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However, algorithm (1.2) cannot be used to solve VIP when f is monotone and k-Lipschitz
continuous, which can be seen from the counterexample in [43]. During the last decade,
many authors devoted their attention to studying algorithms for solving the VIP. One of
the methods is the extragradient method which was introduced and studied in 1976 by
Korpelevich [19] in the finite dimensional Euclidean space R

n:

yn = PC(xn – � fxn),

xn+1 = PC(xn – � fyn),
(1.3)

when f is monotone and k-Lipschitz continuous. Then sequence {xn} converges to the
solution of VIP.

Takahashi and Toyoda [28] illustrated that if S : C → C is a nonexpansive mapping and I
is the identity mapping on H , then f = I – S is 1

2 -inverse strongly monotone and VI(C, f ) =
Fix(S). Motivated and inspired by the mentioned fact, they introduced and studied the
following method for finding a common element of VI(C, f ) ∩ Fix(S):

xn+1 = � nxn + (1 – � n)SPC(xn – � nfxn), (1.4)

when S : C → C is a nonexpansive mapping and f : C → H is a � -inverse strongly mono-
tone mapping.

After that, Nadezhkina and Takahashi [27] suggested the following modified extragra-
dient method motivated by the idea of Korpelevich [19]:

yn = PC(xn – � nfxn),

xn+1 = � nxn + (1 – � n)SPC(xn – � nfyn),
(1.5)

when S : C → C is a nonexpansive mapping and f : C →H is a monotone and k-Lipschitz
continuous mapping. They showed that the sequence generated by the mentioned method
converges weakly to an element in VI(C, f ) ∩ Fix(S).

Since then, it has been used to study the problems of finding a common solution of VIP
and fixed point problem (see [42] and the references therein).

The split feasibility problem (SFP) proposed by Censor and Elfving [10] is finding a point

x ∈ C and Ax ∈Q, (1.6)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, and A : H1 → H2 is a bounded linear operator. Since then, the SFP has been
widely used in many applications such as signal processing, intensity-modulation ther-
apy treatment planning, phase retrievals and other fields (see [5, 6, 9, 15, 18, 37] and the
references therein).

One of the popular methods for solving the SFP is the CQ algorithm presented by Byrne
[5] in 2002 as follows:

xn+1 = PC
(
xn – � A∗(I – PQ)Axn

)
, (1.7)

where 0 < � < 2
‖A‖2 and A∗ is the adjoint operator of A.
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Since (1.7) can be viewed as a fixed point algorithm for averaged mappings, Xu [34]
applied the K-M algorithm to present the following algorithm for solving the SFP:

xn+1 = (1 – � n)xn + � nPC
(
xn – � A∗(I – PQ)Axn

)
. (1.8)

The split variational inequality problem (SVIP) is the problem of finding a point

x∗ ∈ C such that
〈
f
(
x∗)

,x – x∗〉 ≥ 0, for all x ∈ C, and

y∗ = Ax∗ ∈Q solves
〈
g
(
y∗)

, y – y∗〉 ≥ 0, for all y ∈Q,
(1.9)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, f : H1 → H1 and g : H2 → H2 are mappings, and A : H1 → H2 is a bounded
linear operator. The SVIP was first investigated by Censor et al. [11]; it includes split feasi-
bility problem, split zero problem, variational inequality problem and split minimizations
problem as special cases (see [5, 7, 11, 16, 31, 39]).

In 2017, Tian and Jiang [32] considered the following iteration method by combining
extragradient method with CQ algorithm for solving the SVIP:

yn = PC
(
xn – � nA∗(

I – PQ(I – � g)
)
Axn

)
,

zn = PC
(
yn – � nf (yn)

)
, (1.10)

xn+1 = PC
(
yn – � nf (zn)

)
,

whereA : H1 →H2 is a bounded linear operator, f : C →H1 is a monotone and k-Lipschitz
continuous mapping, and g : H2 →H2 is a � -inverse strongly monotone mapping.

In this paper, we establish a new iterative algorithm by combining Nadezhkina and Taka-
hashi’s modified extragradient method and Xu’s algorithm. The mentioned iterative algo-
rithm presents the common solution of the split variational inequality problems and fixed
point problems. We show that the sequence produced by our algorithm is weakly conver-
gent. Finally, we give some applications of the main results. This article extends the results
that appeared in [32].

2 Preliminaries
In order to solve the our results, we recall the following definitions and preliminary results
that will be used in the sequel. Throughout this section, let C be a closed convex subset of
a real Hilbert space H .

