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Abstract
Consider a non-Newtonian fluid equation with a nonlinear convection term and a
source term. The existence of the weak solution is proved by Simon’s compactness
theorem. By the Hölder inequality, if both the diffusion coefficient and the convection
term are degenerate on the boundary, then the stability of the weak solutions may be
proved without the boundary value condition. If the diffusion coefficient is only
degenerate on a part of the boundary value, then a partial boundary value condition
is required. Based on this partial boundary, the stability of the weak solutions is
proved. Moreover, the uniqueness of the weak solution is proved based on the
optimal boundary value condition.
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1 Introduction and the main results
The evolutionary equation related to the p-Laplacian

ut = div
(
a(x)|∇u|p–2∇u

)
(1.1)

arises in the fields of mechanics, physics and biology. For instance, in the theory of non-
Newtonian fluids, the quantity p is a characteristic of the medium, the media with p > 2
are called dilatant fluids and those with p < 2 are called pseudoplastics; if p = 2 they are
Newtonian fluids. If a(x) ≡ 1, there is a tremendous amount of work on the existence, the
uniqueness and the regularity of the weak solutions of the equation, one can refer to Refs.
[1–7] and the references therein. Zhao [8] had studied the equation

ut = div
(|∇u|p–2∇u

)
+ f (∇u, u, x, t), (1.2)

and revealed some essential differences coming from the term f (∇u, u, x, t). Yin–Wang [9]
had studied the equation

∂u
∂t

– div
(
a(x)|∇u|p–2∇u

)
– bi(x)Diu + c(x, t)u = f (x, t), (1.3)
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revealed how the degeneracy of the diffusion coefficient a(x) affects the boundary value
condition, where Di = ∂

∂xi
, a ∈ C(Ω) and a(x) ≥ 0.

In this paper, we consider

ut = div
(
a(x)|∇u|p–2∇u

)
+

N∑

i=1

∂bi(u, x, t)
∂xi

+ f (u, x, t), (x, t) ∈ QT , (1.4)

where Ω is a bounded domain in R
N with appropriately smooth boundary, p > 1, QT =

Ω × (0, T), a(x) ∈ C1(Ω), a(x) ≥ 0 and

a(x) > 0, x ∈ Ω , (1.5)

the nonlinear convection bi(s, x, t) ∈ C(R × QT ), the source term f (s, x, t) ∈ C(R × QT ).
Comparing with [9], we must pay attention on how these two nonlinear terms affect the
well-posedness problem of Eq. (1.4).

The condition (1.5) guarantees that Eq. (1.4) has not hyperbolic character. In other
words, if the set {x ∈ Ω : a(x) = 0} has an interior point, then Eq. (1.4) is with a hyperbolic-
parabolic type, the uniqueness of the solution may be obtained only in the sense of the
entropy solution. Since the condition (1.5), a(x) only may be degenerate on the boundary,
Eq. (1.4) is a sheer degenerate parabolic equation. Thus, we can discuss its well-posedness
of the usual weak solutions instead of the entropy solution.

Drawing on the experience of the linear degenerate parabolic theory, to study the well-
posedness of the solutions of Eq. (1.4), the initial value

u(x, 0) = u0(x), x ∈ Ω , (1.6)

is always necessary. While, the usual Dirichlet boundary value condition

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (1.7)

may be overdetermined. So it is only a partial boundary condition

u(x, t) = 0, (x, t) ∈ Σp × (0, T), (1.8)

imposed in [9], where Σp ⊆ ∂Ω . In particular, if Σp = ∅, then there is not any boundary
value condition. But the partial boundary condition [9] is in a weaker sense than the trace.

The methods used in what follows are different from those in [9], we still use the sense
of the trace to define the boundary value condition (1.7) or (1.8). Roughly speaking, we
will show that the condition

a(x) = bi(·, x, t) = 0, x ∈ ∂Ω , (1.9)

can substitute the boundary value condition (1.7). But if (1.9) is not right, only the partial
boundary value condition (1.8) is required, we need to find the explicit formulas of Σp and
judge which one is the best.
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The definition of the weak solutions follows a Banach space which is defined as follows.
For every fixed t ∈ [0, T], let

Vt(Ω) =
{

u(x) : u(x) ∈ L2(Ω) ∩ W 1,1
0 (Ω),

∣∣∇u(x)
∣∣p ∈ L1(Ω)

}
,

‖u‖Vt (Ω) = ‖u‖2,Ω + ‖∇u‖p,Ω ,
(1.10)

and denote by V ′
t (Ω) its dual space. By W(QT ) we denote the Banach space

⎧
⎨

⎩
W(QT ) = {u : [0, T] → Vt(Ω)|u ∈ L2(QT ), |∇u|p ∈ L1(QT ), u = 0 on Γ },
‖u‖W(QT ) = ‖∇u‖p,QT + ‖u‖2,QT .

(1.11)

W′(QT ) is the dual space of W(QT ) (the space of linear functionals over W(QT )).

Definition 1.1 A function u(x, t) is said to be a weak solution of Eq. (1.4) with the initial
value (1.6), if

u ∈ L∞(QT ), a(x)|∇u|p ∈ L1(QT ), ut ∈ W′(QT ) (1.12)

and for any function ϕ1 ∈ L∞(0, T ; W 1,p
0 (Ω)), ϕ2 ∈ L1(0, T ; W 1,p

loc (Ω)),

〈〈ut ,ϕ1ϕ2〉〉 +
∫∫

QT

a(x)|∇u|p–2∇u · ∇(ϕ1ϕ2) +
N∑

i=1

bi(u, x, t) · (ϕ1ϕ2)xi dx dt

=
∫∫

QT

f (u, x, t)ϕ1ϕ2 dx dt. (1.13)

The initial value is satisfied in the sense of that

lim
t→0

∫

Ω

∣
∣u(x, t) – u0(x)

∣
∣dx = 0. (1.14)

Definition 1.2 Let p > 1. The function u(x, t) is said to be the weak solution of Eq. (1.4)
with the initial boundary values (1.6)–(1.7) (or (1.8)) if u satisfies Definition 1.1, and the
boundary condition (1.7) (or (1.8) respectively) is satisfied in the sense of trace.

