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1 Introduction
Let N, denote the set of positive integers, and let N := N, U {0}. Let m := (mg,m1,,...) be a
sequence of positive integers not less than 2. Denote by Z,,, := {0, 1,..., m; —1} the additive
group of integers modulo m1;. Define the group G,, as the complete direct product of the
groups Z,,, with the product of the discrete topologies of Z,,.

The direct product of the measures

1
i)=— (eZ,
Mk({]}) iy (] k)
is the Haar measure on G,, with «(G,,) = 1. If the sequence m is bounded, then G,, is
called abounded Vilenkin group. In this paper, we consider only bounded Vilenkin groups.
The elements of G,, can be represented by sequences x := (xo,x1,...,%j,...) (xj € Zm].). The

group operation + in G, is given by
xX+y= ((xo +yo) mod my, ..., (xXk +yk)m0dmk,...)

for x:= (xq,...,%k,...) and ¥ := (Yo, ..., V& .- -) € G- The inverse of + will be denoted by —.
It is easy to give a base for the neighborhoods of G,,:

IO(x) = va

I(x) :={y € Gulyo = %0, .., ¥u-1 = Xu_1}

for x € G,, and n € N. Define I, := I,(0) for n € N,. Set ¢, := (0,...,0,1,0,...) € G,,, where

the nth coordinate of which is 1, and the rest are zeros (z € N).
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We define the so-called generalized number system based on m as follows: M := 1,
M1 = mpMy (k € N). Then every n € N can be uniquely expressed as n = foo nM;
where #; € Zm/ (j € N.), and only a finite number of #; differ from zero. We also use the
following notation: |n| := max{k € N : nx # 0} (i.e., M}, <1 < Mjy41,n #0). Forx € G,,, we
denote |x| := foo % (%) € Zyy)-

Next, we introduce on G,, an orthonormal system, which is called the Vilenkin sys-
tem. First, we define the complex-valued functions ri(x) : G,, — C, the generalized

Rademacher functions, as follows:

2T ixg .
(&

re(x) := exp =-l,x€ Gm,keN).

mi

Now we define the Vilenkin system v := (¥, : n € N) on G, as

Yn(x) := Her(x) (neN).
k=0

In particular, if m = 2, then we call this system the Walsh—Paley system. Each ¥, is a
character of G,,, and all characters of G,, are of this norm. Moreover, ¥,,(—x) = ¥,,(%).
The Dirichlet kernels are defined by

Recall that (see [20] or [23])

M, ifxel,
Dy, (x) = (1)
0 ifxé¢l,.

The Vilenkin system is orthonormal and complete in L}(G,,) (see [1]).

Next, we introduce some notation from the theory of two-dimensional Vilenkin system.
Let 771 be a sequence like 7. The relation between the sequences (7i1,,) and (M,,) is the same
as between sequences (m,) and (M,). The group G,, x Gj is called a two-dimensional
Vilenkin group. The normalized Haar measure is denoted by u as in the one-dimensional
case. We also suppose that m = /71 and G, x G, = G2,.

The norm of the space L?(G?) is defined by

1/p
Il = ( /G @l du(x,y)) (1=p<oo).

Denote by C(G?) the class of continuous functions on the group G endowed with the
supremum norm.

For brevity in notation, we write L>°(G?)) instead of C(G?).

The two-dimensional Fourier coefficients, the rectangular partial sums of the Fourier

series, and the Dirichlet kernels with respect to the two-dimensional Vilenkin system are
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defined as follows:

Fomm = [ $a9)i, 5,0) st ),
n1—-1lny-1

Smm @Y f) = Y Y Flhn, k) (9091, (9),

k1=0 k=0

Dnl,nz (x;y) = Dn1 (x)Dnz(y)’

Denote

n-1
SPe,y.f) =Y fUy) i),
=0

m-1
SPy.f) =Y f@ ),
r=0

where
iy = S )
and

Foor) = fG F)r ) duly).

The (C, —a) means of the double Vilenkin—Fourier series are defined as follows:

n

Una(fyx;y) = F ZA,;?]’_lsjyj(f,x;y)’
n-1 j:1
where
Jrany Aa—(a+1)~ (o + 1)

It is well known that (see [28])

AL =AY, 2)
k=0
AY—AY =A% 3)
and
a(a)n® <Ay < cr(a)n®, 4)

where positive constants ¢; and ¢; depend on «.
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The dyadic partial moduli of continuity of a function f € L/(G?) in the L”-norm are
defined by

uely

w1 (f, A%) =sup|f (- +u-)—f(, -)||p
n/p

and

)

p

on(frp ) =suplite o0 s
p

n vely

whereas the dyadic mixed modulus of continuity is defined as follows:

1 1
@ [ B
1,2 (f Mn Mm )p

= sup “f( +u,+v)—f(+u)—f(,-+v) +f(-,-)||p.