A mapping T : C → C is said to be k-Lipschitz continuous with k > 0, if

‖Tx – Ty‖ ≤ k‖x – y‖

for all x, y ∈ C. A mapping T is said to be nonexpansive when k = 1. We say that x ∈ C is
a fixed point of T if Tx = x and the set of all fixed points of T is denoted by Fix(T). It is
well known that if C is a nonempty bounded closed convex subset of H and T : C → C is
nonexpansive, then Fix(T) 	= ∅. Moreover, for a fixed � ∈ (0, 1), a mapping T : H → H is
� -averaged if and only if it can be written as the average of the identity mapping on H and
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a nonexpansive mapping S : H →H , i.e.,

T = (1 – � )I + � S.

Recall that a mapping f : C →H is called � -strongly monotone with � > 0 if

〈fx – fy,x – y〉 ≥ � ‖x – y‖2

for all x, y ∈ C. If � = 0, then the mapping f is said to be monotone. Further, a mapping f
is said to be � -inverse strongly monotone with � > 0 (� -ism) if

〈fx – fy,x – y〉 ≥ � ‖fx – fy‖2

for all x, y ∈ C. In [1], we know that a � -strongly monotone mapping f is monotone and a � -
ism mapping f is monotone and 1

� -Lipschitz continuous. Moreover, I – � f is nonexpansive
where � ∈ (0, 2� ), see [34] for more details on averaged and � -ism mappings.

Lemma 2.1 ([8]) Given x ∈H and z ∈ C. Then the following statements are equivalent:
(i) z = PCx;

(ii) 〈x – z, z – y〉 ≥ 0 for all y ∈ C;
(iii) ‖x – y‖2 ≥ ‖x – z‖2 + ‖y – z‖2 for all y ∈ C.

We need the following definitions about set-valued mappings for proving our main re-
sults.

Definition 2.2 ([30]) Let B : H ⇒ H be a set-valued mapping with the effective domain
D(B) = {x ∈H : Bx 	= ∅}.

The set-valued mapping B is said to be monotone if, for each x, y ∈ D(B), u ∈ Bx, and
v ∈ By, we have

〈x – y,u – v〉 ≥ 0.

Also the monotone set-valued mappingB is said to be maximal if its graphG(B) = {(x, y) :
y ∈ Bx} is not properly contained in the graph of any other monotone set-valued mappings.

The following property of the maximal monotone mappings is very convenient and help-
ful to use:

A monotone mapping B is maximal if and only if, for (x,u) ∈ H ×H ,

〈x – y,u – v〉 ≥ 0 for each (y, v) ∈G(B) implies u ∈ Bx.

For a maximal monotone set-valued mapping B on H and r > 0, the operator

Jr := (I + rB)–1 : H →D(B)

is called the resolvent of B.
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Remark 2.3 In [14], we obtain that Fix(Jr) = B–10 for all r > 0 and Jr is firmly nonexpansive,
that is,

‖Jrx – Jry‖2 ≤ 〈Jrx – Jry,x – y〉 for all x, y ∈H .

Indeed, by the definition of scalar multiplication, addition, and inversion operations, we
have

(x, y) ∈G(B) ⇔ (x + ry,x) ∈ (I + rB)–1 = Jr .

Hence, for all (x, y), (x∗, y∗) ∈G(B), we get

B is monotone ⇔ 〈
x∗ – x, y∗ – y

〉 ≥ 0

⇔ 〈
x∗ – x, ry∗ – ry

〉 ≥ 0

⇔ 〈
x∗ – x,x∗ – x + ry∗ – ry

〉 ≥ ∥∥x∗ – x
∥∥2

⇔ 〈
Jr

(
x∗ + ry∗)

– Jr(x + ry),
(
x∗ + ry∗)

– (x + ry)
〉

≥ ∥∥Jr
(
x∗ + ry∗)

– Jr(x + ry)
∥∥2

⇔ Jr is firmly nonexpansive.

Let f : C → H be a monotone and k-Lipschitz continuous mapping. In [2], we know that
a normal cone to C defined by

NCx =
{
z ∈ H : 〈z, y – x〉 ≤ 0, for all y ∈ C

}
for all x ∈ C

is a maximal monotone mapping and a resolvent of NC is PC .
The following results play the crucial role in the next section.

