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Abstract
It has turned out that the tensor expansion model has better approximation to the
objective function than models of the normal second Taylor expansion. This paper
conducts a study of the tensor model for nonlinear equations and it includes the
following: (i) a three dimensional symmetric tensor trust-region subproblem model of
the nonlinear equations is presented; (ii) the three dimensional symmetric tensor is
replaced by interpolating function and gradient values from the most recent past
iterate, which avoids the storage of the three dimensional symmetric tensor and
decreases the workload of the computer; (iii) the limited BFGS quasi-Newton update
is used instead of the second Jacobian matrix, which generates an inexpensive
computation of a complex system; (iv) the global convergence is proved under
suitable conditions. Numerical experiments are done to show that this proposed
algorithm is competitive with the normal algorithm.
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1 Introduction
This paper focuses on

S(x) = 0, x ∈ �n, (1.1)

where S : �n → �n is continuously differentiable nonlinear system. The nonlinear system
(1.1) has been proved to possess wildly different application fields in parameter estimating,
function approximating, and nonlinear fitting, etc. At present, there exist many effective
algorithms working in it, such as the traditional Gauss–Newton method [1, 9–11, 14,
16], the BFGS method [8, 23, 27, 29, 39, 43], the Levenberg–Marquardt method [6, 24,
42], the trust-region method [4, 26, 35, 41], the conjugate gradient algorithm [12, 25,
30, 38, 40], and the limited BFGS method [13, 28]. Here and in the next statement, for
research convenience, suppose that S(x) has solution x∗. Setting β(x) := 1

2‖S(x)‖2 as a norm
function, the problem (1.1) is equivalent to the following optimization problem:

minβ(x), x ∈ �n. (1.2)
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The trust-region (TR) methods have as a main objective solving the so-called trust-
region subproblem model to get the trial step dk ,

Min Tpk(d) =
1
2
∥
∥S(xk) + ∇S(xk)d

∥
∥

2,

‖d‖ ≤ 	,

where xk is the kth iteration, 	 is the so-called TR radius, and ‖·‖ is the normally Euclidean
norm of vectors or matrix. The first choice for many scholars is to study the above model
to make a good improvement. An adaptive TR model is designed by Zhang and Wang [42]:

Min φk(d) =
1
2
∥
∥S(xk) + ∇S(xk)d

∥
∥

2,

‖d‖ ≤ cp∥∥S(xk)
∥
∥

γ ,

where p > 0 is an integer, and 0 < c < 1 and 0.5 < γ < 1 are constants. Its superlinear con-
vergence is obtained under the local error bound assumption, by which it has been proved
that the local error bound assumption is weaker than the nondegeneracy [24]. Thus one
made progress in theory. However, its global convergence still needs the nondegeneracy.
Another adaptive TR subproblem is defined by Yuan et al. [35]:

Min Tqk(d) =
1
2
∥
∥S(xk) + Bkd

∥
∥

2,

‖d‖ ≤ cp∥∥S(xk)
∥
∥, (1.3)

where Bk is generated by the BFGS quasi-Newton formula

Bk+1 = Bk –
BksksT

k Bk

sT
k Bksk

+
ykyk

T

yk T sk
, (1.4)

where yk = S(xk+1) – S(xk), sk = xk+1 – xk , xk+1 is the next iteration, and B0 is an initial
symmetric positive definite matrix. This TR method can possess the global convergence
without the nondegeneracy, which shows that this paper made a further progress in the-
ory. Furthermore, it also possesses the quadratic convergence. It has been showed that the
BFGS quasi-Newton update is very effective for optimization problems (see [32, 33, 36]
etc.). There exist many applications of the TR methods (see [19–21, 31] etc.) for nons-
mooth optimizations and other problems.