Theorem 1.3 If p > 1, bi(s, x, t) and f (s, x, t) are C1(R× Ω × [0, T]) functions, and

u0 ∈ L∞(Ω), a(x)|∇u0|p ∈ L1(Ω), (1.15)

then Eq. (1.4) with initial value (1.6) has a weak solution.

Theorem 1.4 Let p > 1,
∫
Ω

a(x)– 1
p–1 dx < ∞, bi(s, x, t) and f (s, x, t) be C(R × Ω × [0, T])

functions. Then the initial boundary value problem (1.4)–(1.6) and (1.7) (or (1.8)) has a
solution.

The first aim of this paper is to prove the following stability theorems without any
boundary value condition.
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Theorem 1.5 Let u(x, t), v(x, t) be two solutions of (1.4) with the initial values u0(x), v0(x),
respectively. If there is a function gi(x) with gi(x)|x∈∂Ω = 0 such that

∣∣bi(u, x, t) – bi(v, x, t)
∣∣ ≤ cgi(x)|u – v|,

∫

Ω

∣∣gi(x)
∣∣

p
p–1 a(x)– 1

p–1 dx < ∞, (1.16)

f (s, x, t) is a Lipschitz function and a(x) satisfies

a(x)|x∈∂Ω = 0, n
∫

Ω\Ω 1
n

a(x)|∇a|p dx ≤ c, (1.17)

then
∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx. (1.18)

The stability (1.17) is true.

Here and the hereafter, for any positive small δ > 0, Ωδ = {x ∈ Ω : a(x) > δ}.
An interesting corollary from Theorem 1.5 is that, if

∫
Ω

a(x)– 1
p–1 dx < ∞, then without

the condition (1.16), only if the condition (1.17) holds, the stability (1.18) is true. Addition-
ally, the second inequality of (1.16) implies that gi(x)|x∈∂Ω = 0. In fact, the condition (1.17)
can be replaced by the other conditions. The following theorem is one of results expected.

Theorem 1.6 Let u(x, t), v(x, t) be two solutions of (1.4) with the initial values u0(x), v0(x),
respectively. If there is a function gi(x) with gi(x)|x∈∂Ω = 0 such that (1.16) is true f (s, x, t) is
a Lipschitz function and a(x) satisfies

a(x)|x∈∂Ω = 0,
∫

Ω

a(x)1–p|∇a|p dx < ∞, (1.19)

then the stability (1.18) is true.

Moreover, by choosing suitable test function, using the Hölder inequality, we can prove
another stability theorem without any boundary value condition.

Theorem 1.7 Let u(x, t), v(x, t) be two solutions of (1.4) with the initial values u0(x), v0(x),
respectively. If f (s, x, t) and bi(s, x, t) are Lipschitz functions, a(x) satisfies

a(x)|x∈∂Ω = 0,
∫

Ω 1
m

\Ω 2
m

|∇a|
a(x) – 1

m
dx < ∞, (1.20)

then the stability (1.18) is true.

The second aim of this paper is to prove the stability theorems based on the partial
boundary value condition (1.8).

Theorem 1.8 Let u(x, t), v(x, t) be two solutions of (1.4) with the initial values u0(x), v0(x),
respectively, and with the same partial boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ Σp × (0, T), (1.21)
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where

Σp = Σ1 =
{

x ∈ ∂Ω : a(x)axi �= 0
}

. (1.22)

If a(x) satisfies (1.5) and

n
∫

Ω\Ω 1
n

a(x)|∇a|p dx ≤ c,
∫

Ω

a(x)– 1
p–1 dx < ∞, (1.23)

f (s, x, t) and bi(s, x, t) are Lipschitz functions, then the stability (1.18) is true.

We emphasize that the conditions (1.16), (1.17), (1.19), (1.20) and (1.23) are used to
prove the stability of the weak solutions. In fact, only if a(x) satisfies (1.5), the uniqueness
is always true.

Theorem 1.9 Let p > 1, bi(s, x, t) be a Lipschitz function, f (s, x, t) is a continuous function.
If u(x, t), v(x, t) are two solutions of Eq. (1.4) with the initial values u0(x), v0(x), respectively,
with the same partial boundary value condition (1.21) in which

Σp = Σ2 =
{

x ∈ ∂Ω : a(x) �= 0
}

, (1.24)

then there exists a positive constant β ≥ 2 such that

∫

Ω

aβ
∣
∣u(x, t) – v(x, t)

∣
∣2 dx ≤ c

∫

Ω

aβ
∣
∣u0(x) – v0(x)

∣
∣2 dx. (1.25)

In particular, for any small enough constant δ > 0,

∫

Ωδ

∣
∣u(x, t) – v(x, t)

∣
∣2 dx ≤ cδ–β

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣2 dx, (1.26)

where Ωδ = {x ∈ Ω : a(x) > δ} as before.

From this theorem, if u0(x) = v0(x), by the arbitrariness of δ in (1.26), the solution of
Eq. (1.4) with the initial value and the partial boundary value condition (1.24) is unique. We
can see that, if Σ2 = ∂Ω , i.e., a(x) ≥ c > 0, Eq. (1.4) is similar to the classical evolutionary p-
Laplacian equation, (1.24) is the usual Dirichlet boundary value condition, the uniqueness
is true naturally. While Σ2 = ∅, i.e., a(x) = 0 on the boundary ∂Ω , the uniqueness of the
weak solution is true independent of the boundary value condition. If bi(u, x, t) = bi(u),
ut ∈ L2(QT ) and a(x) = dα(x) where d(x) = dist(x, ∂Ω), the same conclusion as of Theo-
rem 1.9 had been proved by the author in his previous work [10]. So, essential progress
of this paper is that we do not assume that a(x)|x∈∂Ω = 0, the best partial boundary value
condition is (1.24). This fact also remains an open problem: whether the partial boundary
value condition (1.21) can be replaced by (1.24).

