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1 Introduction and preliminaries

The following inequality is named the Simpson integral inequality:

Slreran(%52) s - - [Crewas

2 rp —ri

< sagol @l =", &

— 2880
where f : [r1,72] — R is a four times continuously differentiable mapping on (r1,7), and
I lloe = SUP ey, [ (B)] < 00
To see more recent results and the related generalizations with respect to (1.1), we refer
the readers to [1-3, 5-18, 22—-26, 29—-34] and the references therein.
Let us recall that Mihesan [20] presented a class of mappings, called («, 71)-convex func-

tions, as follows: A mapping f : [0,b*] — R, b* > 0, is said to be («, m)-convex if

F(x+m(1-1)y) < 2% (x) + m(1 - 1*)f ()

for all x,y € [0,5*] and X € [0, 1] with some fixed (o, m) € (0,1] x (0, 1]. Shuang et al. [28]

proved the following result for such mappings.

Theorem 1.1 Let f : Ry = [0,00) — R be a differentiable function on Ry, let r1,r; € Ry,
r < ry, andletf' € L [ry,ry]. If |f'|7 is (e, m)-convex on [0, %]for (o, m) € (0,1] x (0,1] and
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q>1, then
‘%[f(rl) +6f(r1 -2+ rz) +f(r2)] _ rzi,,l /rlzf(x)dx

r = (g = 1)@V 4 1)\
= 4 (2g - 1)22(24-1)/(g-1)

o G
L) (T

Noor et al. [21], introduced the class of («, m1, 1)-convex functions that unifies several

new and known classes of convex functions as follows.

Definition 1.1 ([21]) Let #:]J € R — R. A function f : I € R — (0,00) is said to be

(o, m, h)-convex function if

f(tx+m(1—t)y) 5h(t"‘)f(x)+mh(l—t°‘)f(y) (1.2)
for all x,y € I and ¢ € [0, 1] with some fixed (&, m) € (0,1] x (0, 1].

Note that in [21] the authors have forgotten to write the second m in (1.2) in their original
definition.
Let us discuss several particular cases of Definition 1.1.
I. If h(t) = ¢° for s € (0, 1], then Definition 1.1 reduces to the definition of
(o0, m, s)-convexity.
II. If h(¢) = £ for s € (0,1] and « = 1, then Definition 1.1 reduces to the definition of
(s, m)-convexity.
L. If k() = t, then Definition 1.1 reduces to the definition of («, 71)-convexity.
IV. If h(t) = 1, then Definition 1.1 reduces to the definition of (1, P)-convexity.
V. If h(t) = t(1 — t) and « = 1, then Definition 1.1 reduces to the definition of
(mm, tgs)-convexity.
VL If h(t) = ij\; and « = 1, then Definition 1.1 reduces to the definition of
m-MT -convexity.
Also, the following theorem was proved in [19]. It obtains an estimation-type result asso-
ciated with the weighted Simpson-type inequality for /i-convex mappings using Holder’s

inequality.

Theorem 1.2 Let f : [r1,r2] — R be a differentiable function on (r1,r;) such that f' €

L'[r1, 73], and let w : [r1, 5] — R be continuous and symmetric with respect to % IfIf'1e
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is h-convex on [r1,r)] forg>1and p™ + g = 1, then

‘6% =3 [f(rl) ¥ 4f<rl : r2> ¥ f(rz)] / :2 w(x) dx —
< r21—2r1 Wy, 70,00 - <;(;ip;)>% -2

X ”lf/vl)qujh(t)dn [f’(r2)|‘f/;h(t)dtr

R [V'(m!"/;h(t) dt + [f’(r2)|q/0§ he) dtﬁ.

Different from [19] and [28], our purpose in this paper is to give some new bounds re-

/ ; w(x)f (x) dx

r,—n

Q-

lated to the weighted Simpson-like type inequality for the first-order differentiable map-
pings.

To obtain the principal results, we presume that the absolute value of the derivative
of the considered mapping is («, m, 1)-convex. Next, we substitute this hypothesis with
the boundedness of the derivative and with a Lipschitz condition for the derivative of the
considered mapping to establish integral inequalities with new estimation-type results.
Also, we provide some applications to f-divergence measures and to higher moments of

continuous random variables.

