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Abstract
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1 Introduction and preliminaries
Bohr’s inequality states that if

f (z) =
∞∑

k=0

akzk (1.1)

is analytic in the unit disk D = {z ∈C||z| < 1} and |f (z)| < 1 for all z ∈ D, then

∞∑

k=0

|ak||z|k ≤ 1 (1.2)

for all |z| ≤ 1
3 . This inequality was discovered by Bohr in 1914 [6]. Bohr actually obtained

the inequality for |z| ≤ 1
6 , but subsequently later, Wiener, Riesz and Schur, independently

established the inequality for |z| ≤ 1
3 and the constant 1/3 cannot be improved [12, 16, 17].

Other proofs were also given in [13, 14]. The problem was considered by Bohr when he was
working on the absolute convergence problem for Dirichlet series of the form

∑
ann–s, but

now it has become a very interesting problem. Bohr’s idea naturally extends to functions of
several complex variables [1, 2, 5, 11] and a variety of results on Bohr’s theorem in higher
dimensions appeared recently.

The majorant series Mf (z) =
∑∞

k=0 |ak||z|k belongs to a very important class of series of
non-negative terms. In analogy to the Bohr radius, there is also the notion of the Rogosin-
ski radius [10, 15], which is described as follows: If f (z) =

∑∞
k=0 akzk is an analytic function

in D such that |f (z)| < 1 in D, then, for every N ≥ 1, we have |sN (z)| < 1 in the disk |z| < 1
2

and this radius is sharp, where SN (z) =
∑N–1

k=0 akzk denotes the partial sums of f . There is
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a relevant quantity, which we call the Bohr–Rogosinski sum Rf
N (z) of f defined by

Rf
N (z) :=

∣∣f (z)
∣∣ +

∞∑

k=N

|ak|rk , |z| = r. (1.3)

We remark that, for N = 1, this quantity is related to the classical Bohr sum in which f (0)
is replaced by f (z). More recently, Kayumov and Ponnusamy [9] obtained the following
result on the Bohr–Rogosinski radius for analytic functions.

Theorem A ([9]) Suppose that f (z) =
∑∞

k=0 akzk is analytic in the unit disk D and |f (z)| < 1
in D. Then

∣∣f (z)
∣∣ +

∞∑

k=N

|ak|rk ≤ 1 for r ≤ RN ,

where RN is the positive root of the equation 2(1 + r)rN – (1 – r)2 = 0. The radius RN is the
best possible. Moreover,

∣∣f (z)
∣∣2 +

∞∑

k=N

|ak|rk ≤ 1 for r ≤ R′
N ,

where R′
N is the positive root of the equation (1 + r)rN – (1 – r)2 = 0. The radius R′

N is the
best possible.

In 2017, Ali, Barnard and Solynin defined the associated alternating series of series (1.1)
as Af (z) =

∑∞
k=0(–1)k|ak||z|k , they obtained the following result in [4].

Theorem B ([4]) If |∑∞
k=0 akzk| ≤ 1 in D, then

∣∣∣∣∣

∞∑

k=0

(–1)k|ak||z|k
∣∣∣∣∣ ≤ 1

in the disk D1/
√

3 = {z ∈ C||z| < 1/
√

3}. The radius r = 1/
√

3 is the best possible.

Theorem C ([3]) If f (z) =
∑∞

k=0 ankznk is analytic in D satisfying Re f (z) ≤ 1 in D and
f (0) = a0 is positive, then Mf (r) ≤ 1 for 0 ≤ r ≤ 1/ n√3.

Remark 1.1 By a simple calculation in Theorem A, we observe that R1 =
√

5 – 2 is unequal
to 1

3 when |f (0)| is replaced by |f (z)| in Bohr’s inequality. Therefore, it is interesting to note
what will happen to the Bohr radius if we use higher order derivatives of f (z) to replace
some Taylor coefficients of analytic functions in Bohr’s inequality.

