study a generalized class SE by
using some sequences of s-numbers and E. We give sufficient conditions on Orlicz and
generalized Cesáro sequence spaces E such that the class SE forms an operator ideal. The
completeness and denseness of its ideal components are specified. We also prove that the
class SE, for any pre-modular special space of sequences (sss), is a pre-quasi Banach opera-
tor ideal which is more general than the usual classes of operator ideals. Moreover, we have
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obtained various inclusion relations between the operator ideals as well as the inclusion
relations for their duals. Finally, we give sufficient conditions on Orlicz and generalized
Cesáro sequence spaces such that the operator ideal formed by approximation numbers
is small. These results are considered as a generalization for the case of �p, (0 < p < ∞).

2 Definitions and preliminaries
Definition 2.1 ([3]) An s-number function is a map defined on L(U , V ) which associates
to each operator P ∈ L(U , V ) a sequence of nonnegative numbers (sn(P))∞n=0 with some
properties:

(a) monotonicity: ‖P‖ = s0(P) ≥ s1(P) ≥ s2(P) ≥ · · · ≥ 0 for all P ∈ L(U , V ).
(b) additivity: sm+n–1(P1 + P2) ≤ sm(P1) + sn(P2) for all P1, P2 ∈ L(U , V ), m, n ∈N.
(c) property of ideal: sn(TPR) ≤ ‖T‖sn(P)‖R‖ for all R ∈ L(U0, U), P ∈ L(U , V ), and

T ∈ L(V , V0), where U0 and V0 are normed spaces.
(d) sn(λP) = |λ|sn(P) for every T ∈ L(U , V ), λ ∈ R.
(e) rank property: If rank(P) ≤ n, then sn(P) = 0 for every P ∈ L(U , V ).
(f ) property of norming:

si(Ij) =

⎧
⎨

⎩

1, if i < j;

0, if i ≥ j,

where Ij is the identity operator on the Euclidean space R
j.

There are several examples of s-numbers, we mention the following:
(1) The nth approximation number, denoted by αn(P), is defined by

αn(P) = inf{‖P – A‖ : A ∈ L(U , V ) and rank(A) ≤ n}.
(2) The nth Gel’fand number, denoted by cn(P), is defined by cn(P) = αn(JV P), where JV

is a metric injection from the normed space V to a higher space l∞(Λ) for an
adequate index set Λ. This number is independent of the choice of the higher space
l∞(Λ).

(3) The nth Kolmogorov number, denoted by dn(P), is defined by

dn(P) = inf
dim V≤n

sup
‖x‖≤1

inf
y∈V

‖Px – y‖.

(4) The nth Weyl number, denoted by xn(P), is defined by

xn(P) = inf
{
αn(PA) : ‖A : �2 → U‖ ≤ 1

}
.

(5) The nth Chang number, denoted by yn(P), is defined by

yn(P) = inf
{
αn(BP) : ‖B : V → �2‖ ≤ 1

}
.

(6) The nth Hilbert number, denoted by hn(P), is defined by

hn(P) = sup
{
αn(BPA) : ‖B : V → �2‖ ≤ 1 and ‖A : �2 → U‖ ≤ 1

}
.
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Remark 2.2 ([3]) Among all the s-number sequences defined above, it is easy to verify
that the approximation number αn(P) is the largest and the Hilbert number hn(P) is the
smallest s-number sequence, i.e., hn(P) ≤ sn(P) ≤ αn(P) for any bounded linear operator P.
If P is compact and defined on a Hilbert space, then all the s-numbers coincide with the
eigenvalues of |P|, where |P| = (P∗P) 1

2 .

Theorem 2.3 ([3], p. 115) If P ∈ L(U , V ), then

hn(P) ≤ xn(P) ≤ cn(P) ≤ αn(P) and hn(P) ≤ yn(P) ≤ dn(P) ≤ αn(P).

Theorem 2.4 ([3], p. 90) An s-number sequence is injective if, for any metric injection J ∈
L(V , V0), sn(P) = sn(JP) for all P ∈ L(U , V ).

Theorem 2.5 ([3], p. 95) An s-number sequence is surjective if, for any metric surjection
Q ∈ L(U0, U), sn(P) = sn(PQ) for all P ∈ L(U , V ).

Theorem 2.6 ([3], pp. 90–94) The Gel’fand numbers and the Weyl numbers are injective.

Theorem 2.7 ([3], pp. 95) The Kolmogorov numbers and the Chang numbers are surjec-
tive.

Definition 2.8 A finite rank operator is a bounded linear operator whose dimension of
the range space is finite.