2 Main results

To obtain our main results, we need the following lemma.

Lemma 2.1 Letf:1 C R — R be a differentiable function on I°, a,b € I° with a < b, and
let w: [a,b] — R be symmetric with respect to ‘”b Aff',we La,b), then

1 a+b b 1 b
8(b-a) [f( f( )+f(b)i|/a w(x) dx — m/ﬂ w(x)f (x) dx
1
= b?Tﬂ{/o pl(t)f/<m+(1—t)“—;b> dr
! [ a+b
+/(; pz(t)f (t

+(1—t)b) dt}, (2.1)

where

b) ds—fotw<sa+(1—s)a;b>ds

1
pi(t) = Z/ w<5a+ (1 —s)d+
0

and

1 t
pa(t) = i/ w(sa;b —s)b) ds—/ w(saer —S)b> ds
0 0
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Proof Integrating by parts and changing the variables, we have

1
T - / pl(t)f/<m+(1—t)ﬂ;b>dt
0

1 1
:/ [Z/ w<sa+(1—s)a;b)ds
0 0

-2 [3 ! a+b
=m[1/0 w(sa+(1—s) 5 )ds

—/tw<sa+(l—S)a;b)dS}/<m+(1—t)a+b
0
1
_bfa/(; w(ta+(1—t)a7+b)/<m+(1—t)
271 3 (a+h ! a+b
L] e

)

-a
2

b ([

Similarly, we get

1
I, = fo pz(t)f’<t¥ +(1- t)b) de
201 ! a+b
:m[z/o w(s 5 +(1—s)b)ds
/t <a+b
— | wis
0 2

_/tw(sa+(l—s)a;b>ds}[’<m+(1—t)a+b
0

1
_b—a/(; w<m+(1—t)ﬂT+b)/<m+(l—t)

el —s)b) @}/(t%b el —t)b)

)

1

0

)

)as

atb

/ " w@)f () da.

1

0

1
_ bza/ W<t_“;b +(1—t)b)j<ta—;b +(1—t)b> dt
- 0

1 a+b b 4 b
= Gap [Sf( 2 ) +f(b):| /ﬂ;b wi(x) dx — Bap /&b w(x)f (x) dux.

2

a+b

Since w(x) is symmetric with respect to 32, we have

+ w(x) dx = ’ w(x)dx = o wix) de.

Thus we have

b-a
T(Il +1,)

1 a+b b
o a [f(a) + 6f(T> +f(b>] / w(x)d

which completes the proof.

2

b
w(x)f (x) dx,

a
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Throughout the work, we write |[W| (45,00 = SUP,c[4,p [W(*)| for a continuous mapping

w: [a, b] — R. Next, we derive our main results.
Theorem 2.1 Let f: Ry = [0,00) — R be a differentiable function on Ry, a,b € Ry, a < b,

let f' € L'[a, b), and let w: [a,b] — R be continuous and symmetric with respect to “—;b. If
If'19 for g > 1 is (o, m, h)-convex on [0, %] with some fixed (o, m) € (0,1] x (0,1], then

b b
|:f() 6f<d;b> +f(b :|/ )dx—b% w(x)f (x) dx

1

;“||w||[g,m,oo(%)l‘a
) {[/01 Z_t‘<h(ta)lf/(“)|q+h(1—t“)mv<a2;qb)
L (el (557) ema-emr(7)

r=

=<

)
W} e

Proof Applying Lemma 2.1 and using the fact that [lw]|;, ath o0 ||w||[,1_5_b,b]’Oo < Wllia,5],005
we have
b 1 b
‘8(b 2 [ ( )+f(b):|/a W(x)dx—m ; w(x)f (x) dx
< {/ / (sa+(1—s)a+h)ds
2
( —sa+b>dsH/(m+ (1-1%) +b)‘dt
/ ( +b +(1 —s)b) ds
( +(1—s)b> H/ (t— (l—t)b)’dt}
—a , a+b
< 2 e —f ds—/ as | (ta+ 1= 0" 2 e
o 14Jo 0 2
1 1 t
1/ ds—/ dsw/(tawﬂl—t)b)‘dt}
4 J o 2

b—

ALy /
= w
4 [a,b],00 )