Lemma 2.4 ([27]) Let H1 and H2 be real Hilbert spaces. Let B : H1 ⇒ H1 be a maximal
monotone mapping and Jr be the resolvent of B for r > 0. Suppose that T : H2 → H2 is a
nonexpansive mapping and A : H1 →H2 is a bounded linear operator. Assume that B–10 ∩
A–1 Fix(T) 	= ∅. Let r, � > 0 and z ∈ H1. Then the following statements are equivalent:

(i) z = Jr(I – � A∗(I – T)A)z;
(ii) 0 ∈ A∗(I – T)Az + Bz;

(iii) z ∈ B–10 ∩A–1 Fix(T).

Lemma 2.5 ([23]) Let {� n} be a real sequence satisfying 0 < a ≤ � n ≤ b < l for all n ≥ 0,
and let {vn} and {wn} be two sequences in H such that, for some 	 ≥ 0,

lim sup
n→∞

‖vn‖ ≤ 	 ,

lim sup
n→∞

‖wn‖ ≤ 	 ,

and lim
n→∞

∥∥� nvn + (1 – � n)wn
∥∥ = 	 .

Then limn→∞ ‖vn – wn‖ = 0.
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Lemma 2.6 ([35]) Let {xn} be a sequence in H satisfying the properties:
(i) limn→∞ ‖xn – u‖ exists for each u ∈ C;

(ii) 
 w(xn) ⊂ C.
Then {xn} converges weakly to a point in C.

Theorem 2.7 ([27]) Let f : C → H be a monotone and k-Lipschitz continuous mapping.
Assume that S : C → C is a nonexpansive mapping such that VI(C, f ) ∩ Fix(S) 	= ∅. Let
{xn} and {yn} be sequences generated by (1.5), where {� n} ⊂ [a,b] for some a,b ∈ (0, 1

k ) and
{� n} ⊂ [c,d] for some c,d ∈ (0, 1). Then the sequences {xn} and {yn} converge weakly to the
same point z ∈ VI(C, f ) ∩ Fix(S) 	= ∅, where z = limn→∞ PVI(C,f )∩Fix(S)xn.

Theorem 2.8 ([34]) Assume that the solution set of SFP is consistent and 0 < � < 2
‖A‖2 . Let

{xn} be defined by the averaged CQ algorithm (1.8) where {� n} is a sequence in [0, 4
2+� ‖A‖2 ]

satisfying the condition

∞∑

n=1

� n

(
4

2 + � ‖A‖2 – � n

)
= ∞.

Then the sequence {xn} is weakly convergent to a point in the solution set of SFP.

3 Main results
Our aim in this section is to consider an iterative method by combining Nadezhkina and
Takahashi’s modified extragradient method with Zhao and Yang’s algorithm for solving
the split variational inequality problems and fixed point problems.

Throughout our results, unless otherwise stated, we assume that C and Q are nonempty
closed convex subsets of real Hilbert spaces H1 and H2, respectively. Suppose that A :
H1 →H2 is a nonzero bounded linear operator, f : C →H1 is a monotone and k-Lipschitz
continuous mapping, and g : H2 → H2 is a � -inverse strongly monotone mapping. Suppose
that T : H2 → H2 and S : C → C are nonexpansive. Let {µ n}, {� n} ⊂ (0, 1), {� n} ⊂ [a,b] for
some a,b ∈ (0, 1

‖A‖2 ) and {� n} ⊂ [c,d] for some c,d ∈ (0, 1
k ).

Firstly, we present an algorithm for solving the variational inequality problems and split
common fixed point problems, that is, finding a point x∗ such that

x∗ ∈ VI(C, f ) ∩ Fix(S) and Ax∗ ∈ Fix(T). (3.1)

Theorem 3.1 Set � = {z ∈ VI(C, f ) ∩ Fix(S) : Az ∈ Fix(T)} and assume that � 	= ∅. Let the
sequences {xn}, {yn} and {zn} be generated by x1 = x ∈ C and

yn = µ nxn + (1 – µ n)PC
(
xn – � nA∗(I – T)Axn

)
,

zn = PC
(
yn – � nf (yn)

)
, (3.2)

xn+1 = � nyn + (1 – � n)SPC
(
yn – � nf (zn)

)
,

for each n ∈ N. Then the sequence {xn} converges weakly to a point z ∈ � , where z =
limn→∞ P� xn.
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Proof It follows from Theorem 3.1 [32] that PC(I – � nA∗(I – T)A) is 1+� n‖A‖2