Definition 2.9 ((Dual s-numbers) [4]) For each s-number sequence s = (sn), a dual s-
number function sD = (sD

n ) is defined by

sD
n (P) = sn

(
P′) for all P ∈ L(U , V ),

where P′ is the dual of P.

Definition 2.10 ([5], p. 152) An s-number sequence is called symmetric if sn(P) ≥ sn(P′)
for all P ∈ L(U , V ). If sn(P) = sn(P′), then the s-number sequence is said to be completely
symmetric.

Now we recall some known results related to the dual of an s-number sequence.

Theorem 2.11 ([5], p. 152) The approximation numbers are symmetric, i.e., αn(P′) ≤
αn(P) for P ∈ L(U , V ).

Remark 2.12 ([6]) αn(P′) = αn(P) for every compact operator P.

Theorem 2.13 ([5], p. 153) If P ∈ L(U , V ), then

cn(P) = dn
(
P′) and cn

(
P′) ≤ dn(P).

In addition, if P is a compact operator, then cn(P′) = dn(P).
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Theorem 2.14 ([3], p. 96) If P ∈ L(U , V ), then

xn(P) = yn
(
P′) and yn

(
P′) ≤ xn(P),

i.e., Weyl numbers and Chang numbers are dual to each other.

Theorem 2.15 ([5], p. 153) The Hilbert numbers are completely symmetric, i.e., hn(P) =
hn(P′) for all P ∈ L(U , V ).

Definition 2.16 ([7, 8]) The operator ideal U := {U(U , V ); U and V are Banach spaces} is
a subclass of linear bounded operators such that its componentsU(U , V ) which are subsets
of L(U , V ) satisfy the following conditions:

(i) IK ∈U where K indicates a one-dimensional Banach space, where U ⊂ L.
(ii) For P1, P2 ∈U(U , V ), then λ1P1 + λ2P2 ∈U(U , V ) for any scalars λ1, λ2.

(iii) If P ∈ L(U0, U), T ∈U(U , V ), and R ∈ L(V , V0), then RTP ∈ U(U0, V0).

Definition 2.17 An Orlicz function is a function M : [0,∞) → [0,∞) which is convex,
continuous, and nondecreasing with M(0) = 0, M(u) > 0 for u > 0 and M(u) → ∞, as u →
∞. See [9] and [10].

Definition 2.18 An Orlicz function M is said to satisfy �2-condition for every value of
u ≥ 0 if there is k > 0 such that M(2u) ≤ kM(u). The �2-condition is equivalent to M(lu) ≤
klM(u) for every value of l > 1 and u.

Lindentrauss and Tzafriri [11] utilized the idea of an Orlicz function to define Orlicz
sequence space:

�M =
{

u ∈ ω : ρ(βu) < ∞ for some β > 0
}

where ρ(u) =
∞∑

k=0

M
(|uk|

)
,

(�M,‖ · ‖) is a Banach space with the Luxemburg norm:

‖u‖ = inf

{

β > 0 : ρ
(

u
β

)

≤ 1
}

.

Every Orlicz sequence space contains a subspace that is isomorphic to c0 or �q for some
1 ≤ q < ∞ ([12], Theorem 4.a.9).

Later, several classes of sequences have been introduced using Orlicz functions by Altin
et al. [13], Et et al. ([14] and [15]), and Tripathy et al. [16–18].

For a sequence q = (qi) of positive real numbers with qi ≥ 1, for all i ∈N, the generalized
Cesáro sequence space is defined by

ces
(
(qi)

)
=

{
u = (ui) ∈ ω : ρ(βu) < ∞ for some β > 0

}
and

ρ(u) =
∞∑

i=0

(∑i
j=0 |uj|
i + 1

)qi

.



Faried and Bakery Journal of Inequalities and Applications        (2018) 2018:357 Page 5 of 14

(ces((qi)),‖ · ‖) is a Banach space with the Luxemburg norm. If (qi) is bounded, one can
simply write

ces
(
(qi)

)
=

{

u = (ui) ∈ ω :
∞∑

i=0

(∑i
j=0 |uj|
i + 1

)qi

< ∞
}

.

Sanhan and Suantai [19] studied some geometric properties of ces((qi)).

Definition 2.19 ([2]) A class of linear sequence spaces E is called a special space of se-
quences (sss) if

(1) ei ∈ E for all i ∈N,
(2) if u = (ui) ∈ w, v = (vi) ∈ E and |ui| ≤ |vi| for every i ∈N, then u ∈ E “i.e., E is solid”,
(3) if (ui)∞i=0 ∈ E, then (u[ i

2 ])
∞
i=0 ∈ E, wherever [ i

2 ] means the integral part of i
2 .

