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Abstract

By using the weight functions and the idea of introducing parameters, a half-discrete
Hilbert inequality with a nonhomogeneous kernel and its equivalent form are given.
The equivalent statements of the constant factor are best possible related to
parameters, and some particular cases are considered. The cases of a homogeneous
kernel are also deduced.
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1 Introduction
If0<Y > a2 <00,0< Y 2, b? < 00, then we have the following discrete Hilbert inequal-
ity with the best possible constant factor 7 [1]:

00 00 1/2

Sy <n(za sz) . n
m=1 n=1 m=1

Assuming that 0 < fooo f2(x)dx < 00, 0 < fooo 2%(y)dy < oo, we still have the following
Hilbert integral inequality [1]:

/ /Oofx+y xdy<n(/owa(x)dwag2@)dy)1/2, 2)

where the constant factor 7 is the best possible. Inequalities (1) and (2) are important in
analysis and its applications (cf. [2—13]).

We still have the following half- discrete Hilbert-type inequalities (cf. [1], Theorem 351):
If K(x)(x > 0) is decreasing, p > 1, = + 2=1,0<¢(s) fo K(x)x*1 dx < 00, then

/0 P 2(21((%)@”) dx < ¢1’< ) Za (3)

P2 d OO" dx.
ln (/ K(nx)f (x) x) <¢>p< )/(; fP(x)dx (4)
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In recent years, some new extensions of (3) and (4) were provided by [14-19].

In 2016, Hong [20, 21] also considered some equivalent statements of the extensions of
(1) and (2) with a few parameters. For the following work we refer to [22—24].

In this paper, following [20], by the use of the weight functions and the idea of introduc-
ing parameters, a half-discrete Hilbert inequality with the nonhomogeneous kernel and
its equivalent form are given. The equivalent statements of the constant factor are best
possible related to parameters, and some particular cases are considered. The cases of a

homogeneous kernel are also deduced.

2 Some lemmas
In what follows, we assume that p > 1, }7 + é =1,A>0,0,01 <1,0,01 €(0,1),f(x) is a
nonnegative measurable function in R, = (0,00), a, > 0 (n € N = {1,2,...}), such that

S o ° o O
0< / xp[l_(V?l)]_lfp(x) dx < 00, 0< an[l_(5+7l)]_laz < 00.
0 n=1

Lemma 1 Define the following weight functions:

o 1
Wy (0'1; l’l) =n° /0‘ mxal_l dx (l’l S N), (5)
> 1
@, (0,%) := 17! — »n" ! (xeR,). (6)
; (1 +xn)*

We have the following equality and inequalities:
60(7(0'1,”) :B(Ulr)‘-_(71)’/[(7_(71 (Vl € N)r (7)

(B(U,}» -0)— %)x‘”” <, (0,x) <Blo,A-0)-27177 (xeR,), (8)

-1

where B(u,v) := [;° (

Ty

dt (u,v > 0) is the Beta function.

Proof Setting u = xn, we have

S | w1
o (01, 1) =n° — - —d
wy(o1,n) =1 /0 (1+u)’\<n> . u

00 o1-1
_ oo f T
o (A+u?

=B(o, A —o1)n° 1,

and then (7) follows. In view of the decreasing property, we find

o0 t(r—l
W, (0,%) <x™! ——dt
1(0:%) /0 (1 + xt)*

o—-1
o ([1+u?

=x°1"°B(o,A - 0),
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[e%e) ta—l
, %) > x71 —dt
@1 (0,%) ,/1 (1 + xt)*

e8] ua—l
— 4010 d
* ,/x (1 +u)? "
o0 ua—l du X MU—I du X
= x°17° — >x°17° [ B(o,A—0) — o-14
¥ |:/0 @rwr Jo (1+u)%]—x <(" ?) /o” ”)

=x717° (B(J,A —-0)— x_)
o

Hence, (8) follows.