2 The existence of the weak solutions
This section considers the weak solution of the initial-value problem for Eq. (1.4). It is
supposed that u0 satisfies (1.15)
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By the results of [10, Sect. 8], also referring to [11], we have the following important
lemma.

Lemma 2.1 If uε ∈ L∞(0, T ; L2(Ω)) ∩ W(QT ), ‖uεt‖W′(QT ) ≤ c, ‖∇(|uε|q–1uε)‖p,QT ≤ c,
then there is a subsequence of {uε} which is relatively compactness in Ls(QT ) with s ∈ (1,∞).
Here q ≥ 1.

We consider the following regularized problem:

uεt – div
((

a(x) + ε
)(|∇uε|2 + ε

) p–2
2 ∇uε) –

N∑

i=1

∂bi(uε , x, t)
∂xi

= f (uε , x, t), (x, t) ∈ QT , (2.1)

uε(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (2.2)

uε(x, 0) = uε,0(x), x ∈ Ω . (2.3)

For any uε,0 ∈ C∞
0 (Ω), a(x)|∇uε,0|p uniformly is convergent to a(x)|∇u0(x)|p in L1(Ω), it is

well known that the above problem has a unique classical solution [12, 13].
According to the maximum principle [2], there is a constant c only dependent on

‖u0‖L∞(Ω) but independent on ε, such that

‖uε‖L∞(QT ) ≤ c. (2.4)

Multiplying (2.1) by uε and integrating it over QT , we easily have

1
2

∫

Ω

u2
ε dx +

∫∫

QT

(
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 |∇uε|2 dx dt

≤
∫∫

QT

∣
∣f (uε , x, t)uε

∣
∣ ≤ c. (2.5)

For small enough δ > 0, since p > 1, by (1.5) and (2.5),

∫ T

0

∫

Ωδ

|∇uε|dx dt ≤ c
(∫ T

0

∫

Ωδ

|∇uε|p dx dt
) 1

p
≤ c(δ). (2.6)

Also

∫∫

QT

a(x)|∇uε|p dx dt ≤ c
∫∫

QT

(
a(x) + ε

)|∇uε|p dx dt ≤ c. (2.7)

Now, for any v ∈ W(QT ), ‖v‖W (QT ) = 1,

〈uεt , v〉 = –
∫∫

QT

(
a(x) + ε

)(|∇uε|2 + ε
) p–2

2 ∇uε · ∇v dx dt

–
∫∫

QT

∂v
∂xi

bi(uε , x, t) dx dt +
∫∫

QT

f (uε , x, t)v dx dt.
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Using the Young inequality, we can show that

∣
∣〈uεt , v〉∣∣ ≤ c

[
1 +

∫∫

QT

(
a(x) + ε

)|∇uε|p dx dt +
∫∫

QT

(|v|p + |∇v|p)dx dt
]

≤ c,

then

‖uεt‖W′(QT ) ≤ c. (2.8)

Now, let ϕ ∈ C1
0(Ω), 0 ≤ ϕ ≤ 1 such that

ϕ|Ω2δ
= 1, ϕ|Ω\Ωδ

= 0.

Then

∣∣〈(ϕuε)t , v
〉∣∣ =

∣∣〈ϕuεt , v〉∣∣ ≤ ∣∣〈uεt , v〉∣∣,

we have

∥
∥(

ϕ(x)u
)
εt

∥
∥

W′(QT ) ≤ ‖uεt‖W′(QT ) ≤ c, (2.9)
∫∫

QT

∣∣∇(ϕuε)
∣∣p dx dt ≤ c(δ)

(
1 +

∫ T

0

∫

Ωδ

|∇uε|p dx dt
)

≤ c(δ), (2.10)

and so

∥
∥∇(ϕuε)

∥
∥

p,QT
≤ c. (2.11)

By Lemma 2.1, ϕuε is relatively compact in Ls(QT ) with s ∈ (1,∞). Then ϕuε → ϕu a.e. in
QT . In particular, due to the arbitrariness of δ, uε → u a.e. in QT .

Hence, by (2.4), (2.7), there exists a function u and an n-dimensional vector function
−→
ζ = (ζ1, . . . , ζn) satisfying

u ∈ L∞(QT ), |−→ζ | ∈ L
p

p–1 (QT ),

and

uε ⇀ ∗u, in L∞(QT ), uε → u, a.e. in QT ,

bi(uε , x, t) → bi(u, x, t), a.e. in QT ,

f (uε , x, t) → f (u, x, t), a.e. in QT ,

∇uε ⇀ ∇u in
(
Lp

loc(QT )
)N ,

(
a(x) + ε

)|∇uε|p–2∇uε ⇀
−→
ζ in

(
L

p
p–1 (QT )

)N .

Similar to the evolutionary p-Laplacian equation, we can prove that

∫∫

QT

a(x)|∇u|p–2∇u · ∇ϕ dx dt =
∫∫

QT

−→
ζ · ∇ϕ dx dt, (2.12)
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for any function ϕ ∈ C1
0(QT ). Then

〈〈ut ,ϕ〉〉 +
∫∫

QT

[

a(x)|∇u|p–2∇u · ∇ϕ +
N∑

i=1

bi(u, x, t)ϕxi

]

dx dt

=
∫∫

QT

f (u, x, t)ϕ dx dt. (2.13)

If we denote Ωϕ = suppϕ, then

〈〈ut ,ϕ〉〉 +
∫ T

0

∫

Ωϕ

[

a(x)|∇u|p–2∇u · ∇ϕ +
N∑

i=1

bi(u, x, t)ϕxi

]

dx dt

=
∫ T

0

∫

Ωϕ

f (u, x, t)ϕ dx dt. (2.14)

Now, for any ϕ1 ∈ C1
0(QT ), ϕ2(x, t) ∈ L1(0, T ; W 1,p

loc (Ω)), it is clearly that

ϕ2 ∈ L1(0, T ; W 1,p(Ωϕ1 ).

