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1 Introduction
In the last years, the (p, k)-analogue of the gamma and polygamma functions has been
studied intensively by a lot of authors. For historical background of the theory, see, for
example, [1-24].

It is well known that:

+ afunction f is said to be completely monotonic [6, 21] on an interval I if f has

derivatives of all orders on I and
(-1)"f"(x) =0 (1)

forxel,n>0,ne N (dueto 0 € N).
+ the Euler gamma function [14-16, 20, 22, 23] is defined by

I'(x) = /:o Fletdt (2)

for x> 0;
+ the digamma function [11-13, 24] is defined by

oo

B I''(x) B 1 x
Y = I'(x) __y_x+zn(n+x)' ®)

n=1
where y is the Euler—Mascheroni constant [5].
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Recently, Diaz and Pariguan [4] defined the generalized gamma function

5 k" (nk) &~
F"(x)_ngrgolox(x+k)~"(x+(”_l)k) !

for k>0 and x € C\ kZ~ and the generalized digamma function

NW _mm-y 1 5w
2.

x —~ nk(nk +x)

Yi(x) = e -k -t

(5)

Very recently, Nantomah, Prempeh, and Twum [8] introduced a new definition of the

(p, k)-gamma function

(p+ DIk (ph)F !

I, 6
pi() = x(x + k) (x + pk) ©)
fork>0and x>0, p >0, p € N, and the (p, k)-digamma function
I (x) _In k) &
Uw) = 2= (” -y )

Fpk(x) — nk +x

fork>0andx>0,p>0,peN.
We note that

lim ye(x) =9 (x), lim Ii() = I (),

plin;o o) = Te(%), PILHOIO Ypr (%) = Y ().

Li Yin, Li-Guo Huang, Zhi-Min Song, and Xiang Kai Dou [19] posed the following con-

jecture.
Conjecture 1 ([19]) For p >0 and k > 1, the function
1__1
¢pk(x) = I;prk(x) + ln(e" ek — 1)
is strictly decreasing from (0, 00) onto (—00, Py (k)).
Li Yin [17] posed the following open problem.

Open Problem 1 ([17]) If the function

pkx

o 1
8pka (%) = & |:% In m - ’ﬁpk(x)]

is completely monotonic on (0, 00), then is it true that @ < 1?

Yuming Chu, Xiaoming Zhang, and Xiaoming Tang [3] posed the following conjecture.
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Conjecture 2 For b > a >0, we have
(b-L(a, b))y (b) + (L(a,b) - a) Y (a) > (b — )y (vba),
where L(a, b) = (b — a)/(In(b) — In(a)).
The goal of the paper is to solve Conjecture 1, Conjecture 2, and Open Problem 1.

2 Methods
In this paper, we use methods of mathematical and numerical analysis. We also use the
software MATLAB for some computing.

3 Results and discussion
In this section, we disprove Conjecture 1 (see [19]) and Conjecture 2 (see [3]) and prove
one new inequality (Theorem 1) and Open Problem 1 (see [17]).

3.1 Disproving Conjecture 1

It is evident that ¢ (x) is strictly decreasing only if et ®) s strictly decreasing. We have

ePrk® (x) = Vpk(x) = eVpk+h) _ oYpk(®)

Using Matlab, we obtain Table 1.
The table shows that v, (%1) < vpi(%2) for 0 < x1 < %y, p = 100,000, p = 100,010, k = 1.1,
k=1.6, k =2.1. So ¢,k (x) is not strictly decreasing on (0, 00) for p >0 and k > 1.

Remark 1 We note that Conjecture 1 (see [19]) is false since lim,_, ¢+ V;?k(x) >0forp>1
and k > 0.

Indeed, differentiation of v, (x) yields
Vo (&) = /PRy (1 k) — 2Ky ().

Because of

lim ey’ () = Tim &P -Thor et [ 2 Z" 1

m e Xx) = lim e n=1nk+xe * | — + -
x>0 P x>0 x> L= (nk +x)?
n=

= Cy lim e'¢* =0,
t—>+00

Table 1 Values of p, k, x1, x2, Vpk(X1), Vpk(x2)

p k xi vpklx) X2 Vpr(x2)

100000 1.1 0.1  0733034946365922 025  0.849008046429035
100000 1.6 0.1  0.994429244720941 025  1.060815738973497
100000 21 0.1  1.121247007413613 025  1.157039128396737
100010 1.1 0.1  0.733034947426004 025  0.849008047776431
100010 1.6 0.1  0994429244720941 025  1.060815740083848
100010 21 0.1 1.121247008239857 025  1.157039129298960
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where ¢ = 1/x, and Cy > 0 is a constant, we obtain

lim v, (x) = e‘bpk(k)ljf[;k(k) >0

x—0%

for p > 1 and k > 0. This implies that, for all kK >0 and p > 1, there is x, > 0 such that
Vpk(%) is a strictly increasing function on (0, x,x). So, ¢, (%) is a strictly increasing function
on (0, %,x).