Theorem 2.20 �M is a (sss) if M is an Orlicz function satisfying �2-condition.

Theorem 2.21 ces((qi)) is a (sss) if (qi) is an increasing sequence, 1 < q0 and sup qi < ∞.

Definition 2.22 ([2]) A subclass of the special space of sequences called a pre-modular
(sss) if there is a function 
 : E→ [0,∞[ satisfying the following conditions:

(i) 
(u) ≥ 0 for each u ∈ E and 
(u) = 0 ⇔ u = θ , where θ is the zero element of E,
(ii) there exists L ≥ 1 such that 
(βu) ≤ L|β|
(u) for all u ∈ E and for any scalar β ,

(iii) for some K ≥ 1, 
(u + v) ≤ K(
(u) + 
(v)) for every u, v ∈ E,
(iv) if |ui| ≤ |vi| for all i ∈N, then 
((ui)) ≤ 
((vi)),
(v) for some K0 ≥ 1, 
((ui)) ≤ 
((u[ i

2 ])) ≤ K0
((ui)),
(vi) the set of all finite sequences is 
-dense in E. This means that, for each

u = (ui)∞i=o ∈ E and for each ε > 0, there exists s ∈N such that 
((ui)∞i=s) < ε,
(vii) there exists a constant ξ > 0 such that 
(β , 0, 0, 0, . . .) ≥ ξ |β|
(1, 0, 0, 0, . . .) for any

β ∈R.

From condition (ii), it is clear that 
 is continuous at θ . We denote by (E
,
) the linear
space E equipped with the metrizable topology generated by 
.

Example 2.23 �q is a pre-modular (sss) if 0 < q < ∞.

Example 2.24 �M is a pre-modular (sss) if M is an Orlicz function satisfying �2-condition.

Example 2.25 cesq is a pre-modular (sss) if 1 < q < ∞.

Example 2.26 ces((qi)) is a pre-modular (sss) if (qi) is an increasing sequence, 1 < q0 and
sup qi < ∞.

Theorem 2.27 ([20]) If U , V are infinite dimensional Banach spaces and (μi) is a mono-
tonic decreasing sequence to zero, then there exists a bounded linear operator P such that

1
16

μ3i ≤ αi(P) ≤ 8μi+1.
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Throughout this paper, ei = {0, 0, . . . , 1, 0, . . .} where 1 appears at the ith place for all i ∈
N, the sequence (qi) is a bounded sequence of positive numbers, and the following well-
known inequality [21]: |ai + bi|qi ≤ K(|ai|qi + |bi|qi ), where K = 2h–1, h = supi qi, and qi ≥ 1
for every i ∈N are used.

3 Main results
Notations 3.1

SE :=
{

SE(U , V ); U and V are Banach spaces
}

, where

SE(U , V ) :=
{

P ∈ L(U , V ) :
(
si(P)

)∞
i=0 ∈ E

}
. Also

Sapp
E

:=
{

Sapp
E

(U , V ); U and V are Banach spaces
}

, where

Sapp
E

(U , V ) :=
{

P ∈ L(U , V ) :
(
αi(P)

)∞
i=0 ∈ E

}
.

Theorem 3.2 If E is a (sss), then SE is an operator ideal.

Proof To show SE is an operator ideal
(i) let B ∈ F(U , V ) and rank(B) = n for each n ∈ N, since ei ∈ E for each i ∈ N and E is

a linear space, hence (si(B))∞i=0 = (s0(B), s1(B), . . . , sn–1(B), 0, 0, 0, . . .) =
∑n–1

i=0 si(B)ei ∈ E; for
that B ∈ SE(U , V ), which implies F(U , V ) ⊆ SE(U , V ).

(ii) Let P1, P2 ∈ SE(U , V ) and β1,β2 ∈ R, then from Definition 2.19 condition (3) we get
(s[ i

2 ](P1))∞i=0 ∈ E and (s[ i
2 ](P1))∞i=0 ∈ E, since i ≥ 2[ i

2 ], from the definition of s-numbers and
si(P) is a decreasing sequence, we have si(β1P1 + β2P2) ≤ s2[ i

2 ](β1P1 + β2P2) ≤ s[ i
2 ](β1P1) +

s[ i
2 ](β2P2) = |β1|s[ i

2 ](P1) + |β2|s[ i
2 ](P2) for all i ∈N. Since from Definition 2.19 condition (2)

and E is a linear space, we have (si(β1P1 + β2P2))∞i=0 ∈ E, hence β1P1 + β2P2 ∈ SE(U , V ).
(iii) If P ∈ L(U0, U), T ∈ SE(U , V ), and R ∈ L(V , V0), then we get (si(P))∞i=0 ∈ E and since

si(RTP) ≤ ‖R‖si(T)‖P‖, from Definition 2.19 conditions (1) and (2) we get (si(RTP)∞i=0) ∈ E,
then RTP ∈ SE(U0, V0). �

Corollary 3.3 If M is an Orlicz function satisfying �2-condition, then S�M is an operator
ideal.