1
§—tH//<m+(1—t)a—+b>‘dt
4 2
1
i - tH/(ta ; b +(1- t)b) ‘ dt}. (2.3)

Using the power mean inequality, we have

b b
il a(50) 0] [ s 2 [ o
b-a

<—|w
=74 ” ”[a,b],oo
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1 1-1r o1 i
Ao L2

0 0

1 4T 1 (.a+b 7 7
(i) [ e (5 o)) 2

From (2.3) and (2.4) we get the inquired inequality in (2.2), since
5
3 _t\ dt=2, 25)

1 1
1 3

/ ——t‘dt:/
o |4 o |4

and using the («, m, k)-convexity of |f'|7 on [0, %], we have

, a+b\|" o\l N (a+b\|
p<m+(1—t)7> §h(t )V(a)|q+h(1—t )mP( o ) (2.6)
and
a+b 1 a+b\|? b\ |?
=+ (1- o) |f! —Vmlf [ = 2.7
Ht e a-on) gh(t)w : ) (1 t)mwm) (27)
Direct computation provides the following cases. d

Corollary 2.1 If we take q = 1 in Theorem 2.1, then we have the following inequality for

(o0, m, h)-convex functions:

P @ o(“57) s [ s / ) )
Z - t' (h(t“)[f’(a)| +h(1- t“)m’f’(az-;qb> D dt

< "TT“nwn[a,m,oo{ / 1
[l (e (557 o =eomle (7)) )

Remark 2.1 Consider Corollary 2.1.

(i) Putting h(£) = 1, we have the following inequality for (1, P)-convex functions:

b b
‘S(hl_ ﬂ) |:f(ﬂ) + 6f(¥) +f(b)i| /; w(x) dx — ﬁ/a W(x)f(x) dx
_ 5(b-a)

- 64

Al (53]l ) G}

Wl{a,6),00
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(i) Putting A(f) = t(1 — ¢) and & = 1, we have the following inequality for

(m, tgs)-convex functions:

‘S(b 2 [f( +6f(a+b) +f(b)} wa(x)dx—ﬁ/ﬂbw(x)f(x)dx
< %nwn[am{ [V'(a)| + P(#) H
(PG

(iii) Putting 4(¢) = £ and using the inequality (1 — £%)* < 217 — £ for ¢ € [0, 1] with

some fixed o € (0,1], s € (0, 1], we have the following inequality for («, m, s)-convex

functions:

P e (50) o] [ s | W ) d
s¥||w||[a,b],m{[A @) + (5 215—A1>m}/’(“2;b>”
[alr (5] G2 ) ()]}

where
gsa+2 | 92sa+lgy, | 92sa+2
A e Dea +2)
A, - 1+ 225+ (3gs + 2)

220543 (sor + 1) (sex + 2)

Theorem 2.2 Suppose that all assumptions of Theorem 2.1 are satisfied. Then

gl (57) o) [ a1 [Cwarwas
aeton(5)”

g ”/o(h (1’ <¥>>”“H%) q*’q((%)a) lf’(z»iq) dt]%
L) Yraren(a- () (D) )e] s

Proof Noting that ta + (1 - )‘”b %a + —b and using the («, m, h)-convexity of |f'|7 on

[0, %], for any ¢ € [0, 1], we have the inequality

)
A (PRGN A e e

=<

Page 7 of 20



Luo et al. Journal of Inequalities and Applications (2018) 2018:332

and, similarly,

a+b d t\* £\ b

/ 1-— - / q 1-( 2 4
(5 e ason)] =u((3) Jrorea(a-(5) )l ()
Continuing from inequality (2.4) in the proof of Theorem 2.1 and using (2.9) and (2.10)
with (2.5), we obtain the desired result in (2.8). This completes the proof. (]

q

(2.10)

Corollary 2.2 If we take q = 1 in Theorem 2.2, then the following inequality for («, m, h)-

convex functions holds:

b b
‘S(bl_d)[f(a)+6f<ﬂ+b) +f(b :|/a )dx—ﬁ ; w(x)f (x) dx

<t [ (5 (2 (5 o
LB oo )