Lemma 2 Setting k; (n) := B(n, A — n)(n = 0,01), we have the following inequality:
oo X a,
I:= ——f(x)d.
| S
0o 00 a,
= ———f(x)d
;/0 1 +xn)kf(x) *
1( o0 i
k (o k” (o1 {/ UG p(x)dx}piz al1-(5+ - lan} ) ©)
n=1
Proof By Hoélder’s inequality (cf. [25]), we have
x(1-00/g n1-0)lp
I:,/O Z (1+xn)'\|:n(1 a)/pf( ):||: (=onig * :|dx
K=o/ nl-o)al i
—o1)plq —o)qlp 9
P(x)d. 761 q
[./o Z (1 +xn)k ni- T S x:| |:Z/ 1 +am)A xl-o1 xan:|

1
q

1r oo
= |:/ Do, (a,x)xp(l_ol)_lfp(x) dx:|p |:Z (o (al,n)nq(l_“)_laZ] .
0 n=1

Then, by (7) and (8), we have (9).

By (9), for 01 = o, we find 0 < fooo w1 LfP () dx < 00,0 < Y o0 11147 < 00, and

/o ; (Ij#)kf(x) dx < kx(a)[/o x”(l_")_lf”(x) dxi|p [; nq(l_")_laz:| . (10)

Lemma 3 The constant factor k; (o) = B(o, A — o) in (10) is the best possible.
Proof For 0< ¢ < qo, we set

£_1, 0<x<1,

£ ~ o +
ap=n""1" meN), fx)= »
0 x>1.
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If there exists a constant M < k; (¢), such that (10) is valid when replacing k; (o) by M,
then, for a,, = @, f = f, we have

1

/ (1+ f(x dx<M|:/ pratad) f”(x)dx] |:2:n‘7(1 -o)- 1ozq:| .

We obtain

1

1 1r oo
7<M[/ P (o+5-1) dx} [an(l—o)—lnq(f’%l)}
0 n=1

([ ) (1 3)
< ( [vae) (1o [emra)

1
8+1)q

E

s~

&

In view of (8), we find

Then we have

»&\'—‘

& & &
B(a——,k—o+—>—s—<M(a+l)
q q) (0-2)0+

S ™
~

For ¢ — 0%, in view of the continuous property of the Beta function, we find
. 3 & &
B(o,A—0) = lim |:B(cr — = A—0+ _) - ﬁ}
e=>0* q q) (-2)0+7%)
1
< 11m M(e +1)7 =M.

Hence, M = B(o, A — o) is the best possible constant factor of (10). O

o

Settingo = 2 %1 (0,01 <1,0,01 € (0,1)), we may rewrite (9) as follows:

1 1 o] ~ 1M ~ %
I <k? (0)k} (01) [ / xP0)7LEP () dx] ’ [Z nq(l‘”)"la3i| . (11)
0 n=1
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The parameter ¢ in (11) also satisfies

0<k (5) = /q(z ‘ ﬁ)
p q

o0 1 o-1, , o1-1
[ 6T a

l+u

e8] ucr—l }7 o0 u"l_l %
SUO (1+M)Adu} [fo (1+u)kd”}

=k (@)K (1)

< 00, (12)

by Holder’s inequality, and 6 < - + = =1, 6 € (0, A), such that

1,1
—pr 4

o-1

AT .
k)\(O')—F<x ;m<kx(0’).

1 1
Lemma 4 If the constant factor k; (o)k (01) in (11) is the best possible, then we have

o1=0.
1 1

Proof 1If the constant factor k7 (o)k,’ (01) in (11) is the best possible, then, by (10), the

unique best possible constant factor must be k;(6), namely, &, (6) = k{l’ (a)kf’ (o1). Since

the condition of (12) keeps the form of equality is that there exist constants A and B, such

that they are not all zero and Au°~! = Bu1"! a.e. in R,. Assuming that A #0, it follows

that #7771 = % a.e.in R,, and then o — 07 =0, namely, o7 = 0. O

3 Main results and some corollaries
Theorem 1 Inequality (9) is equivalent to the following inequalities:

S ST L (O i
i {;ny [/o (1+xn)*dx}}

1
1 1 o0 ..o 7
<kf(a)kf(ol){ / xP“-<p+q‘>]—1fp(x)dx}”, (13)
0
00 1 S a 1 q
_ a(Z+2)-1 n
]2_{/0 S |:n21:(1+xn)*:| }
1
P\ o al-(2+21 g |
<kf (0)k)! (o) an Pl (14)
n=1