Next, by the mean value theorem we get

(x) = ey (o + k) — VK@) (x)

= P (Y (ko) + Wi Epe) e = /PP wp (€,

pk

where x < £y < + k.
Due to

2 » 5
x
ka(x)__[(1+z nk + x)? ) _2x<1+;(nk+x)3>:|

< ;[(1 +p)* - 2x],

we obtain that, for all k > 0 and p > 1, the function V;k(x) is a negative function on ((1 +
p)?/2,+00). So, ¢pi(x) is a strictly decreasing function on ((1 +p)2/2, +00).
Finally, computer calculations show that, for p > 1 and k > 1, there is 0 < x4 < 1 such

that ¢, (x) is an increasing function on (0,x,¢) and a decreasing function on (x, +00).
3.2 Proof of Open Problem 1

Let 8,4 (%) be a completely monotonic function on (0, 00). Then (—1)”8;’21 (x) >0forxe

(0,00)and ¢ € R. So &’

ke (%) <0 for x € (0,00). A simple computation gives

1 pkx
pka(x) = ax® II:% In m - vfpk(x):l

»
. p+1 1
— < 0’
i |:x(x+pk+k) ; (nk+x)2j| -
which is equivalent to
1 pkx
21 77
a(k e kp+1) I/jpk(x))
»
p+1 1
- <0.
x(x(x + pk + k) ; (nk + x)2> -

Because of (see [17])

1 pkx

ke VAW >0
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we obtain
w(—Lt1 A
k+k =
a< d(x) _ ;c(x+p +p;<x n=0 (nk+x)
Fl x+k(p+1) ka(x)
for all x > 0.

Similarly as in [1], the proof will be done if we show that
lir{)1+ dx) <1.

Direct computation leads to

_ (p+l)x
lim d(x) = lim ek * 1+ Yot e
0+ 0+ 1 pkx _ In(pk) 1 P 1
= A x[ In x+k(p+1) kT t n=1 nk+x]
1

=1

=5 x x
lim,_, o+ 7 ln(x+pk+k) +1+ Zn 1 nk+x

Indeed, lim,_, ¢+ d(x) = 1 implies that, for each € > 0, there is x, > 0 such that d(x.) <1 + ¢,
soa <1+ ¢, and thus @ < 1. This completes the proof.

3.3 Disproving Conjecture 2
We show that Conjecture 2 is false. Let 0 < @ < b. Put y* = a/b. Then 0 < y < 1. Conjecture 2
is equivalent to

<1+ 1‘y2>w( )—( -, )w(b 2) > (1-52) ¥ (by)
21n(y) 2In() 4 Al
which can be rewritten as
EF(b,y) = (1-y* +2In()) (¥ (b) — ¥ (by*)) - 2In(») (1 - »*) (¥ (by) - ¥ (By?)) < 0.

Let b be fixed. We prove that lim,_,o+ F(b,y) = +oo. This implies that Conjecture 2 does
not valid. Using the well-known formula

’
n+x

I 1
w(x)=—y—;+;;—

we obtain

11 &

1 1
YOV = 2 s
n=1

and

1 o0
w(by)_l//(b _b__b_+;n+by n+by ©

Page 5 of 12



Matejicka Journal of Inequalities and Applications (2018) 2018:342 Page 6 of 12

So

F(b,y) = biyz (1-y* +2In(») (1 -y* + &y*e1(b,))

- W(l -y +by’pa(b,)),

by?
where
b1 -y*)n? by(1 - y)m?
0<g01(b,y)<% and O<<p2(b,y)<%.

The function F(b,y) may be rearranged as

1
Fby) =35 [(1-9) (1 -5 + by’ 1(,9))
+2In0) (by*01(b:y) +y~5° — b(1 ~5*)y*02(b,)) |
This implies that lim,_, o+ F(b, y) = +00.