(i) Putting h(t) = ¢* for s € (0, 1] and using the inequality (1 — £%)* < 217 — £** for
t € [0,1] with some fixed & € (0,1] and s € (0, 1] again, we have the following

inequality for («, m,s)-convex functions:

‘8(19 [f( +6f(ﬂT+b> +f(b):| /ﬂb w(x) dx — ﬁ/ah wx)f (x) dx
(- ]

(5 i@l

1+as

+

(i) Putting A(t) = 1, we have the following inequality for (m, P)-convex functions:

‘S(b [f(“ +ef < > fw)} / w(x)dx—b% /abW(x)f(x)dx

< el [ (2)] ] (2)[] @I+ o)

(ili) Putting h(¢) = t(1 —¢) and & = 1, we have the following inequality for

(m, tgs)-convex functions:

‘S(b |:f( f( ) +f(b)} /b wix) dx — ﬁ /ab w(x)f (x) dx
< %lel[ab]m{muf’(%) + P’(%)H +[|f (@) + [f/(b)|]}.

The next result deals with the case where |f'|7 for g > 1 is («, m, h)-convex.

Page 8 of 20
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Theorem 2.3 Let f : Ry — R be a differentiable function on Ry, a,b € Ry, a < b, let
f' € L'[a,b), and let w: [a,b] — R be continuous and symmetric with respect to M.
If |f'17 for q > 1 is («,m, h)-convex on [0, f;] with some fixed (a,m) € (0,1] x (0,1],
then

’8(19 [f() o ( )*f (”ﬂ / bW<x>dx—ﬁ / e )
it [ (- (52)
o

=

L
)]
L

Jae]', (.11

where

(g -1)@EP DD 1)
(2q 1)222q 1)/(¢g-1)

Q=

Proof Using the Holder inequality for (2.3), we have

1 1
§—tHf/<m+(1—t)a+b>dt‘+ l—tH/’<ta+b+(l—t)b)dt‘
4 2 o |4 2
! 21 \ar , a+b\|? 17
={(/ ) [ (wra-0?) o]
1 e 1 a 3
([ o]’} o1

3
St
4

q-1 -7 1
dt) [/0 p’(t%w+(l—t)b>

From (2.6), (2.7), and (2.12) we get the desired inequality in (2.11), since
q

1 -1 1
[l o]
0 0

Now, we state some particular cases of Theorem 2.3.

9

ot (q- 1)(3@a-D/a-1) | q)
- (2q — 1)22(24-D/(a-1)

3
-
4

1
—_—
4

= 0. 0

Corollary 2.3 In Theorem 2.3, putting h(t) = t* and using the inequality (1 — t*)* < 215 —
t** for t € [0, 1] with some fixed a € (0,1], s € (0, 1] again, we have the following inequality
for (o, m, s)-convex functions:

‘S(bl—a) |:f(a)+6f<¥> +f(b)} /abw(x)dx—bfﬂ/abw(x)f(x)dx
-3 -5 1 , b
[t e ()
! 1 b\|*]7

+ (2= mle (2 '

|:1+SO‘P( > ( 1+sa> P(m) } }

=

q]é

1+ s«

\o}

Page 9 of 20
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Remark 2.3 In Corollary 2.3, if f(a) :f(#) = f(b) with m = 1 = «, then the following

inequality for s-convex functions holds:

b b
p(#)/a w(x)dx—fa w(x)f (x) dx
b-a)? afr o, L1 , b
S( 461) ”W”[a,b],ole q{l:l—Hlf(ﬂ)’q+<21 _I—H)L/(ﬂ; )
1 |, a+b\|" e 1 g i
sl (5) (- o)

Corollary 2.4 Consider Theorem 2.3.
(i) If we take h(t) = 1, then the following inequality for (m, P)-convex functions holds:

q];

1 a+b b 1 b
‘S(b_ﬂ)[f() 6f< ) f(b)}/a ()dx—r w(x)f (x) da

¥||w||[a,b],mgl‘%{[Lf’(a)ﬁwﬂ”’;) TI
(S A G

(i) If we take h(t) = t(1 —t) and o = 1, then the following inequality for (m, tgs)-convex
functions holds:

IA

[f<a>+6f( ) f(b)] [ e ds- | ) ) d

||w||[aboo91‘( ) {[Vf@l”*mp (az;ab) ]
e

(ili) If we take h(t) = % and a = 1, then the following inequality for m-MT -convex
functions holds:

‘S(b

=

b
/ w(x)f (x) dx

T
n)%{[vxa)yump,(az;b) ]

qé}

A similar result may be stated.
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Theorem 2.4 Suppose that all assumptions of Theorem 2.3 are satisfied. Then

b b
o (25 o] [ a5 [ o

L C A2 o) ]
LUEN sG] oo

Proof The proof of Theorem 2.4 is analogous to that of Theorem 2.3 by using ta + (1 -
)% =g+ Dpand bt + (1-t)b=Lta+(1- {)b. O

The following result holds for («, m, 5)-convexity.

Theorem 2.5 Let f : Ry — R be a differentiable function on Ry, a,b € Ry, a < b, let f' €
L'[a,b), and let w: [a,b] — R be continuous and symmetric with respect to ‘”b AfIf) s
(o, m, s)-convex on [0, %]for some fixed (o, m) € (0,1] x (0,1], p L +g7 1 =1 andq > 1, then

b b
soal@re (50 o] e [ weree

< —a”W” Lgpﬂ}g
=4 @blhoo\ (5 + 1)art
s 1 fa+b 14
{|:1+salf(a| <2 _1+sa)m"/(2m) :|
[ (5O - ()T
+ +(27° - m — . (2.14)
1+sa 2 1+sa m

Proof Since |f'|? is («, m, s)-convex on [0, %], using the Holder inequality for (2.3), we have

P r@eer(57) f(b)]/a W(x)dx——/ WO ) 5 |
_“nwn[a,b]m{(fo dt) [/ L/(to”(l—tl)i) )’
([l o) e o) o]

1

- b-a wl 1+37+1 \»
Z Tw -
=7 [a,b],00 v+ 1)4r+1

flvor [ear (57
P Lo G3)

3
< ——1
- 4

——

+

0 o —t"‘)sdt]%

q/01( -y dt:|l}. (2.15)

Page 11 of 20
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From (2.15) we get the desired inequality in (2.14), since

1
1

/ t* dt = ,

0 1+ sa

and using the inequality (1 — £%)* < 2175 — £* for ¢ € [0, 1] with some fixed o € (0,1], s €
[0,1], we have

1 1
1
_)S 1-s _ sas _9l-s _
fo(l t)dtf/o (217 ) de =2 Trea 0

Now, we point out a particular case of Theorem 2.5.

Corollary 2.5 Ifwe takes=1and m =1 =« in Theorem 2.5, then the following inequality

for convex functions holds:

‘S(bl—u)[f(“)%f(blw) }/bw dee g bw<x)f(x)dx
b- 1+ 37+ b
< %nwnm ((p+1)4p+1) {[ (@) + P(ﬂ; >
e )

Next, we would like to point out some published results that are particular cases of the

obtained main results.

Remark 2.4 In Lemma 2.1, if we take w(x) = 1, then identity (2.1) becomes the following
equation proved by Shuang et al. [28]:

[f(a) ; 6f(“ . b) +f(b)] - —/ F@)de

1
TG e

Remark 2.5 1f we take h(t) = t and w(x) = 1 in Theorems 2.1 and 2.3, then we obtain The-
orems 3.1 and 3.5 established by Shuang et al. [28], respectively.

3 Further estimation results
If the considered function f” is bounded from below and above, then we have the following

result.

Theorem 3.1 Let f :1 C R — R be a differentiable function on I°, a,b € I°, a < b, and let
w: [a, b] — R be continuous and symmetric with respect to ‘”b . Assume thatf’ is integrable

on |a,b] and there exist constants m < M such that —oo < m < f'(x) < M < +00 for all
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€ [a,b]. Then

b b
‘8(]9 [f(a)+6f< >+f b)]/a w(x)dx—ﬁ/a w(x)f (x) dx

b 1
MU pl(t)dn/ Pz(t)dt”

_ 5(b-a)a - m)

= 64 ”W”[a,b],oo: (3-1)

where p1(t) and py(t) are defined in Lemma 2.1.