It is not difficult to see that the above models only get the second Taylor expansion and
approximation. Can we get the approximation to reach one more level, namely the third
expansion, or even the fourth? The answer is positive and a third Taylor expansion is used
and a three dimensional symmetric tensor model is stated. In the next section, the moti-
vation and the tensor TR model are stated. The algorithm and its global convergence are
presented in Sect. 3. In Sect. 4, we do the experiments of the algorithms. One conclusion
is given in the last section.
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2 Motivation and the tensor trust-region model
Consider the tensor model for the nonlinear system S(x) at xk ,

ϑ(xk + d) = S(xk) + ∇S(xk)T d +
1
2

Tkd2, (2.1)

where ∇S(xk) is the Jacobian matrix of S(x) at xk and Tk is three dimensional symmetric
tensor. It is not difficult to see that the above tensor model (2.1) has better approximation
than the normal quadratical trust-region model. It has been proved that the tensor is sig-
nificantly simpler when only information from one past iterate is used (see [3] for details),
which obviously decreases the complexity of the computation of the three dimensional
symmetric tensor Tk . Then the model (2.1) can be written as the following extension:

ϑ(xk + d) = S(xk) + ∇S(xk)T d +
3
2
(

sT
k–1d

)2sk–1. (2.2)

In order to avoid the exact Jacobian matrix ∇S(xk), we use the quasi-Newton update ma-
trix Bk instead of it. Thus, our trust-region subproblem model is designed by

Min Nk(d) =
1
2

∥
∥
∥
∥

S(xk) + Bkd +
3
2
(

sT
k–1d

)2sk–1

∥
∥
∥
∥

2

,

‖d‖ ≤ cp∥∥S(xk)
∥
∥

γ , (2.3)

where Bk = H–1
k and Hk is generated by the following low-storage limited BFGS (L-BFGS)

update formula:

Hk+1 = V T
k HkVk + ρksksT

k

= V T
k

[

V T
k–1Hk–1Vk–1 + ρk–1sk–1sT

k–1
]

Vk + ρksksT
k

= · · ·
=

[

V T
k · · ·V T

k–m+1
]

Hk–m+1[Vk–m+1 · · ·Vk]

+ ρk–m+1
[

V T
k–1 · · ·V T

k–m+2
]

sk–m+1sT
k–m+1[Vk–m+2 · · ·Vk–1]

+ · · ·
+ ρksksT

k , (2.4)

where ρk = 1
sT
k yk

, Vk = I –ρkyksT
k , I is the unit matrix and m is a positive integer. It has turned

out that the L-BFGS method has a fast linear convergence rate and minimal storage, and
it is effective for large-scale problems (see [2, 13, 28, 34, 37] etc.). Let dp

k be the solution of
(2.3) corresponding to the constant p. Define the actual reduction by

Adk
(

dp
k
)

= β
(

xk + dp
k
)

– β(xk), (2.5)

and the predict reduction by

Pdk
(

dp
k
)

= Nk
(

dp
k
)

– Nk(0). (2.6)
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Based on definition of the actual reduction Adk(dp
k ) and the predict reduction Pdk(dp

k ),
their radio is defined by

rp
k =

Adk(dp
k )

Pdk(dp
k )

. (2.7)

Therefore, the tensor trust-region model algorithm for solve (1.1) is stated as follows.

Algorithm 1
Initial: Constants ρ , c ∈ (0, 1), p = 0, ε > 0, x0 ∈ �n, m > 0, and B0 = H–1

0 ∈ �n × �n is a
symmetric and positive definite matrix. Let k := 0;

Step 1: Stop if ‖S(xk)‖ < ε holds;
Step 2: Solve (2.3) with 	 = 	k to obtain dp

k ;
Step 3: Compute Adk(dp

k ), Pdk(dp
k ), and the radio rp

k . If rp
k < ρ , let p = p + 1, go to Step 2.

If rp
k ≥ ρ , go to the next step;

Step 4: Set xk+1 = xk + dp
k , yk = S(xk+1) – S(xk), update Bk+1 = H–1

k+1 by (2.4) if yT
k dp

k > 0,
otherwise set Bk+1 = Bk ;

Step 5: Let k := k + 1 and p = 0. Go to Step 1.

Remark The procedure of “Step 2–Step 3–Step 2” is called the inner cycle in the above
algorithm. It is necessary for us to prove that the inner cycle is finite, which generates the
circumstance that Algorithm 1 is well defined.

3 Convergence results
This section focuses on convergence results of Algorithm 1 under the following assump-
tions.

Assumption i
(A) The level set Ω defined by

Ω =
{

x | β(x) ≤ β(x0)
}

(3.1)

is bounded.
(B) On an open convex set Ω1 containing Ω , the nonlinear system S(x) is twice contin-

uously differentiable.
(C) The approximation relation

∥
∥
[∇S(xk) – Bk

]

S(xk)
∥
∥ = O

(∥
∥dp

k
∥
∥
)

(3.2)

is true, where dp
k is the solution of the model (2.3).