In this paper, we mainly study the Bohr-type radii for several forms of Bohr-type in-
equalities of analytic functions when the Taylor coefficients of classical Bohr inequality
are partly replaced and when the Taylor coefficients of the classical Bohr inequality are
completely replaced by the higher order derivatives of f (z), respectively. We obtain the
Bohr-type radii under certain conditions. Moreover, we also discuss the Bohr-type radius
of the alternating series associated with the Taylor series of analytic functions.
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In order to establish our main results, we need the following lemmas, which will play
the key role in proving the main results of this paper.

Lemma 1.2 ([8]) If ϕ(z) =
∑∞

n=0 anzn is analytic and |ϕ(z)| ≤ 1 in the unit disk D. Then
|an| ≤ 1 – |a0|2 for all n = 1, 2, . . . .

Lemma 1.3 (Schwarz–Pick lemma) If ϕ(z) =
∑∞

n=0 anzn is analytic and |ϕ(z)| < 1 in the
unit disk D. Then:

(1) |ϕ(z1) – ϕ(z2)|/|1 – ϕ(z1)ϕ(z2)| ≤ |z1 – z2|/|1 – z1z2| holds for z1, z2 ∈ D, and the
equality holds for distinct z1, z2 ∈ D if and only if ϕ is a Möbius transformation;

(2) |ϕ′(z)| ≤ 1–|ϕ(z)|2
1–|z|2 holds for z ∈ D, and the equality holds for some z ∈ U if and only if f

is a Möbius transformation.

Lemma 1.4 ([7]) If ϕ(z) =
∑∞

n=0 anzn is analytic and |ϕ(z)| < 1 in D. Then, for all k =
1, 2, . . . , we have

∣∣ϕ(k)(z)
∣∣ ≤ k!(1 – |ϕ(z)|2)

(1 – |z|2)k

(
1 + |z|)k–1, |z| < 1.

Lemma 1.5 ([3]) If p(z) =
∑∞

k=0 pkzk is analytic in D such that Re p(z) > 0 in D, then |pk| ≤
2 Re p0 for all k ≥ 1.

2 Main results
We first provide a result involves computing Bohr-type radius for the analytic functions
f (z) for which |a0| and |a1| are replaced by |f (z)| and |f ′(z)|, respectively.

Theorem 2.1 Suppose that f (z) =
∑∞

k=0 akzk is analytic in D and |f (z)| < 1 in D. Then

∣∣f (z)
∣∣ +

∣∣f ′(z)
∣∣|z| +

∞∑

k=2

|ak||z|k ≤ 1 for |z| = r ≤
√

17 – 3
4

.

The radius r =
√

17–3
4 is the best possible.

Proof By assumption, f (z) =
∑∞

k=0 akzk is analytic in D and |f (z)| < 1 in D. Since f (0) = a0,
by the Schwarz–Pick lemma, we obtain, for z ∈ D,

|f (z) – a0|
|1 – a0f (z)| ≤ |z|, ∣∣f ′(z)

∣∣ ≤ 1 – |f (z)|2
1 – |z|2 .

Thus it follows from the above inequality and Lemma 1.2 that, for z = reiθ ∈ D,

∣∣f (z)
∣∣ ≤ r + |a0|

1 + r|a0| , |ak| ≤ 1 – |a0|2

for k = 1, 2, . . . .
Using these inequalities, we have

∣∣f (z)
∣∣ +

∣∣f ′(z)
∣∣r +

∞∑

k=2

|ak|rk
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≤ r
1 – r2

(
1 –

∣∣f (z)
∣∣2) +

∣∣f (z)
∣∣ +

(
1 – |a0|2

) r2

1 – r

≤ r
1 – r2

[
1 –

(
r + |a0|

1 + |a0|r
)2]

+
r + |a0|

1 + |a0|r +
(
1 – |a0|2

) r2

1 – r

=
|a0| + 2r + |a0|r2

(1 + |a0|r)2 +
(
1 – |a0|2

) r2

1 – r
, (2.1)

where the second inequality holds for any r ∈ [0,
√

2 – 1), since 1–r2

2r ≥ 1 if r ∈ [0,
√

2 – 1].
Notice |a0| < 1, we know (2.1) is smaller than or equal to 1 provided ϕ(r) ≤ 0, where