2 -averaged. It
is easy to see from Lemma 2.2 [25] that µ nI + (1 – µ n)PC(I – � nA∗(I – T)A) is µ n + (1 –
µ n) 1+� n‖A‖2

2 -averaged. So, yn can be rewritten as

yn = (1 – � n)xn + � nVnxn, (3.3)

where � n = µ n + (1 – µ n) 1+� n‖A‖2

2 and Vn is a nonexpansive mapping for each n ∈N.
Let u ∈ � , we get that

‖yn – u‖2 =
∥∥(1 – � n)(xn – u) + � n(Vnxn – u)

∥∥2

= (1 – � n)‖xn – u‖2 + � n‖Vnxn – u‖2

– � n(1 – � n)‖xn – Vnxn‖2

≤ ‖xn – u‖2 – � n(1 – � n)‖xn – Vnxn‖2

≤ ‖xn – u‖2. (3.4)

Thus

� n(1 – � n)‖xn – Vnxn‖2 ≤ ‖xn – u‖2 – ‖yn – u‖2. (3.5)

Set tn = PC(yn – � nfzn) for all n≥ 0. It follows from Lemma 2.1 that

‖tn – u‖2 ≤ ∥∥yn – � nf (zn) – u
∥∥2 –

∥∥yn – � nf (zn) – tn
∥∥2

≤ ‖yn – u‖2 – ‖yn – tn‖2 + 2� n
〈
f (zn),u – tn

〉

= ‖yn – u‖2 – ‖yn – tn‖2 + 2� n
(〈
f (zn) – f (u),u – zn

〉

+
〈
f (u),u – zn

〉
+

〈
f (zn), zn – tn

〉)

≤ ‖yn – u‖2 – ‖yn – tn‖2 + 2� n
〈
f (zn), zn – tn

〉

= ‖yn – u‖2 – ‖yn – zn‖2 – 2〈yn – zn, zn – tn〉 – ‖zn – tn‖2

+ 2� n
〈
f (zn), zn – tn

〉

= ‖yn – u‖2 – ‖yn – zn‖2 – ‖zn – tn‖2

+ 2
〈
yn – � nf (zn) – zn, tn – zn

〉
.

Using Lemma 2.1 again, this yields

〈
yn – � nf (zn) – zn, tn – zn

〉
=

〈
yn – � nf (yn) – zn, tn – zn

〉

+
〈
� nf (yn) – � nf (zn), tn – zn

〉

≤ 〈
� nf (yn) – � nf (zn), tn – zn

〉

≤ � nk‖yn – zn‖‖tn – zn‖,

and so

‖tn – u‖2 ≤ ‖yn – u‖2 – ‖yn – zn‖2 – ‖zn – tn‖2 + 2� nk‖yn – zn‖‖tn – zn‖.
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For each n ∈N, we obtain that

0 ≤ (‖tn – zn‖ – � nk‖yn – zn‖
)2

= ‖tn – zn‖2 – 2� nk‖tn – zn‖‖yn – zn‖ + � 2
nk

2‖yn – zn‖2.

That is,

2� nk‖tn – zn‖‖yn – zn‖ ≤ ‖tn – zn‖2 + � 2
nk

2‖yn – zn‖2.

So,

‖tn – u‖2 ≤ ‖yn – u‖2 – ‖yn – zn‖2 – ‖zn – tn‖2 + ‖tn – zn‖2

+ � 2
nk

2‖yn – zn‖2

= ‖yn – u‖2 +
(
� 2
nk

2 – 1
)‖yn – zn‖2

≤ ‖yn – u‖2. (3.6)

By the convexity of the norm and (3.6), we have

‖xn+1 – u‖2 =
∥∥� nyn + (1 – � n)S(tn) – u

∥∥2

=
∥∥� n(yn – u) + (1 – � n)

(
S(tn) – u

)∥∥2

= � n‖yn – u‖2 + (1 – � n)
∥∥S(tn) – u

∥∥2

– � n(1 – � n)
∥∥yn – u –

(
S(tn) – u

)∥∥2

≤ � n‖yn – u‖2 + (1 – � n)
∥∥S(tn) – S(u)

∥∥2

≤ � n‖yn – u‖2 + (1 – � n)‖tn – u‖2

≤ � n‖yn – u‖2 + (1 – � n)
[‖yn – u‖2 +

(
� 2
nk

2 – 1
)‖yn – zn‖2]

= ‖yn – u‖2 + (1 – � n)
(
� 2
nk

2 – 1
)‖yn – zn‖2

≤ ‖yn – u‖2 ≤ ‖xn – u‖2. (3.7)

Hence, there exists c≥ 0 such that

lim
n→∞‖xn – u‖ = c, (3.8)

and then {xn} is bounded. This implies that {yn} and {tn} are also bounded. From (3.5) and
(3.7), we deduce that

� n(1 – � n)‖xn – Vnxn‖2 ≤ ‖xn – u‖2 – ‖xn+1 – u‖2.