Corollary 3.4 S�q is an operator ideal if 0 < q < ∞.

Corollary 3.5 If (qi) is a bounded increasing sequence and q0 > 1, then Sces((qi)) is an oper-
ator ideal.

Corollary 3.6 Scesq is an operator ideal if 1 < q < ∞.

The following question arises naturally: for which Orlicz and Cesáro sequence spaces E,
is the ideal of the finite rank operators dense in SE(U , V )?

Theorem 3.7 S�M (U , V ) = F(U , V ) if M is an Orlicz function and U , V are Banach spaces.

Proof Define 
(u) =
∑∞

i=0 M(|ui|) on �M . First, we show, if P ∈ F(U , V ), then it belongs to
S�M (U , V ). Since ei ∈ �M for each i ∈ N and �M is a linear space, for each finite operator
P ∈ F(U , V ), we obtain (si(P))∞i=0 containing only finitely many terms different from zero.
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Currently we prove that S�M (U , V ) ⊆ F(U , V ), let P ∈ S�M (U , V ) we have (si(P))∞i=0 ∈ �M and
since

∑∞
i=0 M(si(P)) < ∞, let ε ∈ (0, 1], hence there exists i0 ∈N– {0} with

∑∞
i=i0 M(si(P)) <

ε
4 . Since si(P) is decreasing for each i ∈N and 
 is nondecreasing, we obtain

i0M
(
s2i0 (P)

) ≤
2i0∑

i=i0+1

M
(
si(P)

) ≤
∞∑

i=i0

M
(
si(P)

)
<

ε

4
.

Hence, there exists B ∈ F2i0 (U , V ) such that rank B ≤ 2i0 with M(‖P – B‖) < ε
4i0

, and M is
an Orlicz function, hence

d(P, B) = 

(
si(P – B)

)∞
i=0

=
∞∑

i=0

M
(
si(P – B)

)

×
3i0–1∑

i=0

M
(
si(P – B)

)
+

∞∑

i=3i0

M
((

si(P – B)
))

≤
3i0–1∑

i=0

M(‖P – B)‖) +
∞∑

i=3i0

M
((

si(P – B)
))

≤ 3i0M
(‖P – B‖) +

∞∑

i=i0

M
((

si+2i0 (P – B)
))

≤ 3i0M
(‖P – B‖) +

∞∑

i=i0

M
(
si(P)

)
< ε.

�

Corollary 3.8 S�q (U , V ) = F(U , V ) if 0 < q < ∞ and U , V are Banach spaces.

Theorem 3.9 Sces((qi))(U , V ) = F(U , V ) if (qi) is an increasing sequence, q0 > 1 and U , V
are Banach spaces.

Proof We prove first that F(U , V ) ⊆ Sces((qi))(U , V ). Since ei ∈ ces((qi)) for each i ∈ N

and ces((qi)) is a linear space, for each finite operator P ∈ F(U , V ), i.e., one obtains that
(si(P))∞i=0 holds main finitely a significant unique number in relation to zero. Now we prove
that Sces((qi))(U , V ) ⊆ F(U , V ). Since q0 > 1 and (qi) is an increasing sequence, we have
∑∞

i=0( 1
i+1 )qi < ∞, let P ∈ Sces((qi))(U , V ), we get (si(P))∞i=0 ∈ ces((qi)) and since 
(si(P))∞i=0 <

∞, let ε ∈ (0, 1), hence there exists i0 ∈ N – {0} such that 
((si(P))∞i=i0 ) < ε

2h+3δC for some
c ≥ 1, where δ = max{1,

∑∞
i=i0 ( 1

i+1 )qi}. As si(P) is decreasing for every i ∈N, we have

2i0∑

i=i0+1

(∑i
j=0 s2i0 (P)
i + 1

)qi

≤
2i0∑

i=i0+1

(∑i
j=0 sj(P)
i + 1

)qi

≤
∞∑

i=i0

(∑i
j=0 sj(P)
i + 1

)qi

<
ε

2h+3δC
. (1)