ϕ(r) =
(|a0| + 2r + |a0|r2)(1 – r) +

(
1 + |a0|r

)2(1 – |a0|2
)
r2 –

(
1 + |a0|r

)2(1 – r)

=
(
1 – |a0|

)[
–1 + 3r +

(
2|a0| – 1

)
r2 + |a0|

(
2|a0| + 1

)
r3 + |a0|2

(
1 + |a0|

)
r4]

≤ (
1 – |a0|

)(
–1 + 3r + r2 + 3r3 + 2r4)

=
(
1 – |a0|

)
2
(
1 + r2)

(
r +

√
17 + 3

4

)(
r –

√
17 – 3

4

)
.

Now, ϕ(r) ≤ 0 if η(r) := (1 + r2)(r +
√

17+3
4 )(r –

√
17–3
4 ) ≤ 0, which holds for r ≤

√
17–3
4 . The

first part of the theorem follows.
To show the sharpness of the number r =

√
17–3
4 , we let a ∈ [0, 1) and consider the func-

tion

f (z) =
a – z

1 – az
= a –

(
1 – a2)

∞∑

k=1

ak–1zk , z ∈ D.

For this function, we find that

∣∣f (–r)
∣∣ +

∣∣f ′(–r)
∣∣r +

∞∑

k=2

|ak|rk =
a + r

1 + ar
+

1 – a2

(1 + ar)2 r +
(
1 – a2) ar2

1 – ar
. (2.2)

The last expression is larger than 1 if and only if

(1 – a)
(
–1 + (2 + a)r + a2r2 + a2(2a + 1)r3 + a3(1 + a)r4) > 0. (2.3)

Let P3(a, r) = –1+ (2+ a)r + a2r2 + a2(2a + 1)r3 + a3(1+ a)r4. After elementary calculation,
we find that ∂P3

∂a = r + 2ar2 + 6a2r3 + 2ar3 + 3a2r4 + 4a3r4 is equal to or greater than 0 for
any r ∈ [0, 1). The latter equation implies that

P3(a, r) ≤ P3(1, r) = –1 + 3r + r2 + 3r3 + 2r4 = 2
(
1 + r2)

(
r +

√
17 + 3

4

)(
r –

√
17 – 3

4

)
.

Therefore, Eq. (2.2) is smaller than or equal to 1 for all a ∈ [0, 1), only in the case when
r ≤

√
17–3
4 . Finally, it also suggests that a → 1 in (2.3) shows that Eq. (2.2) is larger than 1

if r >
√

17–3
4 . This proves the sharpness. �

Next, we discuss the Bohr-type radius when the coefficients of the series of missing series
are completely replaced by the higher order derivatives.
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Theorem 2.2 Suppose that N(≥ 2) is an integer, f (z) =
∑∞

k=0 akzk is analytic in D and
|f (z)| < 1 in D. Then

∣∣f (z)
∣∣ +

∞∑

k=N

∣∣∣∣
f (k)(z)

k!

∣∣∣∣|z|k ≤ 1 for |z| = r ≤ RN ,

where RN is the minimum positive root of the equation ψN (r) = (1 + r)(1 – 2r)(1 – r)N–1 –
2rN = 0. The radius RN is the best possible.

Proof By simple calculations we can know that

r ≤ RN < 1/2 if and only if
2rN

(1 + r)(1 – 2r)(1 – r)N–1 ≤ 1.

By assumption, f (z) =
∑∞

k=0 akzk is analytic in D and |f (z)| < 1 in D. Since f (0) = a0, it
follows from the Schwarz–Pick lemma and Lemma 1.4 that, for z = reiθ ∈ D,

∣∣f (z)
∣∣ ≤ r + |a0|

1 + |a0|r and
∣∣f (k)(z)

∣∣ ≤ k!(1 – |f (z)|2)
(1 – |z|2)k

(
1 + |z|)k–1 for k = 1, 2, . . . .