(D) On Ω1, the sequence matrices {Bk} are uniformly bounded, namely there exist con-
stants 0 < M0 ≤ M satisfying

Ms ≤ ‖Bk‖ ≤ Ml ∀k. (3.3)

Assumption i (B) means that there exists a constant ML > 0 satisfying

∥
∥∇S(xk)T∇S(xk)

∥
∥ ≤ ML, ∀k. (3.4)
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Based on the above assumptions and the definition of the model (2.3), we have the fol-
lowing lemma.

Lemma 3.1 Let dp
k be the solution of (2.3), then the inequality

Pdk
(

dp
k
) ≤ –

1
2
∥
∥BkS(xk)

∥
∥min

{

	k ,
‖BkS(xk)‖

M2
l

}

+ O
(	2

k
)

(3.5)

holds.

Proof By the definition of dp
k of (2.3), then, for any α ∈ [0, 1], we get

Pdk
(

dp
k
) ≤ Pdk

(

–α
	k

‖BkS(xk)‖BkS(xk)
)

=
1
2

[

α2	2
k
‖BkBkS(xk)‖2

‖BkS(xk)‖2 + α4	4
k

9
4

(sT
k–1BkS(xk))4

‖BkS(xk)‖4

+ 3α2	2
k

(sT
k–1BkS(xk))2

‖Bksk–1‖2 S(xk)T sk–1 – 2α	k
(S(xk)T BkBkS(xk))

‖BkS(xk)‖

– 3α3	3
k

(sT
k–1BkS(xk))2sT

k–1BkBkS(xk)
‖BkS(xk)‖3

]

=
1
2

[

α2	2
k
‖BkBkS(xk)‖2

‖BkS(xk)‖2 – 2α	k
(S(xk)T BkBkS(xk))

‖BkS(xk)‖ + O
(	2

k
)
]

≤ –α	k
∥
∥BkS(xk)

∥
∥ +

1
2
α2	2

kM2
l + O

(	2
k
)

.

Therefore, we have

Pdk
(

dp
k
) ≤ min

0≤α≤1

[

–α	k
∥
∥BkS(xk)

∥
∥ +

1
2
α2	2

kM2
l

]

+ O
(	2

k
)

≤ –
1
2
∥
∥BkS(xk)

∥
∥min

{

	k ,
‖BkS(xk)‖

M2
l

}

+ O
(	2

k
)

.

The proof is complete. �

Lemma 3.2 Let dp
k be the solution of (2.3). Suppose that Assumption i holds and {xk} is

generated by Algorithm 1. Then we have

∣
∣Adk

(

dp
k
)

– Pdk
(

dp
k
)∣
∣ = O

(∥
∥dp

k
∥
∥

2).

Proof Using Assumption i, the definition of (2.5) and (2.6), we obtain

∣
∣Adk

(

dp
k
)

– Pdk
(

dp
k
)∣
∣

=
∣
∣β

(

xk + dp
k
)

– Nk
(

dp
k
)∣
∣

=
1
2

∣
∣
∣
∣

∥
∥S(xk) + ∇S(xk)dp

k + O
(∥
∥dp

k
∥
∥

2)∥
∥

2 –
∥
∥
∥
∥

S(xk) + Bkdp
k +

3
2
(

sT
k–1dp

k
)2sk–1

∥
∥
∥
∥

2∣
∣
∣
∣

=
∣
∣S(xk)T∇S(xk)dp

k – S(xk)T Bkdp
k + O

(∥
∥dp

k
∥
∥

2) + O
(∥
∥dp

k
∥
∥

3) + O
(∥
∥dp

k
∥
∥

4)∣
∣
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≤ ∥
∥
[∇S(xk) – Bk

]

S(xk)
∥
∥
∥
∥dp

k
∥
∥ + O

(∥
∥dp

k
∥
∥

2) + O
(∥
∥dp

k
∥
∥

3) + O
(∥
∥dp

k
∥
∥

4)

= O
(∥
∥dp

k
∥
∥

2).