(u,v)ely <Ly

It is clear that

1 1 1 1
w y T, T §a) M + y — .
“(f M, Mm>p 1(f Mn>p 2<f Mm>,,

The dyadic total modulus of continuity is defined by

1
w(f,ﬁn)p = sup Hf( +u,-+v)—f(, -)Hp.

(u,v)el, x1Iy

The problems of summability of partial sums and Cesaro means for Walsh—Fourier series
were studied in [2, 13-19, 21, 22, 25, 26].

The convergence issue of Fejér (and Cesaro) means on the Walsh and Vilenkin groups
for unbounded case were studied in [3—11].

In his monograph [27], Zhizhinashvili investigated the behavior of Cesaro (C, «)-means
for double trigonometric Fourier series in detail. Goginava [18] studied the analogous
question in the case of the Walsh system. In particular, the following theorems were

proved.

Theorem A Let f belong to L¥(G,) for some p € [1,00) and a € (0,1). Then, for any 28 <
n < 281 (k,n € N), we have the inequality

Ho,z—ka (f) _f”p < C(C() 2katw1 (f: 1/2/(—1)p + 2/(010)2 (f, 1/2k—1)p

k-2

k-2
) 2o (f,1/2) 4 Y 2o (f,1/2) 8
r=0

s=0
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Theorem B Let f belong to L (G,) for some p € [1,00] and o € (0,1). Then, for any 2K <
n < 251 (k,n € N), we have the inequality

lox () =1, =< cle) 2“ken (£, 1/27) , + 2 kana (£, 1/2°Y)

k-2 k-2
£y 2o (f,102), + 2 e (f,1/29),
r=0 s=0

In this paper, we state and prove analogous results in the case of double Vilenkin—Fourier
series. Our main results are the following theorems.

Theorem 1 Let f belong to LF(G2,) for some p € [1,00] and o € (0,1). Then, for any My <
n < My (k,n € N), we have the inequality

||a,‘wi f) —f||p < c(a) <a)1(f, 1/ My_1)p My + wo(f, 1/M_1) , My

+ Z—a)l(f 1/M,), + Z‘ a)z(f 1/M, )p>

Theorem 2 Let f belong to LF(G2,) for some p € [1,00] and o € (0,1). Then, for any My <
n < My (k,n € N), we have the inequality

low )11,

<c(a) (a)l(f, 1/Miy_1), My log n + ws(f, 1/M;_1),M logn

k=2 M k=2 M
£y ﬁgwl(f, UM, + ﬁzwz(f, 1/Ms)p).
r=0 s=0

To make the proofs of these theorems clearer, we formulate some auxiliary lemmas in
Sect. 2. Some of these lemmas are new and of independent interest. Detailed proofs can
be found in Sect. 3.

2 Auxiliary lemmas
To prove Theorems 1 and 2, we need the following three lemmas (see [1, 12], and [8],

respectively)

Lemmal Let oy,qs,...,a, be real numbers. Then

)

Lemma?2 Letog,ws,...,o, be real numbers. Then

)

Zaka x)

k=1

1/2
du(x) < —<Zak> .

Z axDyc(x)Dic(y)

k=1

172
dux,y) < — (Z ak) .

G
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Lemma 3 Let0 <j<nM;and 0 < n; < ms. Then

DnsMS_/ = DnsMs - wnsMs_IDj'
We also need the following new nemmas of independent interest.

Lemma 4 Let f belong to LP(G?2,) for some p € [1,00]. Then, for every a € (0,1), we have

the inequality
1 M1
P | [ S A D@D~ ) -7 dia)
n|[VGh i »
k=2 k=2

M M
<> ﬁ;wl(ﬁ UM)p+ A7sz(f, 1/Ms),,
r=0 s=0

where My < n < My,1.

Lemma5 Leto €(0,1)andp =My, My +1,.... Then

H::/
G

Lemma 6 We have the inequality

HI::[
G

3 The detailed proofs

My
> A Di(u)Di(v)

i=1

du(u,v) <cla) <oo, k=1,2,....

