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Abstract
Slowly varying systems are common in physics and control engineering and thus
stability analysis for those systems has drawn considerable attention in the literature.
This paper uses the “frozen time approach” to derive Lyapunov inequality conditions
for the stability of a wide class of slowly varying systems. These conditions refine
those developed in (Khalil in Nonlinear Systems, 2002) and display generality and
effectiveness for both linear and nonlinear systems. To illustrate the utility of the
proposed results, an example has been included.
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1 Introduction
Slowly varying systems were first introduced in the 1960s by Desoer [5] in a one page ar-
ticle where he investigated conditions that ensure the exponential stability of an unforced
linear system using the so-called “frozen time approach”. This approach draws conclusions
on the stability of systems for any frozen time of an input function, a time-varying param-
eter or an internal/external disturbance. For instance, the input/output system ẋ = f (x, u)
is expected to possess stability results that are similar to the frozen system (i.e. when the
input u is treated as a constant). Numerous techniques for solving slowly varying systems
with parameters influenced by environmental conditions have been developed in [6, 9, 15,
18, 22]. The aforementioned parameters are typically smooth and involve sufficiently small
derivatives; see [5], because otherwise the stability of the system is hard to guarantee [16].

Stability analysis of slowly varying systems can be simplified using the frozen time ap-
proach by approximating time-varying systems with slowly varying inputs or parameters
by time-invariant ones. To this end, the system under study is required to be attractive
or even asymptotically stable as well; see [4, 10, 14] and [20] for further details. This
makes the Lyapunov analysis quite involved in studying such systems. For instance, [11]
gives a method for constructing strict Lyapunov functions for the class of systems under
study. Furthermore, the frozen parameter approach is used in the field of stabilizing feed-
back systems [8]. Alternatively, the stability of slowly varying systems can be described by
eigenvalue-based methods as in [19].

Many references have been devoted to the study of the linear case as in [7] where a Popov
criterion is given. The exponential stability and instability of continuous linear systems on
time scales are studied in [2] and [3], respectively. In Ref. [21], the author investigates the
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stability conditions for certain continuous linear slowly varying system, while in Theorem
9.3 of [10], the author provides Lyapunov-based sufficient conditions for the stability of
slowly varying systems in some detail.

The main contribution of this paper is new as far as we are aware. We establish a gen-
eralization of [10, Theorem 9.3] in a different perspective. We claim the generality, with
additional implementations, that our results can be extended to both linear and nonlinear
models and are highly suitable for the nonlinear case. To illustrate the described results,
an example is given.

The present paper has the following structure. Section 2 presents some results and def-
initions that are used throughout the paper. In Sect. 3, we establish the main result of this
article with the proposed conditions. Simulations are provided in Sect. 4. A brief conclu-
sion part is added at the end of the paper.

2 Background results and definitions
This section states some results and definitions that are needed in the paper.

Lemma 2.1 ([13, 14]) Consider a function z : [t0,ω) → R+ where t0 ∈ R and t0 < ω ≤ ∞.
Assume that:

(a) The function z is absolutely continuous on each compact interval of [t0,ω).
(b) There exist z1 ≥ 0 and z2 > 0 such that z1 < z2, z(t0) < z2 and ż(t) ≤ 0 for almost all

t ∈ (t0,ω) that satisfy z1 < z(t) < z2.
Then z(t) ≤ max (z(t0), z1), for all t ∈ [t0,ω).

Lemma 2.2 ([12, Corollary 2.6]) Consider the differential equation

Ẇ (t) = –β
(
W (t)

)
+ e(t), (1)

where t ≥ t0, W (t) ∈R, β(·) is of class K (that is, continuous, strictly increasing, and β(0) =
0), and e(·) is a positive continuous function that goes to 0 as t → ∞. Then each global
solution W (t) of Eq. (1); with a strictly positive initial value, goes to 0 as t → ∞.