Hence, there exists B ∈ F2i0 (U , V ) such that rank B ≤ 2i0 and

3i0∑

i=2i0+1

(∑i
j=0 ‖P – B‖

i + 1

)qi

≤
2i0∑

i=i0+1

(∑i
j=0 ‖P – B‖

i + 1

)qi

<
ε

2h+3δC
(2)
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for the bounded sequence (qi). Then consider

∞
sup
i=i0

( i0∑

j=0

‖P – B‖
)qi

<
ε

22h+2δ
, (3)

hence by setting

i0∑

i=0

(∑i
j=0 ‖P – B‖

i + 1

)qi

<
ε

2h+3δC
. (4)

Since (qi) is increasing and by using (1), (2), (3), and (4), we have

d(P, B) = 

(
si(P – B)

)∞
i=0 =

3i0–1∑

i=0

(∑i
j=0 sj(P – B)

i + 1

)qi

+
∞∑

i=3i0

(∑i
j=0 sj(P – B)

i + 1

)qi

≤
3i0∑

i=0

(∑n
j=0 ‖P – B‖

i + 1

)qi

+
∞∑

i=i0

(∑i+2i0
j=0 sj(P – B)

i + 1

)qi+2i0

≤
3i0∑

i=0

(∑i
j=0 ‖P – B‖

i + 1

)qi

+
∞∑

i=i0

(∑i+2i0
j=0 sj(P – B)

i + 1

)qi

≤
3i0∑

i=0

(∑i
j=0 ‖P – B‖

i + 1

)qi

+
∞∑

i=i0

(∑i+2i0
j=0 sj(P – B)

i + 1

)qi

≤ 3
i0∑

i=0

(∑i
j=0 ‖P – B‖

i + 1

)qi

+
∞∑

i=i0

(∑2i0–1
j=0 sj(P – B) +

∑i+2i0
j=2i0 sj(P – B)

i + 1

)qi

≤ 3
i0∑

i=0

(∑i
j=0 ‖P – B‖

i + 1

)qi

+ 2h–1

[ ∞∑

i=i0

(∑2i0–1
j=0 sj(P – B)

i + 1

)qi

+
∞∑

i=i0

(∑i+2i0
j=2i0 sj(P – B)

i + 1

)qi
]

≤ 3
i0∑

i=0

(∑i
j=0 ‖P – B‖

i + 1

)qi

+ 2h–1

[ ∞∑

i=i0

(∑2i0–1
j=0 ‖P – B‖

i + 1

)qi

+
∞∑

i=i0

(∑i
j=0 sj+2i0 (P – B)

i + 1

)qi
]

≤ 3
i0∑

i=0

(∑i
j=0 ‖P – B‖

i + 1

)qi

+ 2h–1 ∞
sup
i=i0

(2i0–1∑

j=0

‖P – B‖
)qi ∞∑

i=i0

(i + 1)–qi

+ 2h–1
∞∑

i=i0

(∑i
j=0 sj(P)
i + 1

)qi

< ε. �

Corollary 3.10 Scesq (U , V ) = F(U , V ) if 1 < q < ∞ and U , V are Banach spaces.
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The following question arises naturally: for which Orlicz and generalized Cesáro se-
quence spaces E, are the components of the ideal Sapp

E
complete?

Definition 3.11 A function g : Ω → [0,∞) is said to be a pre-quasi norm on the ideal Ω

if the following conditions hold:
(1) for all P ∈ Ω(U , V ), g(P) ≥ 0 and g(P) = 0 if and only if P = 0,
(2) there exists a constant L ≥ 1 such that g(λP) ≤ L|λ|g(P) for all P ∈ Ω(U , V ) and

λ ∈R,
(3) there exists a constant K ≥ 1 such that g(P1 + P2) ≤ K[g(P1) + g(P2)] for all

P1, P2 ∈ Ω(U , V ),
(4) there exists a constant C ≥ 1 such that if T ∈ L(U0, U), P ∈ Ω(U , V ), and

R ∈ L(V , V0), then g(RPT) ≤ C‖R‖g(P)‖T‖, where U0 and V0 are normed spaces.

We state the following two theorems without proof, those can be established using stan-
dard techniques.

Theorem 3.12 Every quasi norm on the ideal Ω is a pre-quasi norm on the ideal Ω .

Theorem 3.13 The function g(P) = 
(si(P))∞i=0 is a pre-quasi norm on SE
 , where E
 is a
pre-modular (sss).

Theorem 3.14 (SE
 , g) is a pre-quasi Banach operator ideal if E
 is a pre-modular (sss).