This completes the proof. �

Lemma 3.3 Let the conditions of Lemma 3.2 hold. We conclude that Algorithm 1 does not
infinitely circle in the inner cycle (“Step 2–Step 3–Step 2”).

Proof This lemma will be proved by contradiction. Suppose, at xk , that Algorithm 1 in-
finitely circles in the inner cycle, namely, rp

k < ρ and cp → 0 with p → ∞. This implies that
‖gk‖ ≥ ε, or the algorithm stops. Thus we conclude that ‖dp

k‖ ≤ 	k = cp‖gk‖ → 0 is true.
By Lemma 3.1 and Lemma 3.2, we get

∣
∣rp

k – 1
∣
∣ =

|Adk(dp
k ) – Pdk(dp

k )|
|Pdk(dp

k )|

≤ 2O(‖dp
k‖2)

	k‖BkS(xk)‖ + O(	2
k)

→ 0.

Therefore, for p sufficiently large, we have

rp
k ≥ ρ, (3.6)

which generates a contradiction with the fact rp
k < ρ . The proof is complete. �

Lemma 3.4 Suppose that the conditions of Lemma 3.3 holds. Then we conclude that {xk} ⊂
Ω is true and {β(xk)} converges.

Proof By the results of the above lemma, we get

rp
k ≥ ρ > 0. (3.7)

Combining with Lemma 3.1 generates

β(xk+1) ≤ β(xk) ≤ · · · ≤ β(x0).

Then {xk} ⊂ Ω holds. By the case β(xk) ≥ 0, we deduce that {β(xk)} converges. This com-
pletes its proof. �

Theorem 3.5 Suppose that the conditions of Lemma 3.3 hold and {xk} is generated by
Algorithm 1. Then Algorithm 1 either finitely stops or generates an infinite sequence {xk}
satisfying

lim
k→∞

∥
∥S(xk)

∥
∥ = 0. (3.8)

Proof Suppose that Algorithm 1 does not finitely stop. We need to obtain (3.8). Assume
that

lim
k→∞

∥
∥BkS(xk)

∥
∥ = 0 (3.9)
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holds. Using (3.3) one gets (3.8). So, we can complete this lemma by (3.9). We use the
contradiction to have (3.9). Namely, we suppose that there exist an subsequence {kj} and
a positive constant ε such that

∥
∥Bkj S(xkj )

∥
∥ ≥ ε. (3.10)

Let K = {k | ‖BkS(xk)‖ ≥ ε} be an index set. Using Assumption i, the case ‖BkS(xk)‖ ≥ ε

(k ∈ K ), and ‖S(xk)‖ (k ∈ K ) is bounded away from 0, we assume

∥
∥S(xk)

∥
∥ ≥ ε, ∀k ∈ K

holds. By Lemma 3.1 and the definition of Algorithm 1, we obtain

∑

k∈K

[

β(xk) – β(xk+1)
] ≥ –

∑

k∈K

ρPdk
(

dpk
k

)

≥
∑

k∈K

ρ
1
2

min

{

cpk ε,
ε

M2
l

}

ε,

where pk is the largest p value obtained in the inner circle. Lemma 3.4 tells us that the
sequence {β(xk)} is convergent, thus

∑

k∈K

ρ
1
2

min

{

cpk ε,
ε

M2
l

}

ε < +∞.

Then pk → +∞ when k → +∞ and k ∈ K . Therefore, for all k ∈ K , it is reasonable for us to
assume pk ≥ 1. In the inner circle, by the determination of pk (k ∈ K ), let d′

k corresponding
to the subproblem

Min qk(d) =
1
2

∥
∥
∥
∥

S(xk) + Bkd +
3
2
(

sT
k–1d

)2sk–1

∥
∥
∥
∥

2

,

s. t. ‖d‖ ≤ cpk –1∥∥S(xk)
∥
∥, (3.11)

be unacceptable. Setting x′
k+1 = xk + d′

k one has

β(xk) – β(x′
k+1)

–Pdk(d′
k)

< ρ. (3.12)

Using Lemma 3.1 and the definition 	k one has

–Pdk
(

d′
k
) ≥ 1

2
min

{

cpk –1ε,
ε

M2
l

}

ε.