Therefore, it follows from (3.8) that

xn – Vnxn → 0, as n→ ∞.
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By (3.3), we get that

xn – yn = � n(xn – Vnxn) → 0, as n→ ∞. (3.9)

Relation (3.7) implies

(1 – � n)
(
1 – � 2

nk
2)‖yn – zn‖2 ≤ ‖yn – u‖2 – ‖xn+1 – u‖2,

and so

yn – zn → 0, as n→ ∞. (3.10)

Moreover, by the definition of zn, we have

‖zn – tn‖2 =
∥∥PC

(
yn – � nf (yn)

)
– PC

(
yn – � nf (zn)

)∥∥2

≤ ∥∥(
yn – � nf (yn)

)
–

(
yn – � nf (zn)

)∥∥2

=
∥∥� nf (zn) – � nf (yn)

∥∥2

≤ � 2
nk

2‖zn – yn‖2.

Hence

zn – tn → 0, as n→ ∞. (3.11)

Using the triangle inequality, we see that

‖yn – tn‖ ≤ ‖yn – zn‖ + ‖zn – tn‖

and

‖xn – zn‖ ≤ ‖xn – yn‖ + ‖yn – zn‖.

This implies that

yn – tn → 0 and xn – zn → 0, as n → ∞. (3.12)

The definition of yn implies

(1 – µ n)
(
xn – PC

(
xn – � nA∗(I – T)Axn

))
= xn – yn.

Thus

xn – PC
(
xn – � nA∗(I – T)Axn

) → 0, as n→ ∞. (3.13)

Let z ∈ 
 w(xn). Then there exists a subsequence {xni} of {xn} which converges weakly to z.
We obtain that {A∗(I – T)Axni} is bounded because A∗(I – T)A is 1

2‖A‖2 -inverse strongly
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monotone. By the firm nonexpansiveness of PC , we see that

∥∥PC
(
I – � niA

∗(I – T)A
)
xni – PC

(
I – �̂ A∗(I – T)A

)
xni

∥∥

≤ |� ni – �̂ |∥∥A∗(I – T)Axni
∥∥.

Without loss of generality, we may assume that � ni → �̂ ∈ (0, 1
‖A‖2 ), and so

PC
(
I – � niA

∗(I – T)A
)
xni – PC

(
I – �̂ A∗(I – T)A

)
xni → 0, i → ∞. (3.14)

From (3.13), (3.14) and

∥∥xni – PC
(
I – �̂ A∗(I – T)A

)
xni

∥∥

≤ ∥∥xni – PC
(
I – � niA

∗(I – T)A
)
xni

∥∥

+
∥∥PC

(
I – � niA

∗(I – T)A
)
xni – PC

(
I – �̂ A∗(I – T)A

)
xni

∥∥,

we have

xni – PC
(
I – �̂ A∗(I – T)A

)
xni → 0, as i→ ∞. (3.15)

By the demiclosedness principle [33], we have

z ∈ Fix
(
PC

(
I – �̂ A∗(I – T)A

))
.

Using Corollary 2.9 [32], this yields

z ∈ C ∩A–1 Fix(T). (3.16)

Next, we claim that z ∈ VI(C, f ). From (3.9), (3.10) and (3.11), we know that yni 
 z, zni 
 z
and tni 
 z. Define the set-valued mapping B : H ⇒H by

Bv =

⎧
⎨

⎩
f (v) + NCv, if ∀v ∈ C;

∅, if ∀v /∈ C.

In [27], this implies that B is maximal monotone and we have 0 ∈ Bv iff v ∈ VI(C, f ). If
(v,w) ∈D(B), then w ∈ Bv = f (v) + NCv and so w – f (v) ∈NCv. Thus, for any p ∈ C, we get

〈
v – p,w – f (v)

〉 ≥ 0. (3.17)

Since v ∈ C, it follows from the definition of zn and Lemma 2.1 that

〈yn – � nfyn – zn, zn – v〉 ≥ 0.