Proof Since E
 is a pre-modular (sss), then the function g(P) = 
(si(P))∞i=0 is a pre-quasi
norm on SE
 . Let (Pm) be a Cauchy sequence in SE
 (U , V ). Hence, by using Part (vii) of
Definition 2.22 and since L(U , V ) ⊇ SE
 (U , V ), one gets

g(Pi – Pj) = 

((

sn(Pi – Pj)
)∞

n=0

) ≥ 

(
s0(Pi – Pj), 0, 0, 0, . . .

)
= 


(‖Pi – Pj‖, 0, 0, 0, . . .
)

≥ ξ‖Pi – Pj‖
(1, 0, 0, 0, . . .),

then (Pm)m∈N is a Cauchy sequence in L(U , V ). While the space L(U , V ) is a Banach space,
so there exists P ∈ L(U , V ) such that limm→∞ ‖Pm – P‖ = 0, and while (sn(Pm))∞n=0 ∈ E for
every m ∈N , so, by using parts (iii) and (iv) of Definition 2.22 and that 
 is continuous at
θ , we obtain

g(P) = 

((

sn(P)
)∞

n=0

)
= 


((
sn(P – Pm + Pm)

)∞
n=0

)

≤ K

((

s[ n
2 ](P – Pm)

)∞
n=0

)
+ K


((
s[ n

2 ](Pm)∞n=0
))

≤ K

((‖Pm – P‖)∞

n=0

)
+ K


((
sn(Pm)∞n=0

))
< ∞,

we have (sn(P))∞n=0 ∈ E, then P ∈ SE
 (U , V ). �

Corollary 3.15 (S�M , g) is a pre-quasi Banach operator ideal if M is an Orlicz function
satisfying �2-condition.

Corollary 3.16 (S�q , g) is a quasi Banach operator ideal if 0 < q < ∞.
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Corollary 3.17 (Sces((qi)), g) is a pre-quasi Banach operator ideal if (qi) is an increasing
sequence and q0 > 1.

Corollary 3.18 (Sapp
cesq , g) is a quasi Banach operator ideal, 1 < q < ∞.

Theorem 3.19 ([20]) For any infinite dimensional Banach spaces U , V and for any q > p >
0, it is true that Sapp

�p (U , V ) � Sapp
�q (U , V ) � L(U , V ).

Theorem 3.20 For any infinite dimensional Banach spaces U , V and for any 1 < pn < qn

for all n ∈ N, it is true that Sapp
ces(pn)(U , V ) � Sapp

ces(qn)(U , V ) � L(U , V ), where pn and qn are
monotonic decreasing sequences.

Proof Let U and V be infinite dimensional Banach spaces and for any 1 < pn < qn for
every n ∈ N, if P ∈ Sapp

ces(pn)(U , V ), then (αn(P)) ∈ ces(pn). Since ces(pn) ⊂ ces(qn), hence
P ∈ Sapp

ces(qn)(U , V ). Next, if qn > pn > 1 for every n ∈ N and μn = 1
pn√n+1 . So, by using Theo-

rem 2.27, one can find P ∈ L(U , V ) with 1
16 pn√3n+1 ≤ αn(P) ≤ 8

pn√n+2 such that P does not
belong to Sapp

ces(pn)(U , V ) and P ∈ Sapp
ces(qn)(U , V ). It is easy to see that Sapp

ces(qn)(U , V ) ⊂ L(U , V ).
Next, if we take μn = 1

qn√n+1 . So, by using Theorem 2.27, one can find P ∈ L(U , V ) with
1

16 qn√3n+1 ≤ αn(P) ≤ 8
qn√n+2 such that P does not belong to Sapp

ces(qn)(U , V ). �

Corollary 3.21 For any infinite dimensional Banach spaces U , V and 1 < p < q < ∞, then
Sapp

cesp (U , V ) � Sapp
cesq (U , V ) � L(U , V ).

We now study some properties of the pre-quasi Banach operator ideal SE.

Theorem 3.22 If the s-number sequence is injective, then the pre-quasi Banach operator
ideal (SE
 , g) is injective.

Proof Let T ∈ L(U , V ) and J ∈ L(V , V0) be any metric injection. Suppose that JT ∈
SE
 (U , V0), then 
(sn(JT)) < ∞. Since the s-number sequence is injective, we have sn(JT) =
sn(T) for all T ∈ L(U , V ), n ∈ N. So 
(sn(T)) = 
(sn(JT)) < ∞. Hence T ∈ SE
 (U , V ) and
clearly g(T) = g(JT) holds. �

Remark 3.23 The pre-quasi Banach operator ideal (SGel
E


, g) and the pre-quasi Banach op-

erator ideal (SWeyl
E


, g) are injective pre-quasi Banach operator ideals.