3.4 Proof of Theorem 1
Theorem 1 Let 0 <a < b <4/10. Then

(b—L(a, b))y (b) + (L(a, b) — a)y(a) < (b — a)y (Vba). (10)
Proof Itis easily derived that (10) is equivalent to F(b,y) > 0, where y* = a/b, 0 < y < 1, and

E(b,y) = (1-y" +2In(y)) (¥ (b) - ¥ (by*))
—2In()(1 - *) (v (by) - ¥ (by?)).

Using (8), we obtain

) _l—y2 2 - ;
W(b)—l/f(by)_ by +b(1_y)n2=;(n+by2)(l’l+b)

1-9? 1

— 2 S —
<yt y);(n+by)2

due to (1 + by*)(n + b) > (n + by)?. So
Y (b) = (by*) < b(1-5") ¥ (by). (11)

Applying (9), we get

N _l—y - ;
v (by) - ¥ (by*) = by? +by(1_y);(n+by2)(l’l+by)

1-y 1
1— - -
> by +b( y)z(n+by)2

n=1
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due to (n + by?) < (n + by). So

W (by) v (b7?) > %}(1 4 B (). (12)

It is easy to see that, for 0 <y < 1,

s(y) =1-y*+2In(y) <0,
which follows from s(1) = 0 and s'(y) = 2(1 — »?)/y > 0. This implies that

E(b,y) > G(b,y)

- (1= +2mO)(1 =) )
=2In()(1-y)(1-5) (1 -y +0°y’y'(b))].

The inequality G > 0 is equivalent to

b*y* (1 -y +2In(y)) ¥’ (by)) - 2In()(1 - y)(1 - y + B*»*¢ (by)) > 0. (13)
Inequality (13) may be rearranged as

H=y'(by)b*y*(1-y* + 2In(y)(1 - y +5%))) - 2In(»)(1 - »)* > 0.

Put s1(y) =1 —»* + 2In(»)(1 — y + »%). It is easy to see that s;(y) < 0 for 0 < y < 1. Indeed,
51() < 0 is equivalent to

y-1
52(}/) = m —Zln()/) > 0.

Due to s5(1) = 0, it suffices to show that s} (y) < 0.
Differentiation leads to
-2+3y-2y"+3y° - 29"  —(1-9)°(2+y+2?)
y(1 -y +y%)? y(1 -y +y2)?

$H(y) = <0.

Using the well-known formula

o0

L1 1 1
V= (1 +x)> +n2:(n+x)2’

=2

we obtain

/ b2y2 2
v’y*y’(by) < 1+ a +J;y)2 + b2y2<z - 1).

Theorem 1 will be proved if we show

b22

2
G = (1 " jay)2 ' bzyZ(% ) 1)>(1 ~* +2l()(1-y+5?))

—2In(y)(1-9)*>0
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for 0 < b <4/10,0 <y < 1. Based on

dG(b) 2by’ :
= -(1-y +21n(y)(1—y”2))<(1+zy>3 ”byz(% i 1>> <

it suffices to prove that G(0.4) > 0.
The inequality G(b) > 0 is equivalent to

2In(y)f (b,y) + g(b,y) >

where

fBy)=(1-y+y*) [(1 +by)* + b2y2(1 +(1+ by)z(%z - 1))}
- (1L +by) (1-y)
g2b,y) = (1-5%) [(1 +by)* + b2y2<1 +(1+ by)2<%2 - 1))}
It is clearly seen that f(b,y) > 0. So (14) will be done if we prove

g(b,y)

Foy "

h(b,y) = 2In(y) +

(14)

for b =4/10and 0 < y < 1. Because of /1(0.4, 1) = 0, it suffices to show that (dh/dy)(0.4,y) < 0

for 0 <y < 1. We get

an0ay) 2 LG 04) - g(049) G
dy y £*(04,y)

<0.

Inequality (15) is equivalent to

dg(0.4, df (0.4,
u(y) =2/%(0.4,9) +y(%f(o.4, 3 (04,9 P02 (Zj ) )> <0

Put a(y) = 100u(y). Using Taylor’s series and Matlab, we obtain

a(y) =(y- 1)2(899.80856587904507327359937090692 y-1)
—34.541951843593497556069703611525
+2803.0064998600206956003380918157(y — 1)*
+3449.9649390326664508411882274417(y — 1)
+2382.8365919732490773391558060343(y — 1)*
+1077.4495988779774279297213875464(y — 1)°
+341.35184858325869449609722858626(y — 1)°
+75.928581022558019892100963581518(y — 1)’

+11.561798822762785643694391575539(y — 1)°

(15)

(16)