Using these inequalities, we have

∣∣f (z)
∣∣ +

∞∑

k=N

∣∣∣∣
f (k)(z)

k!

∣∣∣∣r
k

≤ ∣∣f (z)
∣∣ +

∞∑

k=N

(1 – |f (z)|2)
(1 – |z|2)k

(
1 + |z|)k–1rk

=
∣∣f (z)

∣∣ +
(
1 –

∣∣f (z)
∣∣2) ∞∑

k=N

(1 + r)k–1rk

(1 – r2)k

≤ ∣∣f (z)
∣∣ +

(
1 –

∣∣f (z)
∣∣2) rN

(1 + r)(1 – 2r)(1 – r)N–1

=
∣∣f (z)

∣∣ –
rN

(1 + r)(1 – 2r)(1 – r)N–1

∣∣f (z)
∣∣2 +

rN

(1 + r)(1 – 2r)(1 – r)N–1

≤ (|a0| + r)(1 + |a0|r)(1 – r)N (1 – 2r) + (1 – |a0|2)(1 – r)2rN

(1 – r)N (1 – 2r)(1 + |a0|r)2 := ωN (r) (2.4)

for 0 ≤ r ≤ RN < 1/2.
Now, ωN (r) ≤ 1 if νN (r) ≤ 0, where

νN (r) =
(|a0| + r

)(
1 + |a0|r

)
(1 – r)N (1 – 2r) +

(
1 – |a0|2

)
(1 – r)2rN

– (1 – r)N (1 – 2r)
(
1 + |a0|r

)2

=
(
1 – |a0|

)[(
–1 +

(
3 – |a0|

)
r +

(
3|a0| – 2

)
r2 – 2|a0|r3)(1 – r)N

+
(
1 + |a0|

)
rN (1 – r)2]

=
(
1 – |a0|

)[(
–1 + 3r – 2r2)(1 – r)N + rN (1 – r)2]

+
(
1 – |a0|

)|a0|r(1 – r)2[rN–1 – (1 – 2r)(1 – r)N–1].
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Now we split all this into two cases to prove that νN (r) ≤ 0 for r ≤ RN .
Case 1. r ≤ RN ,1, where RN ,1 is the minimum positive root of the equation ϕN (r) = (1 –

2r)(1 – r)N–1 – rN–1 = 0. Since rN–1 – (1 – 2r)(1 – r)N–1 ≤ 0 and |a0| < 1, we have

νN (r) ≤ (
1 – |a0|

)
(1 – r)2[r · rN–1 – (1 – 2r)(1 – r)N–1]

≤ (
1 – |a0|

)
(1 – r)2[rN–1 – (1 – 2r)(1 – r)N–1] ≤ 0.

Case 2. RN ,1 < r ≤ RN . Notice that RN ,1 < RN and rN–1 – (1 – 2r)(1 – r)N–1 > 0 for r > RN ,1,
we have

νN (r) ≤ (
1 – |a0|

)[(
–1 + 3r – 2r2)(1 – r)N + rN (1 – r)2]

+
(
1 – |a0|

)
r(1 – r)2[rN–1 – (1 – 2r)(1 – r)N–1]

≤ (
1 – |a0|

)
(1 – r)2[2rN – (1 + r)(1 – 2r)(1 – r)N–1] ≤ 0.

The first part of the theorem follows.
To show the sharpness of the number RN , we let a ∈ [0, 1) and consider the function

f (z) =
a – z

1 – az
= a –

(
1 – a2)

∞∑

k=1

ak–1zk , z ∈ D.

For this function, we find that

∣∣f (r)
∣∣ +

∞∑

k=N

∣∣∣∣
f (k)(r)

k!