Definition 2.1 ([1, p. 79]) The point x = 0 of system ẋ(t) = F(t, x(t)), x(t0) = x0 is said to
be:

(i) stable if for any t0 ∈ R+ and any ε > 0, there is c > 0 such that if |x0| < c then each
solution x of ẋ(t) = F(t, x(t)), x(t0) = x0 is continuable on [t0,∞) and

∣∣x(t)
∣∣ < ε, for all t ≥ t0,

(ii) uniformly stable if for any ε > 0, there is c > 0 such that, for each t0 ∈R+ and each
|x0| < c, every solution x of system ẋ(t) = F(t, x(t)), x(t0) = x0 is continuable on
[t0,∞) and

∣
∣x(t)

∣
∣ < ε, for all t ≥ t0,

(iii) globally attractive if for all t0 ∈R+ and all x0 ∈R
m, each solution x of system

ẋ(t) = F(t, x(t)), x(t0) = x0 is continuable on [t0,∞) with limt→∞ x(t) = 0,
(iv) globally asymptotically stable if it is stable and globally attractive.
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3 Main results
This section derives sufficient conditions for the stability of the following slowly varying
system:

ẋ(t) = f
(
x(t), u(t)

)
, (2)

x(t0) = x0, (3)

where t ≥ t0, solution x(t) ∈ R
m, f ∈ C0(Rm × R

n,Rm) with f (0, 0) = 0, and u ∈ Γ where
Γ = {u ∈ C1(R,Rn) : ∃ε > 0 such that |u̇(·)| < ε}; for some positive integers m and n. The
origin x = 0 is an equilibrium point for Eq. (2). One considers Eq. (2) to be slowly varying
because all the elements of the set Γ are continuously differentiable with “sufficiently”
small derivative (see [10]). The idea is to derive some stability properties that are uniformly
valid in u ∈ Γ (when u is treated as a frozen parameter).

Let u ∈ Γ , then the right-hand side of Eq. (2) is continuous. This implies that, for any x0 ∈
R

m, Eq. (2) admits a continuous solution that is defined on a maximal interval of existence
[t0,ω) where ω ∈ (t0,∞]. Moreover, each solution of Eq. (2) is continuously differentiable
because of the continuity of the right-hand side of Eq. (2) (see [17]).

Theorem 9.3 in [10] studies the stability of the slowly varying system (2) under the as-
sumptions (A1)–(A4):

(A1) There exists h ∈ C1(Rn,Rm) such that f (h(v), v) = 0, for all v ∈ R
n. Additionally,

there exists some L > 0 such that

∣∣
∣∣
dh(v)

dv

∣∣
∣∣
2
≤ L, for all v ∈ R

n, (4)

where | · |2 is the induced 2-norm for matrices.
(A2) For the change of variables y(·) = x(·) – h(u(·)), there exists a Lyapunov function

V∗ ∈ C2(Rm ×R
n,R+) with a finite third derivative such that for all α1 ∈R

m and all
α2 ∈R

n there exist some strictly positive numbers c1, c2, c3, c4, and c5 satisfying

c1|α1|2 ≤ V∗(α1,α2) ≤ c2|α1|2, (5)
∣∣
∣∣
∂V∗(α1,α2)

∂α2

∣∣
∣∣ ≤ c5|α1|2, (6)

∣∣
∣∣
∂V∗(α1,α2)

∂α1

∣∣
∣∣ ≤ c4|α1|, (7)

∂V∗(α1, u(t))
∂α1

∣
∣∣∣
α1=y(t)

· f
(
y(t) + h

(
u(t)

)
, u(t)

) ≤ –c3
∣∣y(t)

∣∣2, (8)

for all t ≥ t0 and all u ∈ Γ .
(A3) The quantities ε and |y(t0)| are less than some number that depends on L and ci;

i = 1, 2, . . . , 5.
(A4) One has limt→∞ u̇(t) = 0.
In the following theorem we relax Assumption (A2) of [10, Theorem 9.3] where we prove

that the Lyapunov function V∗ needs only to be continuously differentiable (instead of
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being C2 with a finite third derivative in [10, Theorem 9.3]). Moreover, in inequalities (5)
and (8), we replace the functions ci| · |2, i = 1, 2, 3, by class K∞ functions (a continuous
function β is of class K∞ if it is strictly increasing with β(0) = 0 and limt→∞ β(t) = ∞).
Furthermore, in inequalities (6) and (7), we replace the functions c4| · | and c5| · |2 by a
continuous function H .