If the constant factor in (9) is the best possible, then so is the constant factor in (13) and
(14).
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Proof Suppose that (13) (or (14)) is valid. By Holder’s inequality, we have

oo
]:Z[n;}+(g+‘i;)/°° fx) dx}[np 5+,
n=1 0

(1 +xn)*

1
[e%e) - q
Sh[an“(?*?l)“aZ} : (15)
n=1
© 1 o 01 (2491
I= (% TG a, |d.
/0 [ f(x]|: Z 1+xn)* :| *

< {‘/.ooxp[l(%%l)]lfp(x) dx}ﬁ]} (16)
0

Then, by (13) (or (14)), we have (9). On the other hand, assuming (9) is valid, we set

0 -1
a, =57 [/ % de (neN).
0

1+axn

If J; = 0, then (13) is naturally valid; if /; = oo, then it is impossible that it makes (13)
valid. Suppose that 0 < J; < co. By (9) we have

oo
P (&+7)- 1,

n=1

1 1 00 o ’ © g, o
=) =I1<ki o)k (gl){/ "p[l‘(;”’l)l_lf”(x)dx}p {an[l—(p+;)l—1aZ] )
0 n=1
1 1
00 . o iz 1 1 00 o .01 r
iznq[”m”laz} =J1 <k @)k} (01){ / xp[1<f*7>]lf”(x>dx} ;
n=1 0

namely, (13) follows.

In the same way, assuming (9) is valid, we set

00 q-1
o 91 1
)= a1t [ 74 (x€R).
; (1 +an)*

If J; = 0, then (14) is naturally valid; if J; = 0o, then it is impossible that makes (14) valid.
Suppose that 0 < J, < co. By (9) we have

* -2+ 21
/ KT P (k) dx
0

Lo © e, P [ & e g
=J§ =1 <kl (o)k; (o—l){ / P A P dx} DA KA I
0 n=1

a 1

{/ K Grg)] fP(x)dx} —]2<k”(0)kq(01)[2nq[1 (+30- laZ}q,

n=1

namely, (14) follows. Hence, inequalities (9), (13) and (14) are equivalent.
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If the constant factor in (9) is the best possible, then so is constant factor in (13) (or (14)).
Otherwise, by (15) (or (16)), we would reach the contradiction that the constant factor in
(9) is not the best possible. O

Theorem 2 The statements (i), (ii), (iil) and (iv) are equivalent:
(i) kA (a)kq (01) is independent of p, q;
(ii) kA (o)k, (al) is expressed as a single integral;

(iii) k)\ (a)kq (01) in (9) is the best possible constant;

(iv) o1=0

If the statement (iv) follows, then we have the following equivalent inequalities with the
best possible constant factor B(o,A —0):

oo X a,
|, S

<B(o,1-0) [ / " oo dx} ’ [Z nq(l_”)"1a3i| | (17)
0

n=1
=0 @ VT
Lz:l:np (/0 (1 +xm)* dx) }

1

<B(G,A—G)[/Ooxp(l_”)_lf"(x)dx}i, (18)
0
00 S a g ‘11
o-1 n
[ (Ea)
B(o,A-0) |:Z nq(l_”)_1a3i| . (19)
n=1

Proof (i)=>(ii). By (i) we have

1 1 1 1
kf (0)k! (o1) = lim k7 (0)k)! (01) = ki (o),
p +

1 1
namely, k; (o), (01) is expressed as a single integral.
1 1
(ii)=(iv). In (12), if k& (0)k," (01) is expressed as a single integral k)\(% ‘71) then (12)
keeps the form of equality. In view of the proof of Lemma 4, if and only 1f o1 =0, (12)

keeps the form of equality.
1 1

(iv)=(). If 07 = 0, then kf (0)k (01) = ky.(0), which is independent of p,q. Hence, we
have (i) < (ii) < (iv). 1 1

(iii)=(iv). By Lemma 4, we have 07 = 0. (iv)=(iii). By Lemma 3, kf (a)kf (01) = k(o) in
(9) (for o7 = o) is the best possible constant. Therefore, we have (iii) < (iv).

Hence, the statements (i), (ii), (iii) and (iv) are equivalent. a

Replacing x by }C, and then x*2f (}C) by f(x) in Theorem 1, setting o7 = A — i, we have
the following.