By the fact that C∞
0 (Ωϕ1 ) is dense in W 1,p(Ωϕ1 ), by a limit process, we have

〈〈ut ,ϕ1ϕ2〉〉 +
∫ T

0

∫

Ωϕ1

[
a(x)|∇u|p–2∇u · ∇(ϕ1ϕ2) + bi(u, x, t)(ϕ1ϕ2)xi

]
dx dt

=
∫ T

0

∫

Ωϕ1

f (u, x, t)(ϕ1ϕ2) dx dt, (2.15)

which implies that

〈〈ut ,ϕ1ϕ2〉〉 +
∫ T

0

∫

Ω

[
a(x)|∇u|p–2∇u · ∇(ϕ1ϕ2) + bi(u, x, t)(ϕ1ϕ2)xi

]
dx dt

=
∫ T

0

∫

Ω

f (u, x, t)(ϕ1ϕ2) dx dt. (2.16)

Again by a limit process, ϕ1 can be chosen as in Definition 1.1.
At last, we are able to prove (1.14) as in [14], then u is a solution of Eq. (1.4) with the

initial value (1.6) in the sense of Definition 1.1. Thus we have Theorem 1.3. By a similar
method to [15], one easily proves the following lemma, we omit the details here.

Lemma 2.2 If
∫
Ω

a(x)– 1
p–1 dx < ∞, u is a weak solution of Eq. (1.4) with the initial value

(1.6). Then, for any given t ∈ [0, T), u ∈ W 1,γ (Ω) for some γ > 1, and the trace of u on the
boundary ∂Ω can be defined in the traditional way.

By Theorem 1.3 and Lemma 2.2, we have Theorem 1.4 clearly.
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3 The stability without the boundary value condition
For any given positive integer n, let gn(s) be an odd function, and

gn(s) =

⎧
⎨

⎩
1, s > 1

n ,

n2s2e1–n2s2 , 0 ≤ s ≤ 1
n .

Clearly, if denoting Gn(s) =
∫ s

0 gn(s) ds, then

lim
n→0

gn(s) = sgn(s), lim
n→0

Gn(s) = |s|, s ∈ (–∞, +∞),

and by

g ′
n(s) =

⎧
⎨

⎩
0, s > 1

n ,

2n2se1–n2s2 (1 – n2s2e1–n2s2 ), 0 ≤ s ≤ 1
n ,

we have

lim
n→0

sg ′
n(s) = 0,

where c is independent of n.

Lemma 3.1 Let u ∈ W(QT ), ut ∈ W′(QT ). Then ∀ a.e. t1, t2 ∈ (0, T),

∫ t2

t1

∫

Ω

uut dx dt =
1
2

[∫

Ω

(
u2(x, t2) – u2(x, t1)

)
dx

]
.

This is Corollary 2.1 of [11].
By a similar analysis, one can generalize Lemma 3.1.

Lemma 3.2 Let u ∈ W(QT ), ut ∈ W′(QT ). For any continuous function h(s), H(s) =
∫ s

0 h(s) ds, a.e. t1, t2 ∈ (0, T),

∫ t2

t1

∫

Ω

h(u)ut dx dt =
∫

Ω

(
H(u)(x, t2) – H(u)(x, t1)

)
dx.

Proof of Theorem 1.5 Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.4) with the
initial values u(x, 0), v(x, 0), respectively. Let

φn(x) =

⎧
⎨

⎩
1, if x ∈ Ω 1

n
,

na(x), if x ∈ Ω \ Ω 1
n

.
(3.1)

By a limit process, we can choose χ[τ ,s]φngn(u – v) as the test function, where χ[τ ,s] is the
characteristic function of [τ , s] ⊂ (0, T), then

∫ s

τ

∫

Ω

φn(x)gn(u – v)
∂(u – v)

∂t
dx dt

+
∫ s

τ

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)g ′
n(u – v)φn(x) dx dt
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+
∫ s

τ

∫

Ω

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · (u – v)gn(u – v)∇φn dx dt

+
∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
φnxi gn(u – v) dx dt

+
∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiφng ′

n(u – v) dx dt

=
∫ s

τ

∫

Ω

[
f (u, x, t) – f (v, x, t)

]
φngn(u – v) dx dt. (3.2)

In the first place,

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)g ′
n(u – v)φn(x) dx ≥ 0. (3.3)

By Lemma 3.2, using the Lebesgue dominated convergence theorem,

lim
n→∞

∫ s

τ

∫

Ω

φn(x)gn(u – v)
∂(u – v)

∂t
dx dt

= lim
n→∞

∫ s

τ

∫

Ω

∂(φn(x)Gn(u – v))
∂t

dx dt

= lim
n→∞

∫

Ω

φn(x)
[
Gn(u – v)(x, s) – Gn(u – v)(x, τ )

]
dx

=
∫

Ω

|u – v|(x, s) dx –
∫

Ω

|u – v|(x, τ ) dx. (3.4)

Since ∇φn = n∇a(x) when x ∈ Ω \ Ω 1
n

, in the other places, it is identical to zero, by the
assumption of (1.19), we have