Proof From Lemma 2.1 we have

b b
e )[f( +6f( >+f(b)} / W) d - o / W) (x) d
1
:b;a{/ Pl(t)[f/<m+(1—t)d+b>—m+M+m+M:|dt
4 0

2 2 2
1
+/0 pg(t)|:f/<ta+b+(1—t)b>—m;M+ m;M}dt}
_ 1

:¥{A pl(t)[f<ta+(1—t)d+b> m;M]dt
1
+/ pz(t)[f’(ta+b+(1—t)b>—m;M]dt}
0

b-a)m+M) [ (! 1
oo M) {/O s [ p2<t)dt}.

So
b
T = S(b [f(a)+6f(a;b> +f(b] w(x dx——/ w()f (x) dx
(b a)m+M)
£)d
g [ s [ poal]
= { p1(t) I:f/<m+(1 L‘)a+b> m+M:|

1

/pz(ﬂ[f(a;b (l—t)b>— ;M]dt}.
Therefore

|T|<_{f Ip1(®) p(m+ ﬂ;b)_m;M d
+/ |p2(t)|‘j’(ta+ m+M dt}
0

b_ M— 1 1
< (“)(%{/0 |pl(r)|olt+/0 |p2(t)|dr}.

+(1—t)b>—
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Since f” satisfies —0o < m < f'(x) < M < +00, we have

m+M m+M m+M

—f( 2 SM_ 2 ’

which implies that

P,(x)_m+M <M—m'

Also, since w is symmetric with respect to M, we get

(b—a)M—m)

8
13 1
X{/o Z/o w(sa+(1—s) )ds— (a+(1—s
1 ! a+b t a+
+/0 1/0 w( : +(1—s)b>ds—/0 ( . +(1—s)b>ds
(b—a)(M —m)
< 7””’”[&117]00
{ /ds—/ ds dt}

- 5(b —a)(M - m)
- 64

T <

+b
)ds‘dt

.

1 1 t
—/ ds—/ ds
4 Jo 0

1
dt+/

Wl (,60,00

This ends the proof.

Corollary 3.1 In Theorem 3.2, if w(x) = 1, then we get

1 a+b 1 b (b —a)(9OM — m)
sp@ee(550) o] - 5 [rmas < C=2EE, 32

Proof If we take w(x) = 1, then the relation || w||[45],00 = 1 implies that

\ [f(a) 6f< )+f(b)]—— [ f(x)dx’

! 5(b—a)(M -
/Opl(t)dt+/0p2(t)dt'+w

1 5(b—a)(M - m)
A pz(t) dt‘il + T

- b-a)(m+M)

- 8

_ b-a)(m +M)[

- 8
b-a) m+M) 50b-a)M-m)

= +

- 16 64

_(b-a)OM - m)

R S O

1
pi(t)de| +

Our next goal is an estimation-type result with respect to the weighted Simpson-like
type inequality when the derivative of the considered function f” satisfies a Lipschitz con-

dition.

Page 14 of 20



Luo et al. Journal of Inequalities and Applications (2018) 2018:332

Theorem 3.2 Let f : I C R — R be a differentiable function on I°, a,b € I°, a < b, and let
w: [a,b] — R be continuous and symmetric with respect to 22 ’“b . Assume thatf’ is integrable
on [a, b] and satisfies a Lipschitz condition for some L > 0. Then

b b
Tl @0 (5) 10 [ a1 [T

b— 1 1
-t [ nare [ poal

41(b - a)’L

= 3.8 ”W” [a,b],00 (33)

where p1(t) and p,(t) are defined in Lemma 2.1.