∣∣∣∣r
k

=
∣∣f (r)

∣∣ +
∞∑

k=N

ak–1(1 – a2)
(1 – ar)k+1 rk

=
a – r

1 – ar
+

(
1 – a2) aN–1rN

(1 – ar)N (1 – 2ar)

(
when r <

1
2a

)
. (2.5)

The last expression is larger than 1 if and only if

(1 – a)
[(

–1 + (2a – 1)r + 2ar2)(1 – ar)N–1 + (1 + a)aN–1rN]
> 0. (2.6)

Let P4(a, r) = (–1 + (2a – 1)r + 2ar2)(1 – ar)N–1 + (1 + a)aN–1rN . After elementary calcula-
tion, we find that ∂P4

∂a = (2r + 2r2)(1 – ar)N–1 + r(N – 1)(1 + r)(1 – 2ar)(1 – ar)N–2 + aN–1rN +
(1 + a)(N – 1)aN–2rN is equal to or greater than 0 for any r < 1

2 . The latter equation implies
that

P4(a, r) ≤ P4(1, r) =
(
–1 + r + 2r2)(1 – r)N–1 + 2rN = 2rN – (r + 1)(1 – 2r)(1 – r)N–1

holds for r < 1
2 . Therefore, Eq. (2.5) is smaller than or equal to 1 for all a ∈ [0, 1), only in

the case when r ≤ RN .
Finally, allowing a → 1 in (2.6) shows that Eq. (2.5) is larger than 1 if r > RN . This proves

the sharpness. �
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Corollary 2.3 Suppose that f (z) =
∑∞

k=0 akzk is analytic in D and |f (z)| < 1 in D. Then

∣∣f (z)
∣∣2 +

∞∑

k=N

∣∣∣∣
f (k)(z)

k!

∣∣∣∣|z|k ≤ 1 for |z| = r ≤ R′
N ,

where R′
N is the positive root of the equation (1 + r)(1 – 2r)(1 – r)N–1 – rN = 0. The radius

R′
N is the best possible.

Proof By simple calculations we can know that

r ≤ R′
N if and only if

(1 + r)(1 – r)N (1 – 2r) – rN (1 – r)
(1 + r)(1 – 2r)(1 – r)N ≥ 0.

In analogy to the calculation of Theorem 2.2, we have

∣∣f (z)
∣∣2 +

∞∑

k=N

∣∣∣∣
f (k)(z)

k!

∣∣∣∣r
k

≤ ∣∣f (z)
∣∣2 +

∞∑

k=N

(1 – |f (z)|2)
(1 – |z|2)k

(
1 + |z|)k–1rk

≤
(

1 –
rN (1 – r)

(1 + r)(1 – 2r)(1 – r)N

)∣∣f (z)
∣∣2 +

rN (1 – r)
(1 + r)(1 – 2r)(1 – r)N

≤ (|a0| + r)2(1 – r)N (1 – 2r) + (1 – |a0|2)rN (1 – r)2

(1 – r)N (1 + |a0|r)2(1 – 2r)
. (2.7)

So (2.7) is smaller than or equal to 1 provided ωN (r) ≤ 1, where

ωN (r) :=
(|a0| + r)2(1 – r)N (1 – 2r) + (1 – |a0|2)rN (1 – r)2

(1 – r)N (1 + |a0|r)2(1 – 2r)
.

Now, ωN (r) ≤ 1 if νN (r) ≤ 0, where

νN (r) =
(|a0| + r

)2(1 – r)N (1 – 2r) +
(
1 – |a0|2

)
rN (1 – r)2 – (1 – r)N(

1 + |a0|r
)2(1 – 2r)

=
(
1 – |a0|2

)[
(1 – r)N(

–1 + r2 + 2r – 2r3) + rN (1 – r)2]

=
(
1 – |a0|2

)[
(1 – r)N (1 – r)(1 + r)(2r – 1) + rN (1 – r)2].

Now, νN (r) ≤ 0 if (1 + r)(1 – 2r)(1 – r)N–1 – rN ≥ 0, which holds for r ≤ R′
N , where R′

N is as
in the statement of the theorem.