Theorem 3.24 If the s-number sequence is surjective, then the pre-quasi Banach operator
ideal (SE
 , g) is surjective.

Proof Let T ∈ L(U , V ) and Q ∈ L(U0, U) be any metric surjection. Suppose that TQ ∈
SE
 (U0, V ). Then 
(sn(TQ)) < ∞. Since the s-number sequence is surjective, we have
sn(TQ) = sn(T) for all T ∈ L(U , V ), n ∈ N. So 
(sn(T)) = 
(sn(TQ)) < ∞. Hence T ∈
SE
 (U , V ) and clearly g(T) = g(TQ) holds. �

Remark 3.25 The pre-quasi Banach operator ideal (SKol
E


, g) and the pre-quasi Banach op-
erator ideal (SChang

E

, g) are surjective pre-quasi Banach operator ideals.
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Also, we have the following inclusion relations between the pre-quasi Banach operator
ideals.

Theorem 3.26
(1) Sapp

E

⊆ SGel

E

⊆ SWeyl

E

⊆ SHilb

E

.

(2) Sapp
E


⊆ SKol
E


⊆ SChang
E


⊆ SHilb
E


.

Proof Since hn(P) ≤ xn(P) ≤ cn(P) ≤ αn(P) and hn(P) ≤ yn(P) ≤ dn(P) ≤ αn(P) for every
n ∈N and 
 is nondecreasing, we obtain



(
hn(P)

) ≤ 

(
xn(P)

) ≤ 

(
cn(P)

) ≤ 

(
αn(P)

)
,



(
hn(P)

) ≤ 

(
yn(P)

) ≤ 

(
dn(P)

) ≤ 

(
αn(P)

)
.

Hence the result. �

We now state the dual of the operator ideal formed by different s-number sequences.

Theorem 3.27 The operator ideal Sapp
E


is symmetric and the operator ideal SHilb
E


is com-
pletely symmetric.

Proof Since αn(P′) ≤ αn(P) and hn(P′) = hn(P) for all P ∈ L(U , V ), we have Sapp
E


⊆ (Sapp
E


)′

and SHilb
E


= (SHilb
E


)′. �

In view of Theorem 2.13, we state the following result without proof.

Theorem 3.28 The operator ideal SGel
E


= (SKol
E


)′ and SKol
E


⊆ (SGel
E


)′. In addition if T is a
compact operator from U to V , then SKol

E

= (SGel

E

)′.

In view of Theorem 2.14, we state the following result without proof.

Theorem 3.29 The operator ideal SWeyl
E


= (SChang
E


)′ and SChang
E


= (SWeyl
E


)′.

Theorem 3.30 If (qi) is an increasing sequence and q0 > 1, then the pre-quasi Banach
operator ideal Sapp

ces(qi) is small.

Proof Since (qi) is an increasing sequence and q0 > 1, take λ = (
∑∞

i=0
1

(i+1)qi )
1
h . Then

(Sapp
ces(qi), g), where g(P) = 1

λ
(
∑∞

i=0(
∑i

j=0 αj(P)
(i+1) )qi )

1
h is a pre-quasi Banach operator ideal. Let U

and V be any two Banach spaces. Suppose that Sapp
ces(qi)(U , V ) = L(U , V ), then there exists

a constant C > 0 such that g(P) ≤ C‖P‖ for all P ∈ L(U , V ). Assume that U and V are in-
finite dimensional Banach spaces. Hence by Dvoretzky’s theorem [5] for m ∈ N, we have
quotient spaces U/Nm and subspaces Mm of V which can be mapped onto �m

2 by isomor-
phisms Hm and Am such that ‖Hm‖‖H–1

m ‖ ≤ 2 and ‖Am‖‖A–1
m ‖ ≤ 2. Let Im be the identity

map on �m
2 , Qm be the quotient map from U onto U/Nm, and Jm be the natural embedding
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map from Mm into V . Let un be the Bernstein numbers [4], then

1 = un(Im) = un
(
AmA–1

m ImHmH–1
m

)

≤ ‖Am‖un
(
A–1

m ImHm
)∥
∥H–1

m
∥
∥

= ‖Am‖un
(
JmA–1

m ImHm
)∥
∥H–1

m
∥
∥

≤ ‖Am‖dn
(
JmA–1

m ImHm
)∥
∥H–1

m
∥
∥

= ‖Am‖dn
(
JmA–1

m ImHmQm
)∥
∥H–1

m
∥
∥

≤ ‖Am‖αn
(
JmA–1

m ImHmQm
)∥
∥H–1

m
∥
∥ (5)

for 1 ≤ i ≤ m. Now

i∑

j=0

(1) ≤
i∑

j=0

‖Am‖αj
(
JmA–1

m ImHmQm
)∥
∥H–1

m
∥
∥

⇒ 1
i + 1

(i + 1) ≤ ‖Am‖
(

1
i + 1

i∑

j=0

αj
(
JmA–1

m ImHmQm
)
)

∥
∥H–1

m
∥
∥

⇒ 1 ≤ (‖Am‖∥∥H–1
m

∥
∥
)qi

(
1

i + 1

i∑

j=0

αj
(
JmA–1

m ImHmQm
)
)qi

.