Consequently,

〈
zn – yn

� n
+ f (yn), v – zn

〉
≥ 0.
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By using (3.17) with {zni}, we obtain

〈
w – f (v), v – zni

〉 ≥ 0.

Thus

〈w, v – zni〉 ≥ 〈
f (v), v – zni

〉

≥ 〈
f (v), v – zni

〉
–

〈
zni – yni

� ni
+ f (yni ), v – zni

〉

=
〈
f (v) – f (zni ), v – zni

〉
+

〈
f (zni ) – f (yni ), v – zni

〉

–
〈
zni – yni

� ni
, v – zni

〉

≥ 〈
f (zni ) – f (yni ), v – zni

〉
–

〈
zni – yni

� ni
, v – zni

〉
.

By taking i → ∞ in the above inequality, we deduce

〈w, v – z〉 ≥ 0.

By the maximal monotonicity of B, we get 0 ∈ Bz and so z ∈ VI(C, f ). Now, we will show
that z ∈ Fix(S). Since S is nonexpansive, it follows from (3.4) and (3.6) that

∥∥S(tn) – u
∥∥ =

∥∥S(tn) – S(u)
∥∥ ≤ ‖tn – u‖ ≤ ‖yn – u‖ ≤ ‖xn – u‖,

and by taking limit superior in the above inequalities and using (3.8), we obtain

lim sup
n→∞

∥∥S(tn) – u
∥∥ ≤ c and lim sup

n→∞
‖yn – u‖ ≤ c.

Further,

lim
n→∞

∥∥� n(yn – u) + (1 – � n)
(
S(tn) – u

)∥∥ = lim
n→∞

∥∥� nyn + (1 – � n)S(tn) – u
∥∥

= lim
n→∞‖xn+1 – u‖

= c,

and so Lemma 2.5 implies

lim
n→∞

∥∥S(tn) – yn
∥∥ = 0. (3.18)

From the fact that

∥∥S(yn) – yn
∥∥ =

∥∥S(yn) – S(tn) + S(tn) – yn
∥∥

≤ ∥∥S(yn) – S(tn)
∥∥ +

∥∥S(tn) – yn
∥∥

≤ ‖yn – tn‖ +
∥∥S(tn) – yn

∥∥,
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(3.12) and (3.18), we have

lim
n→∞

∥∥S(yn) – yn
∥∥ = 0.

This implies that

lim
i→∞

∥∥(I – S)(yni )
∥∥ = lim

i→∞
∥∥yni – S(yni )

∥∥ = 0.

Now, by the demiclosedness principle [33], we have z ∈ Fix(S). Consequently, 
 w(xn) ⊂ � .
By Lemma 2.6, the sequence {xn} is weakly convergent to a point z in � and Lemma 3.2
[28] assures z = limn→∞ P� xn. �

Remark 3.2 We can obtain the following statements:
(i) If f = 0, T = PQ, and S = I , then problem (3.1) coincides with the SFP and algorithm

(3.2) reduces to algorithm (1.8) for solving the SFP.
(ii) If T = I , then problem (3.1) coincides with the VIP and FPP and algorithm (3.2)

reduces to algorithm (1.5) for solving the VIP and FPP.
(iii) If S = I , then problem (3.1) coincides with problem 3.1 in [32] and if � n, µ n = 0, we

obtain that algorithm (3.2) reduces to algorithm 3.2 in [32].

The following result provides suitable conditions in order to guarantee the existence of
a common solution of the split variational inequality problems and fixed point problems,
that is, finding a point x∗ such that

x∗ ∈ VI(C, f ) ∩ Fix(S) and Ax∗ ∈ VI(Q, g). (3.19)

Theorem 3.3 Set � = {z ∈ VI(C, f ) ∩ Fix(S) : Az ∈ VI(Q, g)} and assume that � 	= ∅. Let
the sequences {xn}, {yn} and {zn} be generated by x1 = x ∈ C and

yn = µ nxn + (1 – µ n)PC
(
xn – � nA∗(

I – PQ(I – � g)
)
Axn

)
,

zn = PC
(
yn – � nf (yn)

)
, (3.20)

xn+1 = � nyn + (1 – � n)SPC
(
yn – � nf (zn)

)
,

for each n ∈N , where � ∈ (0, 2� ). Then the sequence {xn} converges weakly to a point z ∈ � ,
where z = limn→∞ P� xn.