To show the sharpness of the number R′
N , we let a ∈ [0, 1) and consider the function

f (z) =
a – z

1 – az
= a –

(
1 – a2)

∞∑

k=1

ak–1zk , z ∈ D.

For this function, we find that

∣∣f (r)
∣∣2 +

∞∑

k=N

∣∣∣∣
f (k)(r)

k!

∣∣∣∣r
k =

∣∣f (r)
∣∣2 +

∞∑

k=N

ak–1(1 – a2)
(1 – ar)k+1 rk
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=
(a – r)2(1 – ar)N–2(1 – 2ar) + (1 – a2)aN–1rN

(1 – ar)N (1 – 2ar)
, (2.8)

(2.8) is larger than 1 if and only if

(
1 – a2)[(–1 + 2ar + r2 – 2ar3)(1 – ar)N–2 + aN–1rN]

> 0. (2.9)

In analogy to the processing methods of Theorem 2.2. After elementary calculation, we
find that allowing a → 1 in (2.9), it follows that Eq. (2.8) is larger than 1 if r > R′

N . This
proves the sharpness and we complete the proof of Corollary 2.3. �

Applying a method similar to Theorem 2.2, we may obtain the following corollary.

Corollary 2.4 Suppose that f (z) =
∑∞

k=0 akzk is analytic in D and |f (z)| < 1 in D. Then

∞∑

k=0

∣∣∣∣
f (k)(z)

k!

∣∣∣∣|z|k ≤ 1 for |z| = r ≤
√

17 – 3
4

.

The radius r =
√

17–3
4 is the best possible.

In analogy to Theorem C, we now consider the Bohr-type radius when conditions of
|f (z)| < 1 are replaced by Re f (z) ≤ 1 and f (0) = a0 is positive.

Theorem 2.5 If f (z) =
∑∞

k=0 akzk is analytic in D satisfying Re f (z) ≤ 1 in D and f (0) = a0

is positive, then

∣∣f (z)
∣∣ +

∞∑

k=1

|ank||z|nk ≤ 1 for |z| = r ≤ Rn, (2.10)

where Rn is the positive root of the equation ϕn(r) = 0, ϕn(r) = rn+1 + 3rn + r – 1. The radius
Rn is the best possible.

Proof By assumption, f (z) =
∑∞

k=0 ankznk is analytic and Re f (z) ≤ 1 in D.
Since f (0) = a0 is positive. Applying the result of Lemma 1.5 to p(z) = 1 – f (z) and the

Schwarz–Pick lemma that, for z = reiθ ∈ D, we have

|ank| ≤ 2(1 – a0) for k = 1, 2, . . .

and

∣∣f (z)
∣∣ ≤ r + a0

1 + ra0
.

Using the last two inequalities, we have

∣∣f (z)
∣∣ +

∞∑

k=1

|ank|rnk ≤ r + a0

1 + a0r
+ 2(1 – a0)

rn

1 – rn , (2.11)
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for which (2.11) is smaller than or equal to 1 provided φ(r) ≤ 0, where

φ(r) = (r + a0)
(
1 – rn) + 2(1 – a0)rn(1 + a0r) – (1 + a0r)

(
1 – rn)

= (1 – a0)
[
(2a0 – 1)rn+1 + 3rn – 1 + r

]

≤ (1 – a0)
(
rn+1 + 3rn + r – 1

)
since |a0| < 1.

Now, φ(r) ≤ 0 if ψ(r) := rn+1 + 3rn + r – 1 ≤ 0, which holds for r ≤ Rn. This completes the
proof of inequality (2.10).

To shows that the radius r = Rn is the best possible, we let a ∈ [0, 1) and consider the
function

f (z) =
a – z

1 – az
= a –

(
1 – a2)

∞∑

k=1

ak–1zk , z ∈ D.