Theorem 3.1 Suppose that:
(a) Assumption (A1) of [10, Theorem 9.3] is satisfied.
(b) For each solution x(t) of the system (2) with maximal interval of existence [t0,ω),

suppose that there exist δ > 0, a function V ∈ C1(Rm ×R
n,R+) and class K∞

functions β1, β2 and β3 satisfying

β1
(|α1|

) ≤ V (α1,α2) ≤ β2
(|α1|

)
, for all (α1,α2) ∈R

m ×R
n, (9)

∂V (α1, u(t))
∂α1

∣
∣∣
∣
α1=y(t)

· f
(
y(t) + h

(
u(t)

)
, u(t)

) ≤ –β3
(∣∣y(t)

∣∣), (10)

for all u ∈ Γ and all t ∈ (t0,ω) that satisfy |y(t)| < δ where y = x – h ◦ u.
(c) There exists a nondecreasing function H ∈ C0(R+,R+) such that H(v) > 0, for all v > 0

and

max

(∣
∣∣
∣
∂V (α1,α2)

∂α2

∣
∣∣
∣,

∣
∣∣
∣
∂V (α1,α2)

∂α1

∣
∣∣
∣

)
≤ H

(|α1|
)
, (11)

for all (α1,α2) ∈ R
m ×R

n that satisfy |α1| < δ.
(d) One has |y(t0)| < β–1

2 (β1(δ)) and

ε <
β3(β–1

2 (β1(δ)))
(L + 1)H(δ)

. (12)

Then:
(i) For any u ∈ Γ , each solution x(t) of the system (2) is continuable on [t0,∞).

(ii) If Assumption (A4) of [10, Theorem 9.3] is satisfied (that is, u̇(t) → 0 as t → ∞),
then we have limt→∞ y(t) = 0. (This implies that limt→∞ x(t) = limt→∞ h(u(t))
whenever limt→∞ h(u(t)) existsa).

(iii) If h(·) is the zero function and V (·, ·) is independent of its second component (i.e. for
every α ∈R

m, V (α, ·) is a constant function), then, for any u ∈ Γ , the origin x = 0 is
uniformly stable and is globally asymptotically stable.

We prove Results (i), (ii) and (iii) separately as follows.
Proof of Result (i): For any u ∈ Γ , let x(t) be a solution of Eq. (2) with maximal interval of

existence [t0,ω). For the change of variables y(·) = x(·) – h(u(·)), we deduce by Eq. (2) that

ẏ(t) = f
(
y(t) + h

(
u(t)

)
, u(t)

)
–

dh(v)
dv

∣∣
∣∣
v=u(t)

u̇(t), t ≥ t0. (13)

Define z : [t0,ω) → R+ as z(t) = V (y(t), u(t)), for all t ∈ [t0,ω). Since all functions x, h, u,
and V are continuously differentiable, the functions y and z are absolutely continuous on
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each compact interval of [t0,ω). One sees from (4), (10), (11), and (13) that, for all t ∈ (t0,ω)
that satisfy |y(t)| < δ, one has

ż(t) =
∂V (α1, u(t))

∂α1

∣∣
∣∣
α1=y(t)

· ẏ(t) +
∂V (y(t),α2)

∂α2

∣∣
∣∣
α2=u(t)

· u̇(t)

=
∂V (α1, u(t))

∂α1

∣
∣∣
∣
α1=y(t)

·
(

f
(
y(t) + h

(
u(t)

)
, u(t)

)
–

dh(v)
dv

∣
∣∣
∣
v=u(t)

u̇(t)
)

+
∂V (y(t),α2)

∂α2

∣∣
∣∣
α2=u(t)

· u̇(t)

≤ –β3
(∣∣y(t)

∣∣) + (L + 1)H
(∣∣y(t)

∣∣)∣∣u̇(t)
∣∣. (14)

Claim 1 ω = ∞ and ‖y‖∞ < ∞.