2
m

> A Di(u)Di(v)

i=1

du(u,v) <cla)logn

2
m

Proof of Lemma 3 Applying Abel’s transformation, from (2) we get

1 My_1-1 i
1<) [, 2 A DO 0] dut ,,
1 o
* A fG Al ;Dxu)zx(u)m-—u,-—v) —f ()] dpau,v) p
=1 + 1, (5)

where the first and second terms on the right side of inequality (5) are denoted by I; and

I, respectively.
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For I,, we have the estimate

k-2 Myi1-1

‘fMlk D D Diw)Dy(v)

r=1 i=M,

I
Z_A;z

x [t =)~ ]| dntwv)
p
k-2 Myy1-1

’fMlk 0> DiwDi(v)

r=1 =M,

X [f(- - —V) = Spom, (- — 1, — v,f)] du(u,v)

P
1 k=2 Mypy1-1
—Ot 1
+AZ _M“;l; D;(u)D;(v)
X [SMer(~ =, =V, f) = Smm, (-, .,f)] du(u,v)
p
k-2 My1-1
A~ ;D(Mlklz Z Di(u)D;(v)
" r=1 =M,
X [Satp, Cooof) = £ ()] dpaas, )
p
=Dy + 12 + I, ©)

where the first, second, and third terms on the right side of inequality (6) are denoted by
Iy, Iy, and I3, respectively.
It is evident that

Mr+1 -1

/G DA [Sutyat, - = 1= = ) = Sntyaty o o] i1,

m =M,

Mry1-1

- Z (/2 Dy()Di(V)Sat, i, (- — 1, - — v, f ) dpa(u, v) —SM,,M,(-,-,f)>

i=M, Y G
Myy1-1

= Y (SiCor Smtet, (1)) = Swtpt, (5, f))

i=My
Myi1-1

= 7 (St Croof) = Satrin, () = 0.

=M,

Hence

L = 0. (7)
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Moreover, by the generalized Minkowski inequality, Lemma 2, and by (1) and (4) we

obtain
k=2 Myi1-1
I < e |A;f’;}11k71 | Z/ Z D;(u)D;(v)
=1 VG| i,
* If =t =) = Syt (- = - = )], A, v)
(@) k-2
<= (o1, 1/M,), + wo(f, 1/M,),)
k r=1
Myi1-1
x/ Z Di(x)D;(y)| du(u,v)
G| ity
=2 4
<c(@) ZE ATk (01(f, 1/M,), + 0o (f> 1/M,),). (8)

The estimation of I3 is analogous to that of I;:

by <c(@)) 1% (01(f, 1/M,), + ws(f, 1/IM,),). )
r=1

Analogously, we can estimate I; as follows:

k=2 Myi1-1 i
~ Z / D AL ) D)D)
A =1 [V Cm i=p, I=1

x [f( =t = V) = Sy, - = - = v, )] d (s, v)

p
1 k=2 Mp1-1 i
A Dy(u)D,
yepd /G , ; IZ u)Dy(v)
X [SMr,Mr(' — U, — V:f) - SMr,Mr('i !f)] d/,L(bt, V)
p
1 k-2 Mypy1-1 i
=33 [, 4 pwnw
n Gin i=M, I=1
X [SMV,MV('» »f) _f(': )] d,u'(u’ V)
p
k=2 Mpi1-1
—~ Z A ZZDl(u Dy(v)
” =1 =My

X |V( —u,-=V) =Sy, (- — 46,0 = V,f) ||p du(u,v)
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1 k-2 Myy1-1
_QZ/ A 2201 )Dy(v)
noop=1 n i=My
X ||SMer(" ’f) _f('r )”p dﬂ(u» V)
k=2 Myy1-1
@MYy Y (n=i) i, 1M,), + n(f, 1IM,),)
r=1 i=M,
k=2 Myi1-1
<c@M Y Y (=M = 1) i (f, UM,), + oa(f, 1IM,),)
r=1 =M,
k-2 M
<cl)) ATk (01(f, 1IM,), + wa(f, 1/M,)). (10)
r=0

By combining (7)—(9) with (10) for I we find that

k=2

Mr
I<cla) 20: M (01(f, LIM,), + oo(f, 1IM,)p). (11)
The proof of Lemma 3 is complete. O

Proof of Lemma 4 1t is evident that

115/

+ A f Dt (1) D, () a1, v)

Mp-1

Z A —Mk+zDMk L(M)DM[( (V)| du(u,v)

=11 + 11, (12)

where the first and second terms on the right side of inequality (12) are denoted by II; and
1I,, respectively.
From (1) by 1A, %0 1 | =1 we get that

I, <1. (13)

Moreover, by Lemma 3 we have that

1 S/
Mp—-1
+ f Dy, (u)
G'zﬂ i=1

2 A wDi)
+ / DMk

Mp—-1

Z A Di)Dy(v) | dyu(u,v)

du(u,v)

u)|dp(u,v)