∣
∣∣
∣

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φngn(u – v) dx
∣
∣∣
∣

=
∣∣∣
∣

∫

Ω\Ω 1
n

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φngn(u – v) dx
∣∣∣
∣

≤ n
∫

Ω\Ω 1
n

a(x)
(|∇u|p–1 + |∇v|p–1)|∇agn(u – v)|dx

≤ cn
(∫

Ω\Ω 1
n

a(x)
(|∇u|p + |∇v|p)dx

) p–1
p

(∫

Ω\Ω 1
n

a(x)|∇a|p dx
) 1

p

≤ c
[(∫

Ω\Ω 1
n

a(x)|∇u|p dx
) p–1

p
+

(∫

Ω\Ω 1
n

a(x)|∇v|p dx
) p–1

p
]

· n
(∫

Ω\Ω 1
n

a(x)|∇a|p dx
) 1

p
. (3.5)
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Since a(x) ∈ C1(Ω), by (3.5),

lim
n→∞

∣
∣∣
∣

∫ s

τ

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φngn(u – v) dx dt
∣
∣∣
∣

≤ c lim
n→∞

∫ s

τ

(∫

Ω\Ω 1
n

a(x)|∇a|p dx
) 1

p
dt

= 0. (3.6)

In the second place, since bi(s, x, t) satisfies the condition (1.16)

∣
∣bi(u, x, t) – bi(v, x, t)

∣
∣ ≤ cgi(x)|u – v|,

∫

Ω

∣
∣gi(x)

∣
∣

p
p–1 a(x)– 1

p–1 dx < ∞,

using the Lebesgue dominated convergence theorem, we have

lim
n→∞

∣∣
∣∣

∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiφng ′

n(u – v) dx dt
∣∣
∣∣

≤ c lim
n→∞

∫ s

τ

∫

Ω\Ω 1
n

∣
∣g ′

n(u – v)(u – v)gi(x)a– 1
p
∣
∣
∣
∣a(x)

1
p (u – v)xiφn

∣
∣dx dt

≤ c lim
n→∞

(∫ s

τ

∫

Ω\Ω 1
n

a(x)
(|∇u|p + |∇v|p)dx dt

) 1
p

·
(∫ s

τ

∫

Ω

∣∣g ′
n(u – v)(u – v)gi(x)a(x)– 1

p
∣∣

p
p–1 dx dt

) p–1
p

= 0. (3.7)

Last but not least, by condition (1.18) and gi(x)|x∈∂Ω = 0, we clearly have

lim
n→∞

∣∣∣
∣

∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
φnxi gn(u – v) dx dt

∣∣∣
∣

≤ lim
n→∞

∫ s

τ

n
∫

Ω

|u – v|∣∣gi(x)
∣∣|axi |dx dt

≤ c lim
n→∞

∫ s

τ

n
∫

Ω

∣
∣gi(x)

∣
∣|axi |dx dt

=
∫ s

τ

∫

∂Ω

∣∣gi(x)
∣∣|axi |dΣ dt

= 0, (3.8)

lim
n→∞

∣
∣∣
∣

∫ s

τ

∫

Ω

[
f (u, x, t) – f (v, x, t)

]
(u – v)φngn(u – v) dx dt

∣
∣∣
∣

≤
∫ s

τ

∫

Ω

|u – v|dx dt

= 0. (3.9)
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Now, let n → ∞ in (3.2). Then

∫

Ω

∣
∣u(x, s) – v(x, s)

∣
∣dx

≤
∫

Ω

∣
∣u(x, τ ) – v(x, τ )

∣
∣dx + c

(∫ t

0

∫

Ω

|u – v|dx dt
)l

, ∀t ∈ [0, T), (3.10)

where l ≤ 1
By (3.10), we easily to get

∫

Ω

∣
∣u(x, s) – v(x, s)

∣
∣dx ≤

∫

Ω

∣
∣u(x, τ ) – v(x, τ )

∣
∣dx,

and by the arbitrariness of τ , we have

∫

Ω

∣
∣u(x, s) – v(x, s)

∣
∣dx ≤

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx. �

4 Proofs of Theorem 1.6 and Theorem 1.7

Proof of Theorem 1.6 Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.4) with the
initial values u0(x), v0(x), respectively.

For large enough m, let

φm(x) =

⎧
⎨

⎩
1, if x ∈ Ω 1

m
,

ma(x), if x ∈ Ω \ Ω 1
m

.
(4.1)

By a limit process, we can choose χ[τ ,s]gn(φm(u – v)) as the test function, then

∫ s

τ

∫

Ω

gn
(
φm(u – v)

)∂(u – v)
∂t

dx dt

+
∫ s

τ

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)g ′
n
(
φm(u – v)

)
φm(x) dx dt

+
∫ s

τ

∫

Ω

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · (u – v)g ′
n
(
φm(u – v)

)∇φn dx dt

+
∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)φmxi g

′
n
(
φm(u – v)

)
dx dt

+
∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiφng ′

n
(
φm(u – v)

)
dx dt

=
∫ s

τ

∫

Ω

[
f (u, x, t) – f (v, x, t)

]
gn

(
φm(u – v)

)
dx dt. (4.2)

Certainly, we still have

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)g ′
n
(
φm(u – v)

)
φm(x) dx ≥ 0. (4.3)
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By Lemma 3.2, using the Lebesgue dominated convergence theorem,

lim
m→∞ lim

n→∞

∫ s

τ

∫

Ω

gn
(
φm(u – v)

)∂(u – v)
∂t

dx dt

= lim
m→∞ lim

n→∞

∫ s

τ

∫

Ω

∂Gn(φm(u – v))
∂t

dx dt

= lim
m→∞ lim

n→∞

∫

Ω

1
φm(x)

[
Gn

(
φm(u – v)

)
(x, s) – Gn

(
φm(u – v)

)
(x, τ )

]
dx

=
∫

Ω

|u – v|(x, s) dx –
∫

Ω

|u – v|(x, τ ) dx. (4.4)