Proof Since H is nondecreasing we conclude from inequality (14) that

ż(t) ≤ –β3
(∣∣y(t)

∣∣) + (L + 1)H(δ)
∣∣u̇(t)

∣∣

for all t ∈ (t0,ω), that satisfy
∣
∣y(t)

∣
∣ < δ. (15)

We get by inequality (12) that β–1
3 ((L + 1)H(δ)ε) < β–1

2 (β1(δ)) and hence (9) implies that
β–1

3 ((L + 1)H(δ)ε) < δ. Thus the fact that |u̇(·)| < ε and (15) lead to

ż(t) ≤ 0, for all t ∈ (t0,ω), that satisfy β–1
3

(
(L + 1)H(δ)ε

)
<

∣
∣y(t)

∣
∣ < δ. (16)

Inequality (12) implies that β2(β–1
3 ((L+1)H(δ)ε)) < β1(δ). Hence, we deduce by inequalities

(9) and (16) that

ż(t) ≤ 0, for all t ∈ (t0,ω), that satisfy β2
(
β–1

3
(
(L + 1)H(δ)ε

))
< z(t) < β1(δ). (17)

On the other hand, since it is assumed that |y(t0)| < β–1
2 (β1(δ)), we obtain by inequality

(9) that z(t0) < β1(δ). Therefore, we deduce by (17) that all conditions of Lemma 2.1 are
satisfied with z2 = β1(δ) and z1 = β2(β–1

3 ((L + 1)H(δ)ε)). Hence

z(t) ≤ max
(
β2

(
β–1

3
(
(L + 1)H(δ)ε

))
, z(t0)

)
, for all t ∈ [t0,ω).

Thus (9) leads to |y(t)| ≤ M, for all t ∈ [t0,ω) where

M = max
(
β–1

1
(
β2

(
β–1

3
(
(L + 1)H(δ)ε

)))
,β–1

1
(
β2

(∣∣y(t0)
∣∣))).

This implies that ‖y‖∞ < ∞ so that ω = ∞, which completes the proof of the claim. �

Claim 1 proves that each solution x(t) of the system (2) is continuable on [t0,∞), which
completes the proof of Result (i).

Proof of Result (ii): Assume that limt→∞ u̇(t) = 0. Since H is nondecreasing, we deduce
by Claim 1 and inequalities (9) and (14) that

ż(t) ≤ –β
(
z(t)

)
+ e(t), for all t > t0,
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where β(·) = β3 ◦β–1
2 (·) and e(·) = (L+1)H(M)|u̇(·)|. The function β(·) is of classK∞. More-

over, since limt→∞ |u̇(t)| = 0, one has limt→∞ e(t) = 0. Consider the differential equation

Ẇ (t) = –β
(
W (t)

)
+ e(t), (18)

W (t0) = z(t0), (19)

where t ≥ t0, W (t) ∈ R. Due to the continuity of the right-hand side of Eq. (18), a con-
tinuous solution for the system (18)–(19) exists and is defined on a maximal interval of
existence [t0, t1) where t0 < t1 ≤ ∞. We observe that the initial state W (t0) = z(t0) is non-
negative by the definition of the function z.

Claim 2 Each solution W (·) of the system (18)–(19) is nonnegative, continuable on [t0,∞),
and satisfies limt→∞ W (t) = 0.

Proof Assume that there is some t2 ∈ [t0, t1) such that W (t2) < 0. The continuity of W im-
plies that it attains its infimum on the compact interval [t0, t2]; say inft∈[t0,t2] W (t) = W (t3)
for some t3 ∈ (t0, t2]. Hence W (t3) < 0 and Ẇ (t3) = 0. Thus Eq. (18) leads to 0 = Ẇ (t3) =
–β(W (t3)) + e(t) > 0. This contradiction proves that W (·) is nonnegative. On the other
hand, the fact that limt→∞ e(t) = 0 leads to ‖e‖∞ < ∞ and Ẇ (t) ≤ –β(W (t)) + ‖e‖∞, for all
t ≥ t0. This implies that Ẇ (t) ≤ 0, for all t ≥ t0 that satisfy W (t) > β–1(‖e‖∞). Therefore, all
conditions of Lemma 2.1 are satisfied with z1 = β–1(‖e‖∞) and z2 = W (t0) + 1. Thus we get
W (t) ≤ max {W (t0),β–1(‖e‖∞)}. The boundedness of W (t) implies that each solution of
the system (18)–(19) is continuable on [t0,∞). Now we need to show that limt→∞ W (t) = 0.
To this end, consider the following cases.