—Mk+l
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Mp-1

—a-1
Z AP—Mk+i

i=1

+

|, a1, ) i)
Gin
= 1111 +1112 +[[13 +1]14, (].4')

where the first, second, third, and fourth terms on the right side of inequality (14) are
denoted by 111, 111, 1113, and 114 respectively.
From (1) and (4) it follows that

T4 < c(a) Zv‘“‘l < 00. (15)

v=1

By Applying Abel’s transformation, in view of Lemma 2, we have that

<[ ZA _MWZD, )Di(v)| dpu,)
Mp-1
+/G Al T 1 ZD(L{D(V) du(u,v)
i=1

M-
01){ > - M+ )it (p- 1)‘“‘1Mk}

v=1

< (a){Zi"‘l +Mk“} < 00. (16)
i=1

The estimation of I3, and /I3 are analogous to the estimation of II1;. Applying Abel’s

transformation, in view of Lemma 1, we find that

i
o< [ D) ZA-SM;LZDZ(v) daas,v)
Gin I=1
Mip-1
+/ DMku)A ZD du(u,v)
G2,

Myp-2
= (“){ D p-Mit )i (p- 1)‘“Mk}

a){zl’-a-l +M;“} <00 (17)
i=1

and

My—-2

D Apiin 2 Dilw)

i=1 =1

iy < [ Dy dpu,v)
G

+/2 DMk
Gin

Mp—-1

A‘“ZDu)

dpu(u,v)
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My-2
= C(“)= D =M+ i) i (p- 1)“Mk}

v=1
oo
< c(a)iz ity M,:"‘} < 00. (18)
i=1
The proof is complete by combining (12)—(18). d

Proof of Lemma 5 Let
n=nmgMp +- -+ mMy, ki>-o>ke>0.
Denote
®

nY = Mg + -+ My, i=1,2,...,8

Since (see [20])

Dj+nAMA = D}’IAMA + I/IHAMADjl (19)
we find that
nklel
ms | | > A DiwDiv)|du(u,v)
G| =1
e
| I A D)D) di,v)
m| =1

1)

ZAal

dp(u,v)

f anlel (M)anle )

/ anlel
+ / ”klM/q (V
G

=14 + 11, + I3 + I, + 115, (20)

V)| du(u,v)

n(zzl

o)

)| A Dilu)

i=1

du(u,v)

where the first, second, third, fourth, and fifth terms on the right side of inequality (20)
are denoted by III4, IIl,, 1113, I11,, and II]5, respectively.
By (1) we have that
I3 < c(a). (21)

Moreover, since (see [24])

2T Di(u)| = O(lul*™), (22)
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for 114, we get that

i, < /2 Dy vy, @)vI* " duu, v)
G

m

1
< / V"t du(v) = = < co. (23)
Gm a
Analogously, we find that

5 = [ Dy, Ol dts)
GZ

m

1
< / lul*tdu(v) = = < co. (24)
Gm 4

Forr € {0,...m4 — 1} and 0 <j < My (see [20]), this yields that

r-1
Djmy = (Z %A>DMA + ¥, Dj
gq=0

Thus we have

iy Mk1 -1

Y AP dp,y)
m i=1

iy -1 Mkl -1

D A, Disraty @i, () dpa,v)

er i=0

nj —1 Mkl

r-1
<[, 2% i, (Evh, ou, 0
q=0
r-1
x (Z Vi, )DMkl (v) dps(w, )
gq=0

nkl_lel -1

935 PETH ) SN o, 0045, D10t
m r=0 =0

Mgy ~1 Mg —1 r-1

Z AL ler Vi, Di(u) (Z ]//Z/[]q)DMkl V) du(u,v)
m r=0 =0 q=0

iy —lel—l

D> Z A Dt Viny D) Wiy Di(v) s, ).
On the other hand, by (1) and (4) we obtain that

[ A2 Dy, (9D, ) dl) = ()
G

m
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Consequently, for II;, we have the estimate

gy = 1/\/11(1
i, < / Dat @Dty ] 3 S A5 | st
G r=0 =1
ey = le1
+/ Dy ()| D D A “o Di0v) | dpau,v)
G r=0 i=1
gy — 1Mk1
+ / D )] D YA, Dilw)| dpa(in,)
G r=0 i=1
nkl_lel
Z ZAn —i— er (V) d,lL(u, V) +C(C()
'“ r=0 i=1
= 11111 + 11112 +11113 +1]114 + C(O{), (25)

where the first, second, third, and fourth terms on the right side of inequality (25) are
denoted by 11111, Ill15, I1];3, and 1114, respectively.
From Lemma 4 we have that
14 < c(@). (26)
The estimation of II1;; is analogous to that of /i3, and we find that
I < c(@). (27)
The estimation of 111}, and II1;3 is analogous to that of /14, and we obtain that
15 < o0 (28)
and