As before, ∇φm = m∇a(x) when x ∈ Ω \ Ω 1
m

, in the other places, it is identical to zero,
by the fact that

lim
n→∞ g ′

n(s)s = 0,
∫

Ω

a(x)1–p|∇a|p dx < ∞,

using the Lebesgue dominated convergence theorem, we have

lim
n→∞

∣∣
∣∣

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇φm(u – v)g ′
n
(
φm(u – v)

)
dx

∣∣
∣∣

= lim
n→∞

∣∣
∣∣

∫

Ω\Ω 1
m

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇φm

φm
φm(u – v)g ′

n
(
φm(u – v)

)
dx

∣∣
∣∣

≤ c lim
n→∞

(∫

Ω\Ω 1
m

a(x)
(|∇u|p + |∇v|p)dx

) p–1
p

·
(∫

Ω\Ω 1
m

a(x)
∣
∣∣
∣
∇a
a

φm(u – v)g ′
n
(
φm(u – v)

)
∣
∣∣
∣

p

dx
) 1

p

= 0. (4.5)

In the second place, since bi(s, x, t) satisfies the condition (1.18)

∣
∣bi(u, x, t) – bi(v, x, t)

∣
∣ ≤ cgi(x)|u – v|,

∫

Ω

∣
∣gi(x)

∣
∣

p
p–1 a(x)– 1

p–1 dx < ∞,

using the Lebesgue dominated convergence theorem, we have

lim
n→∞

∣
∣∣
∣

∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiφmg ′

n
(
φm(u – v)

)
dx dt

∣
∣∣
∣

≤ c lim
n→∞

∫ s

τ

∫

Ω

∣∣g ′
m
(
φm(u – v)

)
φm(u – v)

[
bi(u, x, t) – bi(v, x, t)

]
a– 1

p
∣∣

× ∣
∣a

1
p (u – v)xi

∣
∣dx dt

≤ c lim
n→∞

(∫ s

τ

∫

Ω

a
(|∇u|p + |∇v|p)dx dt

) 1
p
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×
(∫ s

τ

∫

Ω

∣
∣g ′

n(u – v)(u – v)gi(x)a– 1
p
∣
∣

p
p–1 dx dt

) p–1
p

= 0. (4.6)

Last but not least, by

∫

Ω

∣∣∣
∣
axi

a

∣∣∣
∣dx ≤

(∫

Ω

∣∣a(x)– 1
p gi(x)

∣∣
p

p–1 dx
) p–1

p
(∫

Ω

a(x)
∣∣∣
∣
∇a
a

∣∣∣
∣

p

dx
) 1

p
≤ c,

using the Lebesgue dominated convergence theorem, we have

lim
n→∞

∣∣
∣∣

∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)φmxi g

′
n
(
φm(u – v)

)
dx dt

∣∣
∣∣

≤ lim
n→∞

∫ s

τ

∫

Ω

∣∣φm(u – v)g ′
n
(
φm(u – v)

)∣∣∣∣gi(x)(u – v)
∣∣
∣
∣∣
∣
axi

a

∣
∣∣
∣dx dt

= 0, (4.7)

lim
n→∞

∣∣
∣∣

∫ s

τ

∫

Ω

[
f (u, x, t) – f (v, x, t)

]
(u – v)gn

(
φm(u – v)

)
dx dt

∣∣
∣∣

≤
∫ s

τ

∫

Ω

|u – v|dx dt

= 0. (4.8)

Now, let n → ∞ in (5.2). Then

∫

Ω

∣
∣u(x, s) – v(x, s)

∣
∣dx

≤
∫

Ω

∣
∣u(x, τ ) – v(x, τ )

∣
∣dx + c

(∫ t

0

∫

Ω

|u – v|dx dt
)l

, ∀t ∈ [0, T),

where l ≤ 1.
By (4.8), we easily get

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣dx,

and by the arbitrariness of τ , we have

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx. �

Proof of Theorem 1.7 Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.4) with the
initial values u0(x), v0(x), respectively. Let

ϕm(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if x ∈ Ω 2
m

,

m(a(x) – 1
m ), if x ∈ Ω 1

m
Ω 2

m
,

0, if x ∈ Ω \ Ω 1
m

.

(4.9)



Zhan Journal of Inequalities and Applications        (2018) 2018:344 Page 15 of 21

By a limit process, we can choose χ[τ ,s]gn(ϕm(u – v)) as the test function, then

∫ s

τ

∫

Ω

gn
(
ϕm(u – v)

)∂(u – v)
∂t

dx dt

+
∫ s

τ

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)g ′
n
(
ϕm(u – v)

)
ϕm(x) dx dt

+
∫ s

τ

∫

Ω

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · (u – v)g ′
n
(
ϕm(u – v)

)∇ϕn dx dt

+
∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)ϕmxi g

′
n
(
ϕm(u – v)

)
dx dt

+
∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiϕmg ′

n
(
ϕm(u – v)

)
dx dt

=
∫ s

τ

∫

Ω

[
f (u, x, t) – f (v, x, t)

]
gn

(
ϕm(u – v)

)
dx dt. (4.10)

Similarly, we have

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)g ′
n
(
ϕm(u – v)

)
ϕm(x) dx ≥ 0 (4.11)

and

lim
m→∞ lim

n→∞

∫ s

τ

∫

Ω

gn
(
ϕm(u – v)

)∂(u – v)
∂t

dx dt

= lim
m→∞ lim

n→∞

∫ s

τ

∫

Ω

∂Gn(ϕm(u – v))
∂t

dx dt

= lim
m→∞ lim

n→∞

∫

Ω

1
ϕm(x)

[
Gn

(
ϕm(u – v)

)
(x, s) – Gn

(
ϕm(u – v)

)
(x, τ )

]
dx

=
∫

Ω

|u – v|(x, s) dx –
∫

Ω

|u – v|(x, τ ) dx. (4.12)