Therefore,

( m∑

i=0

(1)

) 1
h

≤ L‖Am‖∥∥H–1
m

∥
∥

[ m∑

i=0

(
1

i + 1

i∑

j=0

αj
(
JmA–1

m ImHmQm
)
)qi] 1

h

⇒ 1
λ

(m + 1)
1
h ≤ L‖Am‖∥∥H–1

m
∥
∥ 1
λ

[ m∑

i=0

(
1

i + 1

i∑

j=0

αj
(
JmA–1

m ImHmQm
)
)qi] 1

h

⇒ 1
λ

(m + 1)
1
h ≤ L‖Am‖∥∥H–1

m
∥
∥g

(
JmA–1

m ImHmQm
)
,

1
λ

(m + 1)
1
h ≤ LC‖Am‖∥∥H–1

m
∥
∥
∥
∥JmA–1

m ImHmQm
∥
∥,

1
λ

(m + 1)
1
h ≤ LC‖Am‖∥∥H–1

m
∥
∥
∥
∥JmA–1

m
∥
∥‖Im‖‖HmQm‖

= LC‖Am‖∥∥H–1
m

∥
∥
∥
∥A–1

m
∥
∥‖Im‖‖Hm‖,

1
λ

(m + 1)
1
h ≤ 4LC

for some L ≥ 1. Thus we arrive at a contradiction since m is arbitrary. Thus U and V both
cannot be infinite dimensional when Sapp

ces(qi)(U , V ) = L(U , V ). Hence the result. �

Theorem 3.31 If (qi) is increasing and q0 > 1, then the pre-quasi Banach operator ideal
SKol

ces(qi) is small.

Corollary 3.32 If 1 < q < ∞, then the quasi Banach operator ideal Sapp
cesq is small.
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Corollary 3.33 If 1 < q < ∞, then the quasi Banach operator ideal SKol
cesq is small.

Theorem 3.34 If M is an Orlicz function satisfying �2-condition, then the pre-quasi Ba-
nach operator ideal Sapp

�M
is small.

Proof Since M is an Orlicz function satisfying �2-condition, then (Sapp
�M

, g), where g(P) =
∑∞

i=0 M(αi(P)) is a pre-quasi Banach operator ideal. Let U and V be any two Banach spaces.
Suppose that Sapp

�M
(U , V ) = L(U , V ), then there exists a constant C > 0 such that g(P) ≤

C‖P‖ for all P ∈ L(U , V ). Assume that U and V are infinite dimensional Banach spaces.
By using inequality (5) and since M is an Orlicz function satisfying �2-condition, one
obtains

M(1) ≤ L‖Am‖M
(
αi

(
JmA–1

m ImHmQm
))∥

∥H–1
m

∥
∥

⇒
m∑

i=0

1 ≤ L‖Am‖∥∥H–1
m

∥
∥

m∑

i=0

M
(
αi

(
JmA–1

m ImHmQm
))

⇒ (m + 1) ≤ L‖Am‖∥∥H–1
m

∥
∥g

(
JmA–1

m ImHmQm
)
,

(m + 1) ≤ LC‖Am‖∥∥H–1
m

∥
∥
∥
∥JmA–1

m ImHmQm
∥
∥,

(m + 1) ≤ LC‖Am‖∥∥H–1
m

∥
∥
∥
∥JmA–1

m
∥
∥‖Im‖‖HmQm‖

= LC‖Am‖∥∥H–1
m

∥
∥
∥
∥A–1

m
∥
∥‖Im‖‖Hm‖,

(m + 1) ≤ 4LC

for some L ≥ 1. Thus we arrive at a contradiction since m is arbitrary. Thus U and V both
cannot be infinite dimensional when Sapp

�M
(U , V ) = L(U , V ). Hence the result. �

Corollary 3.35 ([22]) If 0 < p < ∞, then the quasi Banach operator ideal Sapp
�p is small.

Corollary 3.36 If 0 < p < ∞, then the quasi Banach operator ideal SKol
�p is small.
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