I3 < 0. (29)

After substituting (21) and (23)-(29) into (20), we conclude that

I,

> A Di(u)Di(v)

i=1

dp(u,v)

2

Z & Di(u)D;(v)

=1

=,

<c(a) + c(a)s < c(a) log n.

dp(u,v) +c(e)

n(s)

Z alD )

=1

du(u,v) + c(a)s

The proof is complete. d
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Now we are ready to prove the main results.

Proof of Theorem 1 1t is evident that

loaiz () -f Hp
M1
= A* My—i )[f( —u,-—v)—f(, ]du(u V)
m i=1 »
—o / Mk tD (M D (V)[,f( U, — V) _f(‘, )] d,lL(M, V)
AM -1 GW‘Z =Mj_1+1
! P
=1+1I. (30)
From Lemma 5 it follows that
]<C(Q)Z%((l)1(f, l/Mr) +(1)2(f,1/Mr) ) (31)
B r=0 Mk v i
Moreover, for II, we have the estimate
a-1
HsAMI/ ZAM”D D;(v)
Gin = My_1+1
X [f( —u,—v) - S](&I)k_l(. —u, - V,f)] du(u, v)
p
AaIL ZAMkLD(u)D()
m =My _1+1
X [SSh_ (=t = v, ) = £, )] dials,v)
p
= 111 +I[2, (32)

where the first and second terms on the right side of inequality (32) are denoted by I; and
II,, respectively.
In view of the generalized Minkowski inequality, by (4) and Lemma 5 we get that

I < —— / Z At Di(u)Dy(v)
My=1 ¢ G | i=py_y +1
< fC=w-=v)=Sip (==, duw,v)
< c(a)M,‘:wl(f, I/M](_l)p. (33)

The estimation of /I, is analogous to that of II;, and we find that
1, < c(a) ga)g(f, 1/Mk—1)p~ (34')

Combining (30)—(34), we obtain the proof of Theorem 1. O
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Proof of Theorem 2 1t is evident that

lo 11,
Mi—1
ﬁﬂZA“m WDt~ ) — £ )] diala,)
m =1 p

AT D)D) (- =y = v) = ()] A, v)

ml My_1+1 p

Z A Di)DW)[f (=, —v) £, )| dn(u, v)
mz =M +1 p
=T +11+11I, (35)

where the first, second, and third terms on the right side of inequality (35) are denoted by
I, 11, and III, respectively.

From Lemma 4 it follows that
I<c@)) %(wl(f, 1/M,)p + a(f, 1/M,),). (36)
B r=0 Mk 3 '

Next, we repeat the arguments just in the same way as in the proof of Theorem 1 and
find that

11 < c()M (o1 (f, 1Mi-1)p + o (f, 1/Mi1),). (37)

On the other hand, for III, we have

1 <

/ Z A Di(u)Dy(v)

A o
n=1 VG j_p1, 41

X [f(—u-—v)=f()]|| duw,v)

p

/ Z A, Di(u)Di(v)

Gin i=Mp+1

X [f( =t =) = Sy (- — 0, - = v, f) | dpu(u, v)

p

/ 3 41D,wWD)

Gin i=Mp+1

X [Sameane = 1= = Vo) = Sagean (5 5 f) ] A, v)

p
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n

<=L X asnwpo

n m =M+l

p

=111, + 11, + I, (38)

where the first, second, and third terms on the right side of inequality (38) are denoted by
114, 11y, and III5, respectively.
It is easy to show that

1, = 0. (39)

By the generalized Minkowski inequality and Lemma 5, for III;, we obtain that

n

1 e
I, < A—;“ | Z Ani‘ 1Di(u)Di(V)
m | i=Mp+1

X |G =ty =) = St =1t = v, )], daus,v)

< c(a)M (w1(f, LIMi1)p + wa(f, 1/Mi1),)

n

x /G%q VZ AZ%1D, (u)Dy (v) | dpa(u, v)

=Mj+1

< cla)M{ logn(w1(f, 1/Mi-1), + o (f, 1/Mi-1),). (40)
The estimation of /I3 is analogous to that of III,, and we find that
I3 < c(a)Mj log n(wy (f, 1/My_1)p + o2(f, 1/M_1),). (41)

After substituting (36)—(37) and (41) into (35), we obtain the proof of Theorem 2. [
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