As before, ∇φm = m∇a(x) when x ∈ Ω \ Ω 1
m

, in the other places, it is identical to zero.
Since

∫
Ω

a(x)|∇u|p dx < ∞, by that a(x) > 0 when x ∈ Ω , we have

∫

Ω 1
m

\Ω 1
m

|∇u|p dx ≤
∫

Ω 1
m

|∇u|p dx < c(m), (4.13)

which yields

∫

Ω 1
m

\Ω 2
m

|∇u|p–1 dx ≤
∫

Ω 1
m

|∇u|p–1 dx < c(m). (4.14)

By the fact that

lim
n→∞ g ′

n(s)s = 0,
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and the assumption of (1.20), using the Lebesgue dominated convergence theorem, we
have

lim
n→∞

∣∣
∣∣

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇ϕm(u – v)g ′
n
(
ϕm(u – v)

)
dx

∣∣
∣∣

= lim
n→∞

∣∣
∣∣

∫

Ω 1
m

\Ω 2
m

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇ϕm

φm
ϕm(u – v)g ′

n
(
ϕm(u – v)

)
dx

∣∣
∣∣

≤ lim
n→∞

∫

Ω 1
m

\Ω 2
m

(|∇u|p–1 + |∇v|p–1) |∇a|
a(x) – 1

m
|ϕm(u – v)g ′

n
(
ϕm(u – v)

)
dx

= 0. (4.15)

Since bi(s, x, t) is a Lipschitz function, using Lebesgue dominated convergence theorem,
we have

lim
n→∞

∣∣
∣∣

∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiϕmg ′

n
(
ϕm(u – v)

)
dx dt

∣∣
∣∣ = 0, (4.16)

obviously.
Last but not least, by (1.21) using the Lebesgue dominated convergence theorem, we

have

lim
n→∞

∣∣
∣∣

∫

Ω 1
m

\Ω 2
m

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)φmxi g

′
n
(
φm(u – v)

)
dx dt

∣∣
∣∣

≤ lim
n→∞

∫

Ω

∣∣φm(u – v)g ′
n
(
φm(u – v)

)∣∣∣∣(u – v)
∣∣
∣
∣∣
∣

∇a
a(x) – 1

m

∣
∣∣
∣dx dt

= 0, (4.17)

lim
n→∞

∣∣
∣∣

∫ s

τ

∫

Ω

[
f (u, x, t) – f (v, x, t)

]
(u – v)gn

(
ϕm(u – v)

)
dx dt

∣∣
∣∣

≤
∫ s

τ

∫

Ω

|u – v|dx dt. (4.18)

Now, after letting n → ∞, let m → ∞ in (4.10). Then we have the conclusion. �

5 The usual boundary value condition
By Lemma 2.2, if

∫
Ω

a(x)– 1
p–1 dx < ∞, then we can define the trace of u on the boundary

∂Ω . If one imposes the usual boundary value condition (1.7), the stability of the weak
solutions is true. For the completeness of the paper, we also give this conclusion and its
proof here.

Theorem 5.1 Let p > 1,
∫
Ω

a(x)– 1
p–1 dx < ∞, f (s, x, t) and bi(s, x, t) be Lipschitz functions.

If u(x, t), v(x, t) are two solutions of Eq. (1.4) with the usual homogeneous value condition,

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (5.1)
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and with the initial values u0(x), v0(x), respectively, then
∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx.

Proof By a limit process, we can choose χ[τ ,s]gn(u – v) as a test function. Then

∫ s

τ

∫

Ω

gn(u – v)
∂(u – v)

∂t
dx dt

+
∫ s

τ

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)g ′
n(u – v) dx dt

+
∫ s

τ

∫

Ω

[
bi(u, x, t)) – bi(v, x, t)

]
(u – v)xi g

′
n(u – v) dx dt

=
∫ s

τ

∫

Ω

[
f (u, x, t) – f (v, x, t)

]
gn(u – v) dx dt. (5.2)

As usual, we have
∫ s

τ

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)g ′
n(u – v) dx dt ≥ 0. (5.3)

By Lemma 3.2,

lim
n→∞

∫ s

τ

∫

Ω

gn(u – v)
∂(u – v)

∂t
dx dt

= lim
n→∞

∫

Ω

[
Gn(u – v)(x, s) – Gn(u – v)(x, τ )

]
dx

=
∫

Ω

|u – v|(x, s) dx –
∫

Ω

|u – v|(x, τ ) dx. (5.4)

Moreover, similar to [15], we can prove that

lim
n→∞

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
gn

′(u – v)(u – v)xi dx = 0, (5.5)

lim
n→∞

∣∣
∣∣

∫

Ω

[
f (u, x, t) – f (v, x, t)

]
gn(u – v) dx

∣∣
∣∣ ≤ c

∫

Ω

|u – v|dx. (5.6)

Now, let n → ∞ in (5.2). Then
∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣dx +

∫ s

τ

∫

Ω

|u(x, t) – v(x, t)|dx dt.

Let τ → 0. Then, by the Gronwall inequality, we have
∫

Ω

∣
∣u(x, s) – v(x, s)

∣
∣dx ≤

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx.

Theorem 5.1 is proved. �

The interesting problem is that, since a(x) may be degenerate on the boundary, the usual
boundary value condition (1.7) is overdetermined [9]. Obviously, Theorem 1.8 has solved
this problem partially.
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Proof of Theorem 1.8 If u(x, t), v(x, t) are two solutions of (1.4) with the initial values u0(x),
v0(x), respectively, and with the same partial boundary value condition (1.21)

Let φn(x) be defined as in the proof of Theorem 1.5. By the assumption

u(x, t) = v(x, t) = 0, (x, t) ∈ Σp × (0, T),

where

Σp = Σ1 =
{

x ∈ ∂Ω : a(x)axi �= 0
}

,

we can choose χ[τ ,s]φn(x)gn(u – v) as a test function. By the condition (1.23), similar to the
proof Theorem 1.5, we are able to show the conclusion of Theorem 1.8, we omit the details
here. �

6 The uniqueness of the solution
In this section, we will prove Theorem 1.9.

Proof of Theorem 1.9 Let u(x, t), v(x, t) be two solutions of Eq. (1.4) with the initial values
u0(x), v0(x), respectively, and with

u(x, t) = v(x, t) = 0, (x, t) ∈ Σp × (0, T),

where

Σp =
{

x ∈ ∂Ω : a(x) > 0
}

.