(i) If W (t0) > 0, the property limt→∞ W (t) = 0 follows from Lemma 2.2.
(ii) If W (t0) = 0, then either W is the zero function or can be strictly positive at some

element in its domain. When z is the zero function, the property limt→∞ W (t) = 0 is
trivially valid. Otherwise, there exists some t4 > t0 such that z(t4) > 0; then, by seeing
the number t4 as a new initial time, one can simply deduce by Lemma 2.2 that
limt→∞ W (t) = 0. This completes the proof of the claim. �

By Claim 2, one can use the comparison lemma [10, p. 102] to deduce that z(t) ≤ W (t),
for all t ≥ t0. Hence the fact that limt→∞ W (t) = 0 leads to limt→∞ z(t) = 0. Thus inequality
(9) implies that limt→∞ y(t) = 0 and Result (ii) is seen to be true.

Proof of Result (iii): Assume that h(·) is the zero function and that V (·, ·) is independent
of its second component. Then we have x(·) = y(·). We have by inequality (10) that

dV (α)
dα

∣∣
∣∣
α=x(t)

· f
(
x(t), u(t)

) ≤ –β3
(∣∣x(t)

∣
∣), for all t ≥ t0. (20)

This makes V (·) a strict Lyapunov function [1, Theorem 3.2] which implies that the origin
x = 0 is uniformly stable and is globally asymptotically stable.

Corollary 3.1 Suppose that all assumptions of Theorem 3.1 are satisfied. If limt→∞ u(t) =
u∗ exists finitely, then

lim
t→∞ ẋ(t) = f

(
h(u∗), u∗

)
.
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Proof It follows by Eq. (2), the result limt→∞(x(t) – h(u(t))) = 0 of Theorem 3.1 and the
continuity of the function h. �

We observe that the special cases βi(·) = ci| · |2, i = 1, 2, 3, and H(·) = max (c4| · |2, c5| · |)
makes Items (b) and (c) of Theorem 3.1 reduced to Assumption (A2) of [10, Theorem 9.3].
Moreover, Assumptions (A1), (A3) and (A4) of [10, Theorem 9.3] are already assumed in
Theorem 3.1 (see Items (a) and (d)).

4 Example and simulations
This section uses Theorem 3.1 to study the stability of a nonlinear slowly varying system
without any restriction on the initial conditions or the magnitude of the function u̇. Con-
sider the nonlinear system

ẋ1(t) = –x3
1(t) + x2(t) – μ sin

(
u(t)

)
, (21)

ẋ2(t) = –x1(t) –
(
2x2

1(t) + 1
)(

x2(t) – μ sin
(
u(t)

))
, (22)

where μ > 0, t ≥ t0, u ∈ C1(R,R) and x(t) =
[ x1(t)

x2(t)
]

takes values in R
2. The system (21)–(22)

has the form of (2) where n = 1, m = 2 and

g(α, v) =

[
–α3∗ + α∗∗ – μ sin (v)

–α∗ – (2α2∗ + 1)(α∗∗ – μ sin (v))

]

,

for all α =
[ α∗

α∗∗
] ∈ R

2 and v ∈ R. The continuously differentiable function h(v) =
[ 0

μ sin (v)
]
,

for all v ∈ R, satisfies the equality f (h(v), v) = 0, for all v ∈ R. Since dh(v)
dv =

[ 0
μ cos (v)

]
, for all

v ∈R, inequality (4) is satisfied with L = μ.
Let u ∈ Γ and let x(t) be a solution of the system (21)–(22) with maximal interval of the

form [t0,ω). Consider the Lyapunov function V ∈ C1(R2,R+) that is defined as

V (α) =
1
2
(
α2

∗ + α2
∗∗

)
=

1
2
|α|2, for all α =

[
α∗
α∗∗

]

∈R
2.