Proof It is clear from � -inverse strongly monotonicity of g that it is 1
� -Lipschitz continuous

and so, for � ∈ (0, 2� ), we obtain that I – � g is nonexpansive. Since PQ is firmly nonexpan-
sive, then PQ(I – � g) is nonexpansive. By taking T = PQ(I – � g) in Theorem 3.1, we obtain
that {xn} converges weakly to a point z ∈ VI(C, f ) ∩ Fix(S) and Az ∈ Fix(PQ(I – � g)). It
follows from Az = PQ(I – � g)Az and Lemma 2.1 that Az ∈ VI(Q, g). This completes the
proof. �

Remark 3.4 We can obtain the following statements:
(i) If f = 0, g = 0, and S = I , then problem (3.19) coincides with the SFP and algorithm

(3.20) reduces to algorithm (1.8) for solving the SFP.
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(ii) If g = 0 and Q = H2, then problem (3.19) coincides with the VIP and FPP and
algorithm (3.20) reduces to algorithm (1.5) for solving the VIP and FPP.

(iii) If S = I , then problem (3.19) coincides with problem 3.1 in [32] and if � n, µ n = 0,
then algorithm (3.20) reduces to algorithm (1.10).

4 Applications
In this section, by using the main results, we give some applications to the weak conver-
gence of the produced algorithms for the equilibrium problem, zero point problem and
convex minimization problem.

The equilibrium problem was formulated by Blum and Oettli [4] in 1994 for finding a
point x∗ such that

F
(
x∗, y

) ≥ 0 for all y ∈ C, (4.1)

where F : C × C → R is a bifunction. The solution set of equilibrium problem (4.1) is
denoted by EP(C,F).

In [4], we know that if F is a bifunction such that
(A1) F(x,x) = 0 for all x ∈ C;
(A2) F is monotone, that is, F(x, y) + F(y,x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, lim supt↓0 F(tz + (1 – t)x, y) ≤ F(x, y);
(A4) for each fixed x ∈ C, y �→ F(x, y) is lower semicontinuous and convex,

then there exists z ∈ C such that

F(z, y) +
1
r
〈y – z, z – x〉 ≥ 0, ∀y ∈ C,

where r is a positive real number and x ∈H .
For r > 0 and x ∈ H , the resolvent Tr : H → C of a bifunction F which satisfies conditions

(A1)–(A4) is formulated as follows:

Trx =
{
z ∈ C : F(z, y) +

1
r
〈y – z, z – x〉 ≥ 0, for all y ∈ C

}
for all x ∈H ,

and has the following properties:
(i) Tr is single-valued and firmly nonexpansive;

(ii) Fix(Tr) = EP(C,F);
(iii) EP(C,F) is closed and convex.

For more details, see [13].
The following result is related to the equilibrium problems by applying Theorem 3.1.

Theorem 4.1 Let F : C ×C →R be a bifunction satisfying conditions (A1)–(A4). Set � =
{z ∈ VI(C, f ) ∩ Fix(S) : Az ∈ EP(C,F)} and suppose that � 	= ∅. Let the sequences {xn}, {yn}
and {zn} be generated by x1 = x ∈ C and

⎧
⎪⎪⎨

⎪⎪⎩

yn = µ nxn + (1 – µ n)PC(xn – � nA∗(I – Tr)Axn),

zn = PC(yn – � nf (yn)),

xn+1 = � nyn + (1 – � n)SPC(yn – � nf (zn)),

(4.2)
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for each n ∈N,where Tr is a resolvent of F for r > 0.Then the sequence {xn} converges weakly
to a point z ∈ � , where z = limn→∞ P� xn.

Proof Since Tr is nonexpansive, the proof follows from Theorem 3.1 by taking Tr = T .
�

The following results are the application of Theorem 3.1 to the zero point problem.

Theorem 4.2 Let B : H2 ⇒ H2 be a maximal monotone mapping with D(B) 	= ∅. Set � =
{z ∈ VI(C, f ) ∩ Fix(S) : Az ∈ B–10} and assume that � 	= ∅. Let the sequences {xn}, {yn} and
{zn} be generated by x1 = x ∈ C and

⎧
⎪⎪⎨

⎪⎪⎩

yn = µ nxn + (1 – µ n)PC(xn – � nA∗(I – Jr)Axn),

zn = PC(yn – � nf (yn)),

xn+1 = � nyn + (1 – � n)SPC(yn – � nf (zn)),

(4.3)

for each n ∈N, where Jr is a resolvent of B for r > 0. Then the sequence {xn} converges weakly
to a point z ∈ � , where z = limn→∞ P� xn.