Using Lemma 3.2 one gets

β
(

x′
k+1

)

– β(xk) – Pdk
(

d′
k
)

= O
(∥
∥d′

k
∥
∥

2) = O
(

c2(pk –1)).
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Thus, we obtain

∣
∣
∣
∣

β(x′
k+1) – β(xk)
Pdk(d′

k)
– 1

∣
∣
∣
∣
≤ O(c2(pk –1))

0.5 min{cpk –1ε, ε

M2
l
}ε + O(c2(pk –1)ε2)

.

Using pk → +∞ when k → +∞ and k ∈ K , we get

β(xk) – β(x′
k+1)

–Pdk(d′
k)

→ 1, k ∈ K ,

this generates a contradiction to (3.12). This completes the proof. �

4 Numerical results
This section reports some numerical results of Algorithm 1 and the algorithm of [35] (Al-
gorithm YL).

4.1 Problems
The nonlinear system obeys the following statement:

S(x) =
(

g1(x), g2(x), . . . , gn(x)
)T .

Problem 1 Trigonometric function

gi(x) = 2

(

n + i(1 – cos xi) – sin xi –
n

∑

j=1

cos xj

)

(2 sin xi – cos xi), i = 1, 2, 3, . . . , n.

Initial guess: x0 = ( 101
100n , 101

100n , . . . , 101
100n )T .

Problem 2 Logarithmic function

gi(x) = ln(xi + 1) –
xi

n
, i = 1, 2, 3, . . . , n.

Initial points: x0 = (1, 1, . . . , 1)T .

Problem 3 Broyden tridiagonal function ([7], pp. 471–472)

g1(x) = (3 – 0.5x1)x1 – 2x2 + 1,

gi(x) = (3 – 0.5xi)xi – xi–1 + 2xi+1 + 1, i = 2, 3, . . . , n – 1,

gn(x) = (3 – 0.5xn)xn – xn–1 + 1.

Initial points: x0 = (–1, –1, . . . , –1)T .

Problem 4 Trigexp function ([7], p. 473)

g1(x) = 3x3
1 + 2x2 – 5 + sin(x1 – x2) sin(x1 + x2),

gi(x) = –xi–1exi–1–xi + xi
(

4 + 3x2
i
)

+ 2xi+1
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+ sin(xi – xi+1) sin(xi + xi+1) – 8, i = 2, 3, . . . , n – 1,

gn(x) = –xn–1exn–1–xn + 4xn – 3.

Initial guess: x0 = (0, 0, . . . , 0)T .

Problem 5 Strictly convex function 1 ([18], p. 29). S(x) is the gradient of h(x) =
∑n

i=1(exi –
xi). We have

gi(x) = exi – 1, i = 1, 2, 3, . . . , n.

Initial points: x0 = ( 1
n , 2

n , . . . , 1)T .

Problem 6 Strictly convex function 2 ([18], p. 30). S(x) is the gradient of h(x) =
∑n

i=1
i

10 ×
(exi – xi). We have

gi(x) =
i

10
(

exi – 1
)

, i = 1, 2, 3, . . . , n.

Initial guess: x0 = (1, 1, . . . , 1)T .

Problem 7 Penalty function

gi(x) =
√

10–5(xi – 1), i = 1, 2, 3, . . . , n – 1,

gn(x) =
(

1
4n

) n
∑

j=1

x2
j –

1
4

.

Initial guess: x0 = ( 1
3 , 1

3 , . . . , 1
3 )T .

Problem 8 Variable dimensioned function

gi(x) = xi – 1, i = 1, 2, 3, . . . , n – 2,

gn–1(x) =
n–2
∑

j=1

j(xj – 1),

gn(x) =

( n–2
∑

j=1

j(xj – 1)

)2

.

Initial guess: x0 = (1 – 1
n , 1 – 2

n , . . . , 0)T .

Problem 9 Discrete boundary value problem [15]

g1(x) = 2x1 + 0.5h2(x1 + h)3 – x2,

gi(x) = 2xi + 0.5h2(xi + hi)3 – xi–1 + xi+1, i = 2, 3, . . . , n – 1,

gn(x) = 2xn + 0.5h2(xn + hn)3 – xn–1,

h =
1

n + 1
.

Initial points: x0 = (h(h – 1), h(2h – 1), . . . , h(nh – 1)).
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Problem 10 The discretized two-point boundary value problem similar to the problem
in [17]

S(x) = Ax +
1

(n + 1)2 F(x) = 0,

with A is the n × n tridiagonal matrix given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8 –1
–1 8 –1

–1 8 –1
. . . . . . . . .