Page 8 of 12
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+1.1176206646533878730984733813133(y — 1)°

+0.05451808120260428649260845762504(y — 1)'°))
= (y - 1)*k(y),

where

k(y) = 899.80856587904507327359937090692(y — 1)
—34.541951843593497556069703611525
+2803.0064998600206956003380918157(y — 1)
+3449.9649390326664508411882274417(y — 1)
+2382.8365919732490773391558060343(y — 1)*
+1077.4495988779774279297213875464(y — 1)°
+341.35184858325869449609722858626(y — 1)°
+75.928581022558019892100963581518(y — 1)”
+11.561798822762785643694391575539(y — 1)®
+1.1176206646533878730984733813133(y — 1)°

+0.05451808120260428649260845762504(y — 1)'°.

It is easy to see that k(y) < kk(y), where

kk(y) = 899.80856587904507327359937090692(y — 1)
—34.541951843593497556069703611525
+2803.0064998600206956003380918157(y — 1)*
+ 3449.9649390326664508411882274417(y — 1)3
+2382.836591973249077339155806034:3(y — 1)*
+1077.4495988779774279297213875464(y — 1)°
+341.35184858325869449609722858626(y — 1)°
+75.928581022558019892100963581518(y — 1)’
+11.561798822762785643694391575539(y — 1)8
+1.1176206646533878730984733813133(y — 1)°
+0.05451808120260428649260845762504(y — 1)

To prove that kk(y) < 0, it suffices to show that kk(0) < 0, kk(1) < 0, kk'(0) <0, kk"(1) > 0,
kk"(0) < 0, and kk”(y) is an increasing function on (0, 1).
Put ¢(y) = kk” (y). Direct computation yields
c(y) = (22,759,659,395,315,613y)/1,099,511,627,776

+(2,021,889,693,856,018,983(y — 1)2)/70,368,744,177,664
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+(23,693,367,246,178,465(y — 1)*)/1,099,511,627,776
+(738,027,641,132,151,741,645(y — 1)*)/72,057,594,037,927,936
+(112,202,976,768,737,799(y — 1)°)/35,184,372,088,832
+(11,324,961,019,967,769(y — 1)7)/140,737,488,355,328

- 8,297,891,458,330,007/549,755,813,888.
We now show that cc(y) = kk”’(y) > 0. We have

cc(y) = 57,465.561379104286260144363041036y
+ 64,646.975932678647041029762476683(y — 1)
+40,968.763999735354855158409037585(y — 1)*
+15,945.002014737184339310260838829(y — 1)*
+563.28081498530752213582672993653(y — 1)°
—36,765.771744908288582109889830463.

Differentiation yields

cc’(y) = 16,898.4<24449559224740369245409966}/4

- 67,593.697798236898961476981639862y°
+ 292,730.570874-20154857682064-175606)/2
—204,461.16215351717255543917417526y
+91,719.816493350586824817582964897.

Using the Cardano formula and Matlab, we get that there are no real roots of c¢”’(y) = 0.

Due to c¢c(0) > 0, we obtain cc”(y) > 0.
We now show that v(y) > 0 for 0 < y < 1, where v(y) is a tangent line to the function cc(y)

at the point (0.22, cc(0.22)).
Using Matlab, we have

cc(0.22) = 1794.965061908937 and ¢c'(0.22) = 149.7626334452943.
This implies that

v(y) = 1794.965061908937 + 149.7626334452943(y — 0.22).
Direct computation yields:

v(0) = 1762.017282550972,  v(1) = 1911.779915996267,
kk(0) = —2.3294e—~14,  kk(1) = —34.5420,  Kkk'(0) = —53.5347,
kk"(0) = —937.2660,  kk"(1) = 5.6060e+03.

This completes the proof. d
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3.5 Open problem
Finally, we give an open problem.

Open Problem 2 Find the best possible real positive constants by, b; such thatif 0 <a <
b < by, then

(b-L(a, b))y (b) + (L(a,b) - a)y(a) < (b - a)y(vVba),
and if 0 < b; <a < b, then

(b~ L(a, b))y (b) + (L(a, b) - a)y(a) > (b - a)y (Vba),
where L(a,b) = (b - a)/(In(b) - In(a)).
Note 1 Note that our work and [3] show that 4/10 < by and 2 > b;.

4 Conclusion

In this paper, we proved e Open Problem 1 [17] and disproved Conjectures 1 and 2 [3,
19]. We also proved a new inequality (Theorem 1) for the digamma function. Finally, we
proposed an Open Problem 2.
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