For this function, we find that

∣∣f (–r)
∣∣ +

∞∑

k=1

|ank|rnk =
a + r

1 + ar
+

(
1 – a2) an–1rn

1 – anrn , where r = |z|. (2.12)

We claim that, for every r such that Rn < r < 1, there is a such that 0 < a < 1, and

(a + r)(1 – anrn) + (1 – a2)(1 + ar)an–1rn

(1 + ar)(1 – anrn)
> 1. (2.13)

Indeed, inequality (2.13) is equivalent to the inequality

(1 – a)
[(

an–1 + 2an)rn + an+1rn+1 + r – 1
]

> 0. (2.14)

Let P1(a, r) = (an–1 + 2an)rn + an+1rn+1 + r – 1 denote a part of the left-hand side of (2.14).
After elementary calculation, we find that ∂P1

∂a ≥ 0 apparently. The latter inequality implies
that P1(a, r) ≤ P1(1, r) = rn+1 + 3rn + r – 1 holds for all r ∈ [0, 1). Therefore, Eq. (2.12) is
smaller than or equal to 1 for all a ∈ [0, 1), only in the case when r ≤ Rn.

Finally, allowing a → 1 in (2.14) shows that Eq. (2.13) is larger than 1 if r > Rn. This
proves the sharpness. �

Setting n = 1 in Theorem 2.5, we have the following corollary.

Corollary 2.6 If f (z) =
∑∞

k=0 akzk is analytic in D satisfying Re f (z) ≤ 1 in D and f (0) = a0

is positive, then

∣∣f (z)
∣∣ +

∞∑

k=1

|ak||z|k ≤ 1 for |z| = r ≤ √
5 – 2,

where the radius
√

5 – 2 is the best possible.

Remark 2.7 By simple calculation, we can know the Bohr-type radius in Theorem 2.5 with
the condition of Re f (z) ≤ 1 and f (0) = a0 > 0 is the same as the condition of |f (z)| < 1.
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Finally, we consider a new Bohr-type radius of the alternating series associated the Tay-
lor series of analytic functions where |a0| is replaced by |f (z)|. We have

Rf (z) =
∣∣f (z)

∣∣ +
∞∑

k=1

(–1)k|ak||z|k .

Lemma 2.8 Suppose that f (z) =
∑∞

k=0 akzk is analytic in the unit disk D and |f (z)| < 1 in D.
Then

∣∣f (z)
∣∣ +

∞∑

k=1

|a2k||z|2k ≤ 1 for |z| = r ≤ √
2 – 1. (2.15)

The radius r =
√

2 – 1 is the best possible.

Proof By assumption, f (z) =
∑∞

k=0 akzk is analytic and |f (z)| < 1 in D. Since f (0) = a0, it
follows from Lemma 1.2 and the Schwarz–Pick lemma that, for z = reiθ ∈ D,

|ak| ≤ 1 – |a0|2 for k = 1, 2, . . .

and

∣∣f (z)
∣∣ ≤ r + |a0|

1 + r|a0| .

Using the last two inequalities, we have

∣∣f (z)
∣∣ +

∞∑

k=1

|a2k|r2k ≤ r + |a0|
1 + |a0|r +

(
1 – |a0|2

) r2

1 – r2 , (2.16)

and (2.16) is smaller than or equal to 1 provided φ(r) ≤ 0, where

φ(r) =
(
r + |a0|

)(
1 – r2) +

(
1 – |a0|2

)
r2(1 + |a0|r

)
–

(
1 + |a0|r

)(
1 – r2)

=
(
1 – |a0|

)[
–1 + r +

(
2 + |a0|

)
r2 +

(|a0|2 + |a0| – 1
)
r3]

≤ (
1 – |a0|

)(
3r2 + r – 1 + r3)

=
(
1 – |a0|

)
(r + 1 +

√
2)(r + 1 –

√
2)(r + 1), since |a0| < 1.

Now, φ(r) ≤ 0 if ψ(r) := (r + 1 +
√

2)(r + 1 –
√

2)(r + 1) ≤ 0, which holds for r ≤ √
2 – 1.

This completes the proof of inequality (2.15).
To shows that the radius r =

√
2 – 1 is the best possible, we let a ∈ [0, 1) and consider the

function

f (z) =
a – z

1 – az
= a –

(
1 – a2)

∞∑

k=1

ak–1zk , z ∈ D.