Page 7 of 11
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Corollary 1 The following inequalities with the homogeneous kernel are equivalent:

<k{1’(a)k;1’(k—pc){ Oooxpu <”r+“*%”—1fp(x)dx} :i e }q (20)
p=i

P o 0 AL
{;"MWTH =l }

<k§(o)k§(x—M){/Ooox”““‘%*%> P )dx}, (21)
([ [Sat] o]

0 L (x + )"

<K @K (- M){an“ AR n}q. (22)

p=

If the constant factor in (20) is the best possible, then so is the constant factor in (21)
and (22).

Corollary 2 The statements (1), (I), (I1T) and (IV) are equivalent:

(1) k ( )k){’ (A — ) is independent of p, q;
I k ( )k){% (A — ) is expressed as a single integral;
(I11) k”( )g\l (A — ) in (20) is the best possible constant;
IV) w+o =A.
If the statement (IV) follows, then we have the following equivalent inequalities with the
best possible constant factor B(u,o):

/ Z (x+ (x)dx<B(M,G)[/ a1 P () dx:|_ [an(l‘“)‘laz:r. (23)
0

=

> et [/OOO (fixrz)x dx]P}p <B(M,o)[/oooxp(l"a)_lfp(x) dx]p, (24)
n=1

00 o q % S %
/ xI1 |:Z » jnn)x j| dx} <B(u,0) |:Z nq(l_")_laz:| . (25)
0 n=1 n=1

Remark 1 (i) For o = 1%(< A) in (17), (18) and (19), we have the following equivalent

inequalities with the nonhomogeneous kernel and the best possible constant factor
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B(1 - 1; :
1N/ [ N

/0 Z(1+x ) (x)dx<3( A—;)(/O xF 2’f‘”(ac)dx) (;d) : (26)

00 0 f(x) p 1% 1 1 o . }7
,,2_1:[/0 mdx] } <B<;’A_1;>(/o xP fp(x)dx> , 27)

0 00 a q }7
-2 n

/0 g [Zl 1 +xn)*] d"} ( o _> <Z”q) ' (28)
(if) For o = é(< A) in (17), (18) and (19), we have the following equivalent inequalities

with the best possible constant factor B(é, A— %):

1 [e¢] 117 0 ~ %
[ Eitsprssea(i- ) ([ roa) (Beom)

(iii) For A =1, 0 =

equalities with the homogeneous kernel and the best possible constant factor

oo X
-/O

(iv) ForA=1,0 =

equalities with the best p0551ble constant factor

oo X a,
/0 >

(29)
oo ) )2 1% oo 117
Z"MUO (1]1(2«% dx} } <B<$,A—$)( o 7 p(x)dx) ’ .
n=1
co[[ o0 q 7 1 1 i i
/ |:Z 1 +xn )»:| dx} <B(;,)\ - ;) (Z I’lq_zﬂZ) . (31)
=1 n=1

l, = l in (23), (24) and (25), we have the following equivalent in-

ETiCak

T 00 ’ }7 00 . %
n(,%)(/o f W’“) (Zl“) ’

(32)
r] 1% . 0 =
d. ) | < sm(%) (fo fp(x)dx) , (33)
7 Tq s ) q
) ] s (x)

l, uw= l in (23), (24) and (25), we have the following equivalent in-

%m(%)

7 > -2¢p % - q-2 .4 !
n(,%)(/o S (’“)d") (Zl” ““) ’

(35)

Page9of 11



Huang and Yang Journal of Inequalities and Applications (2018) 2018:333 Page 10 0of 11

=

[ oo 00 19_ V2 00 1
Z nP? & dx < — 71” / K2 fP (x) dx p, (36)
0o X+mn sin(%£) \ Jo
L n=1 . p
M roo S a 9 T % T o %
q-2 "\ d 2,44 37
/0 x ;x+n x <sin(1%) ;n % 87)

4 Conclusions

In this paper, by using the weight functions and the idea of introducing parameters, a half-
discrete Hilbert inequality with the nonhomogeneous kernel and its equivalent form are
given in Theorem 1. The equivalent statements of the constant factor being best possible
related to parameters, and some particular cases are considered in Theorem 2 and Re-
mark 1. The cases of homogeneous kernel are deduced in Corollary 1 and Corollary 2.
The lemmas and theorems provide an extensive account of this type of inequalities.
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