Inequality (9) is satisfied with β1(·) = β2(·) = 1
2 (·)2. Moreover, one has

dV (α)
dα

=
[

dV (α)
dα∗

dV (α)
dα∗∗

]
=

[
α∗ α∗∗

]
, for all α =

[
α∗
α∗∗

]

∈R
2.

This implies that inequality (11) is satisfied with H being the identity function.
Consider the change of variables y(·) =

[ y1(·)
y2(·)

]
= x(·) – h(u(·)). Consider an initial condi-

tion x0 ∈R
2 and a positive constant ε. Let δ be a positive constant such that

δ > max
(
1,

∣∣y(t0)
∣∣, ε(μ + 1)

)
. (23)
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Hence |y(t0)| < β–1
2 (β1(δ)) = δ and δ > 1. We conclude by Eqs. (21) and (22) that, for all

t ∈ [t0,ω) that satisfy |y(t)| < δ, one has

dV (α)
dα

∣
∣∣
∣
α=y(t)

· g
(
y(t) + h

(
u(t)

)
, u(t)

)

= –y4
1(t) – 2y2

1(t)y2
2(t) – y2

2(t)

≤ –y4
1(t) – 2y2

1(t)y2
2(t) –

1
δ2 y4

2(t)

≤ –
1
δ2

(
y4

1(t) + 2y2
1(t)y2

2(t) + y4
2(t)

)

= –
1
δ2

(
y2

1(t) + y2
2(t)

)2 = –
1
δ2

∣
∣y(t)

∣
∣4.

Thus inequality (10) is satisfied with β3(·) = 1
δ2 (·)4. By inequality (23) we have δ > ε(μ + 1).

Hence inequality (12) is satisfied. All conditions of Theorem 3.1 are satisfied. Therefore
for every x0 ∈R

2 and ε > 0, each solution of the system (21)–(22) is continuable on [t0,∞).
Moreover, if limt→∞ u̇(t) = 0, we have limt→∞ y(t) = 0. This implies that limt→∞ x1(t) = 0
and limt→∞(x2(t) – μ sin (u(t))) = 0. As a result, if limt→∞ u(t) exists finitely, then Corol-
lary 3.1 and Eq. (21) lead to limt→∞ ẋ(t) = 0.

In this example, we have proved that the quadratic Lyapunov function satisfies all con-
ditions of Theorem 3.1 with β3(·) = 1

δ2 (·)4 (i.e. ∇V · f ≤ –β3(|y|) = – 1
δ2 |y|4 for small |y|).

This implies that there is no guarantee on the inequality ∇V · f ≤ –c3|y|2 to be valid for
small |y| and so is inequality (8).

Simulations: Let t0 = 1, μ = 1, x0 =
[ 0

0

]
and u(t) = sin (t)

t+0.1 , for all t ≥ 0. We have
limt→∞ u(t) = limt→∞ u̇(t) = 0. Thus, limt→∞ x2(t) = limt→∞ μ sin (u(t)) = 0 (see Fig. 1 (top-
right)) and limt→∞ x1(t) = 0. This is also illustrated in Fig. 1 (top-left) which shows the plot
of x2(t) versus x1(t) and clarifies that (0, 0) is the starting and the limiting point in the x1x2-
plane. Since limt→∞ u(t) exists finitely, one has limt→∞ ẋ1(t) = limt→∞ ẋ2(t) = 0, which is
clarified in Fig. 1 (bottom-left). In Fig. 1 (bottom-right), we observe that as t → ∞ the
red parametric curve t versus ẋ2(t) versus ẋ1(t) converges to the blue line which is par-

Figure 1 Simulations
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allel to the t axis and passes through (0, 0) in the ẋ1ẋ2-plane. This ensures the property
limt→∞ ẋ1(t) = limt→∞ ẋ2(t) = 0.

5 Conclusion
We have provided sufficient conditions that ensure the stability of the slowly varying sys-
tem ẋ(t) = f (x(t), u(t)) where u is treated as a “frozen parameter”. These conditions open
the routes to further knowledge on the stability of more generic classes of systems. Nu-
merical simulations for the nonlinear case have been carried out to illustrate the results.
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Endnote
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imply that limt→∞ u(t) exists. To see this take t0 positive, n = 1 and for all t ≥ t0 one has u(t) = sin (ln t).
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