Then we may choose χ[τ ,s](u – v)aβ as a test function, where β ≥ 1 is a constant,

〈〈
(u – v)t ,χ[τ ,s](u – v)aβ

〉〉

=
∫∫

Qτ s

(u – v)aβ ∂(u – v)
∂t

dx dt

= –
∫∫

Qτ s

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇[
(uε – vε)aβ

]
dx dt

–
N∑

i=1

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

][
(u – v)aβ

]
xi

dx dt

+
∫∫

Qτ s

a(x)β
[
f (u, x, t) – f (v, x, t)

]
(u – v) dx dt, (6.1)

where Qτ ,s = Ω × (τ , s). By that |∇a| < c, and

∫∫

QT

a(x)|∇u|p dx dt ≤ c,
∫∫

QT

a(x)|∇v|p dx dt ≤ c,
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by the Hölder inequality, we can show that
∣∣
∣∣

∫∫

Qτ s

(u – v)a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇aβ dx dt
∣∣
∣∣

≤
∫∫

Qτ s

|u – v|a(x)
(|∇u|p–1 + |∇v|p–1)∣∣∇aβ

∣
∣dx dt

≤ c
(∫ s

τ

∫

Ω

a1+p(β–1)|u – v|p dx dt
) 1

p

≤ c
(∫ s

τ

∫

Ω

aβ |u – v|2 dx dt
)l

, (6.2)

where l ≥ 1. Here, we have the fact that

a1+p(β–1) ≤ caβ

due to β ≥ 1.
As for the convection term,

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

][
(u – v)ξλ

]
xi

dx dt

=
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)aβ

xi
dx dt

+
∫∫

Qs

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi a

β dx dt. (6.3)

Since β ≥ 2, |axi | ≤ |∇a| ≤ c, by the Hölder inequality, we have
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)aβ

xi
dx dt

=
∫ s

τ

∫

Ωλ

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)aβ–1|axi |dx

≤
∫ s

τ

∫

Ω

|u – v|aβ–1 dx

≤ c
(∫ s

τ

∫

Ω

aβ |u – v|2 dx dt
) 1

2
(6.4)

and
∣∣
∣∣

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi a

β dx dt
∣∣
∣∣

≤
N∑

i=1

(∫ s

τ

∫

Ω

a(β– 1
p )p′ ∣∣bi(u, x, t) – bi(v, x, t)

∣∣p′
dx dt

) 1
p′

×
(∫ s

τ

∫

Ω

a
(|∇u|p + |∇v|p)dx dt

) 1
p

≤ c
N∑

i=1

(∫ s

τ

∫

Ω

a
(

β –
1
p

)
p′∣∣bi(u, x, t) – bi(v, x, t)

∣∣)p′
dx dt

) 1
p′
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≤ c
(∫ s

τ

∫

Ω

aβ |u – v|p′
dx dt

) 1
p′

≤ c
(∫ s

τ

∫

Ω

aβ |u – v|2 dx dt
)l

. (6.5)

Since f (s, x, t) is a continuous function, ‖u‖L∞(QT ) ≤ c, ‖u‖L∞(QT ) ≤ c,

∣
∣∣
∣

∫∫

Qτ s

a(x)β
[
f (u, x, t) – f (v, x, t)

]
(u – v) dx dt

∣
∣∣
∣ ≤ c

∫∫

Qτ s

a(x)β |u – v|dx dt, (6.6)

obviously.
By Lemma 3.1,

∫∫

Qτ s

(u – v)aβ ∂(u – v)
∂t

dx dt

=
∫∫

Qτ s

(u – v)
√

aβ

√
aβ∂(u – v)

∂t

=
∫

Ω

aβ
[
u(x, s) – v(x, s)

]2 dx –
∫

Ω

aβ
[
u(x, τ ) – v(x, τ )

]2 dx. (6.7)

From (6.2)–(6.7), by (6.1), we have

∫

Ω

aβ
[
u(x, s) – v(x, s)

]2 dx –
∫

Ω

aβ
[
u(x, τ ) – v(x, τ )

]2 dx

≤ c
(∫ s

τ

∫

Ω

aβ
∣
∣u(x, t) – v(x, t)

∣
∣2 dx dt

)l

, (6.8)

where l ≤ 1. By (6.8), we easily get

∫

Ω

aβ
∣
∣u(x, s) – v(x, s)

∣
∣2 dx ≤

∫

Ω

aβ
∣
∣u(x, τ ) – v(x, τ )

∣
∣2 dx,

and by the arbitrariness of τ , we have

∫

Ω

aβ
∣
∣u(x, s) – v(x, s)

∣
∣2 dx ≤

∫

Ω

aβ
∣
∣u0(x) – v0(x)

∣
∣2 dx. �

7 Conclusion
Compared with our previous work [10], not only is the equation considered in this paper
more general, but also the conclusions are much better. In particular, the uniqueness of the
weak solution based on a partial boundary value condition (Theorem 1.9) is always true.
This conclusion is more or less beyond one’s imagination. Benedikt et al. had considered
the equation

ut = div
(|∇u|p–2∇u

)
+ q(x)|u|γ –1u, (7.1)

and showed that the uniqueness of the solution is not true [16]. But Theorem 1.9 in this
paper implies that, only if ut ∈ W ′(QT ), the uniqueness of the solution to Eq. (7.1) is true.
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