Proof Since Jr is firmly nonexpansive and Fix(Jr) = B–10, the proof follows from Theo-
rem 3.1 by taking Jr = T . �

Theorem 4.3 Let B : H2 ⇒ H2 be a maximal monotone mapping with D(B) 	= ∅ and F :
H2 → H2 be a � -inverse strongly monotone mapping. Set � = {z ∈ VI(C, f ) ∩ Fix(S) : Az ∈
(B + F)–10} and assume that � 	= ∅. Let the sequences {xn}, {yn} and {zn} be generated by
x1 = x ∈ C and

⎧
⎪⎪⎨

⎪⎪⎩

yn = µ nxn + (1 – µ n)PC(xn – � nA∗(I – Jr(I – rF))Axn),

zn = PC(yn – � nf (yn)),

xn+1 = � nyn + (1 – � n)SPC(yn – � nf (zn)),

(4.4)

for each n ∈ N, where Jr is a resolvent of B for r ∈ (0, 2� ). Then the sequence {xn} converges
weakly to a point z ∈ � , where z = limn→∞ P� xn.

Proof Since F is � -inverse strongly monotone, then I – rF is nonexpansive. By the non-
expansiveness of Jr , we obtain that Jr(I – rF) is also nonexpansive. We know that z ∈
(B+ F)–10 if and only if z = Jr(I – rF)z. Thus the proof follows from Theorem 3.1 by taking
Jr(I – rF) = T . �

Let � be a real-valued convex function from C to R, the typical form of constrained
convex minimization problem is finding a point x∗ ∈ C satisfying

�
(
x∗)

= min
x∈C � (x). (4.5)

Denote the solution set of constrained convex minimization problem (4.5) by
arg minx∈C � (x).

By applying Theorem 3.3, we get the following result.
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Theorem 4.4 Let � : H2 →R be a differentiable convex function and suppose that∇� is a
� -inverse strongly monotone mapping. Set � = {z ∈ VI(C, f ) ∩Fix(S) : Az ∈ arg miny∈Q � (y)}
and assume that � 	= ∅. Let the sequences {xn}, {yn} and {zn} be generated by x1 = x ∈ C
and

⎧
⎪⎪⎨

⎪⎪⎩

yn = µ nxn + (1 – µ n)PC(xn – � nA∗(I – PQ(I – � ∇� ))Axn),

zn = PC(yn – � nf (yn)),

xn+1 = � nyn + (1 – � n)SPC(yn – � nf (zn)),

(4.6)

for each n ∈N, where � ∈ (0, 2� ). Then the sequence {xn} converges weakly to a point z ∈ � ,
where z = limn→∞ P� xn.

Proof Since � is convex, for each x, y ∈ C, we have

�
(
x + � (z – x)

) ≤ (1 – � )� (x) + �� (z) for all � ∈ (0, 1).

It follows that 〈∇� (x),x – z〉 ≥ � (x) – � (z) ≥ 〈∇� (z),x – z〉. This implies that ∇� is mono-
tone. By Lemma 4.6 [32] and taking g = ∇� , the proof follows from Theorem 3.3. �

We obtain the following result for solving the split minimization problems and fixed
point problems by applying Theorem 3.3.

Theorem 4.5 Let � 1 : H1 → R and � 2 : H2 → R be differentiable convex functions. Sup-
pose that∇� 1 is a k-Lipschitz continuousmapping and∇� 2 is � -inverse stronglymonotone.
Set � = {z ∈ arg minx∈C � 1(x) ∩ Fix(S) : Az ∈ arg miny∈Q � 2(y)} and assume that � 	= ∅. Let
the sequences {xn}, {yn} and {zn} be generated by x1 = x ∈ C and

⎧
⎪⎪⎨

⎪⎪⎩

yn = µ nxn + (1 – µ n)PC(xn – � nA∗(I – PQ(I – � ∇� 2))Axn),

zn = PC(yn – � n∇� 1(yn)),

xn+1 = � nyn + (1 – � n)SPC(yn – � n∇� 1(zn)),

(4.7)

for each n ∈N, where � ∈ (0, 2� ). Then the sequence {xn} converges weakly to a point z ∈ � ,
where z = limn→∞ P� xn.

Proof The convexity of � 1 implies that ∇� 1 is monotone. The result follows from
Lemma 4.6 [32] by taking f = ∇� 1 and g = ∇� 2 in Theorem 3.3. �
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