. . . . . . –1
–1 8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and F(x) = (F1(x), F2(x), . . . , Fn(x))T with Fi(x) = sin xi – 1, i = 1, 2, . . . , n, and x = (50, 0, 50, 0,
. . .).

Parameters: ρ = 0.05, ε = 10–4, c = 0.5, p = 3, m = 6, H0 is the unit matrix.
The method for (1.3) and (2.3): the Dogleg method [22].
Codes experiments: run on a PC with an Intel Pentium(R) Xeon(R) E5507 CPU

@2.27 GHz, 6.00 GB of RAM, and the Windows 7 operating system.
Codes software: MATLAB r2017a.
Stop rules: the program stops if ‖S(x)‖ ≤ 1e–4 holds.
Other cases: we will stop the program if the iteration number is larger than a thousand.

4.2 Results and discussion
The column meaning of the tables is as follows.

Dim: the dimension.
NI: the iterations number.
NG: the norm function number.
Time: the CPU-time in s.
Numerical results of Table 1 show the performance of these two algorithms as regards

NI, NG and Time. It is not difficult to see that:
(i) Both of these algorithms can successfully solve all these ten nonlinear problems;

(ii) the NI and the NG of these two algorithm do not increase when the dimension
becomes large;

(iii) the NI and the NG of Algorithm 1 are competitive to those of Algorithm YL and the
Time of Algorithm YL is better than that of Algorithm 1. To directly show their the
efficiency, the tool of [5] is used and three figures for NI, NG and Time are listed.

Figures 1–3 show the performance of NI, NG and Time of these two algorithms. It is easy
to see that the NI and the NG of Algortihm 1 have won since their performance profile
plot is on top right. And the Time of Algorithm YL has superiority to Algorithm 1. Both
of these two algorithms have good robustness. All these three figures show that both of
these two algorithms are very interesting and we hope they will be further studied in the
future.
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Table 1 Experiment results

Nr Dim Algorithm 1 Algorithm YL

Ni NG Time NI NG Time

1 400 9 18 10.93567 11 22 1.778411
800 9 18 52.46314 11 22 7.176046
1600 8 14 215.453 11 22 42.57267

2 400 4 10 11.27887 6 7 1.185608
800 4 10 45.94229 6 7 4.071626
1600 4 10 251.38 6 7 22.58894

3 400 4 10 2.808018 64 125 8.642455
800 4 10 10.74847 78 129 52.26034
1600 4 10 70.80885 68 99 262.5653

4 400 2 2 0.8112052 6 17 1.092007
800 2 2 2.839218 6 22 3.08882
1600 2 2 14.08689 6 22 13.27569

5 400 3 6 1.731611 6 7 0.936006
800 3 6 5.616036 6 7 3.650423
1600 3 6 30.32659 6 7 22.44854

6 400 3 6 1.279208 5 6 0.7176046
800 3 6 5.397635 5 16 2.88601
1600 3 6 29.88979 5 16 16.39571

7 400 5 14 3.790824 12 49 1.435209
800 5 14 22.52654 12 49 4.69563
1600 5 14 102.0403 17 83 19.23492

8 400 1 2 1.294808 3 6 0.2808018
800 1 2 5.694037 3 6 0.8580055
1600 1 2 31.091 3 6 3.775224

9 400 13 19 11.01367 12 15 1.60681
800 9 15 40.95026 11 17 7.191646

1600 10 19 299.3191 10 16 38.07984
10 400 3 9 2.558416 40 50 12.44888

800 3 9 11.62207 40 50 49.43672
1600 3 9 73.07087 41 53 365.7911

Figure 1 Performance profiles of these methods (NI)
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Figure 2 Performance profiles of these methods (NG)

Figure 3 Performance profiles of these methods (Time)

5 Conclusions
This paper considers the tensor trust-region model for nonlinear system. The global con-
vergence is obtained under suitable conditions and numerical experiments are reported.
This paper includes the following main work:

(1) a tensor trust-region model is established and discussed.
(2) the low workload update is used in this tensor trust-region model. In the future, we

think this tensor trust-region model shall be more significant.
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