For this function, we find that

∣∣f (–r)
∣∣ +

∞∑

k=1

|a2k|r2k =
a + r

1 + ar
+

(
1 – a2) ar2

1 – a2r2 , where r = |z|. (2.17)
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We claim that, for every r such that
√

2 – 1 < r < 1, there is a such that 0 < a < 1, and

(a + r)(1 – ar) + (1 – a2)ar2

(1 + ar)(1 – ar)
> 1. (2.18)

Indeed, inequality (2.18) is equivalent to the inequality

(1 – a)
[
–1 + (1 + a)r + a2r2] > 0. (2.19)

Let P1(a, r) = –1 + (1 + a)r + a2r2 denote a part of the left-hand side of (2.19). After
elementary calculation, we find that ∂P1

∂a = r + 2ar2 ≥ 0. The latter inequality implies that
P1(a, r) ≤ P1(1, r) = –1 + 2r + r2 holds for all r ∈ [0, 1). Therefore, Eq. (2.17) is smaller than
or equal to 1 for all a ∈ [0, 1), only in the case when r ≤ √

2 – 1.
Finally, allowing a → 1 in (2.19) shows that Eq. (2.18) is larger than 1 if r >

√
2 – 1. This

proves the sharpness. �

Theorem 2.9 Suppose that f (z) =
∑∞

k=0 akzk is analytic in D and |f (z)| < 1 in D. Then

∣∣∣∣∣
∣∣f (z)

∣∣ +
∞∑

k=1

(–1)k|ak||z|k
∣∣∣∣∣ ≤ 1 for |z| = r ≤ √

2 – 1. (2.20)

Proof By the proof of Lemma 2.8, we have

∣∣f (z)
∣∣ +

∞∑

k=1

(–1)k|ak|rk ≤ r + |a0|
1 + |a0|r +

∞∑

k=1

|a2k|r2k –
∞∑

k=1

|a2k–1|r2k–1

≤ r + |a0|
1 + |a0|r +

∞∑

k=1

|a2k|r2k

≤ r + |a0|
1 + |a0|r +

(
1 – |a0|2

) r2

1 – r2 . (2.21)

We know that Eq. (2.21) is smaller than or equal to 1, which holds for r ≤ √
2 – 1 and for

all a ∈ [0, 1).
To find a lower bound for Rf (z), we consider the following chain of relations:

Rf (z) =
∣∣f (z)

∣∣ +
∞∑

k=1

|a2k|r2k –
∞∑

k=1

|a2k–1|r2k–1

≥ –
∞∑

k=1

|a2k–1|r2k–1 = –

(
|a1|r +

∞∑

k=1

|a2k+1|r2k+1

)

≥ –

(
(
1 – |a0|2

)
r +

∞∑

k=1

|a2k+1|r2k

)

≥ –

(
r + |a0|

1 + r|a0| +
∞∑

k=1

|a2k+1|r2k

)
,

where the last inequality is obtained by a simple calculation.
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Combining this with (2.21), we conclude that Rf (z) ≥ –1 for all r ≤ √
2 – 1. This com-

pletes the proof of inequality (2.20). �

Notice that we have not proved that the number r =
√

2 – 1 is the best possible in The-
orem 2.9, therefore the following problem remains open.

Problem 2.10 Find the largest radius r0 for the class of analytic functions f (z) =
∑∞

k=0 akzk

in D with |f (z)| < 1 in D such that

∣∣∣∣∣
∣∣f (z)

∣∣ +
∞∑

k=1

(–1)k|ak||z|k
∣∣∣∣ ≤ 1 for |z| = r ≤ r0.

3 Conclusion
From the results that we have given in this paper, we can get the exact Bohr-type radius
when we replace the coefficient of Bohr’s inequality with f (z) or its higher order deriva-
tives, and we conclude that the Bohr-type radius obtained after the change of coefficients
is smaller than the Bohr radius.
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