Proof From Lemma 2.1 we have

1 b 1 b
S(b—ﬂ) |:f( 6f( ) +f(b)i|L w(x) dx — EL W(x)f(x) dx

_ 1
:b_“{/o pl(t)|:f <m+(1—t)‘”b> —f'a) +f’(a)] dt

4

[ o]y (5 a0 -r @ o))
b4“{/ pl(t)|:f (m+(1-t)“+b) f’(u)] dt
Lol ) o]

1
2 [ ey @are [ per e,

+

Then

R=

b b
)f(b)] / Wiy dv— —— [ ) dx

@ er(* )

8(b a)

b 1
[ r@ae [ o]

:b;a{/olpl(t)[f(m+(l £) ) f()}
R /0 1 pg(t)|:f’(ta L —t)b) —f’(b)} dt}.

Since f” satisfies Lipschitz conditions for some L > 0, we have

P(nﬁu-r)‘”b) —f(a) m+(1—t)“;b ‘Lll—ﬂ(bzd)

H‘”b 1- t)b) f(b)’ ’—+(1 b - b‘ L|t|(b;a).

<L

and
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Hence

(b_a)zL 1 1
IR| < T{/o (1—t)|p1(t)|dt+/0 t|p2(t)|dt}.

Also, since w is symmetric with respect to ﬂ, we get
(b- ) t1
IR| < ————Wlliab],00 (1 l’)——l’ dt + tZ_t de
_4@-arL i
= 3.8 Wil [a,b],00
This completes the proof. O
Corollary 3.2 In Theorem 3.2, if w(x) = 1, then we get
a+b
f(ﬂ)+6f +f(b) ——/f(x)dx
41(b - a)zL b-a
= =@+ ®). (3.4)

4 Applications

4.1 f-divergence measures

In various applications of probability theory, one of the primary themes is discovering a
proper measure of distance between any two probability distributions. Let a set ¥/ and a
o -finite measure p be given and consider the set of all probability densities on u defined

on
2= {plp Y — R, px) > O,/ px) du(x) = 1}.
v

Let f : (0,00) — R be a given mapping and consider Ds(p, T) defined by

T(x)

Df(p,r)-—/p( )f[ ) }du(x), pT €S2 (4.1)

If f is convex, then (4.1) is known as the CsisZar f-divergence [4].
Shioya and Da-te [27] presented the Hermite—Hadamard (HH) divergence

T(x

px)
Do) = /v p(x)f%(”ldt ), pre, (42)
4 p(x)

where f is convex on (0, co0) with f(1) = 0. In the same paper [27], they also gave the prop-
erty of HH divergence that D’;{H(p; 7) > 0 with equality if and only if p = 7.
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Proposition 4.1 Let all assumptions of Theorem 2.5 hold with f(1) = 0. If p, T € £2, then

‘é[DAp,r) v f (2557 du(x)] ~ Dlylpr)

2

(57 [ [ 5
(t(@) - p@)? |, ( p(x) + T() 3
*/w p(x) P( 20(x) >‘d“ (x)]
: [ [ - ()’ V(p(x) ; r(x)) ’

" p(x) 2p(x)
N MP( U)
v o(x) p(x)

Proof Let W) ={x e :1(x) > p)}, Yo ={x ey :t(x) < px)}, and V3 = {x € ¥ : T(x) =
p(x)}.
Obviously, if x € W3, then equality holds in (4.3). Now if we take w(x) =1 and g = 2 in

du(x)

d (x)i| ’ } (4.3)

Corollary 2.5, then fora =1, b = T , and x € ¥;, multiplying both sides of the obtained
results by p(x) and then 1ntegrat1ng on ¥, we get

1 o(x) + 7(x)
L, () o v [ o (#557) auer

x) d
/w()f S0 tdu(x)’

o1

<3 29) {[V( o / ,o(x) du@)

s / (z(x) - p(x))* V(p(x) + f(x)>
¥ p(x) 2p0(x)

. [ (z(x) - p(x))? V(,O(x) +7(x)
L4t

du(x)]

p(x) 2p(x)
(t(x) — p(x))? P (r(x)>
’ /wl p(x) p(x)

Similarly, if x € ¥, then using Corollary 2.5 for a = %, b =1, multiplying both sides of

2
) ‘ du(x)

d (x)i| ’ } (4.4)

the obtained results by p(x), and integrating on ¥,, we get

1 o) + 1(x)
ISM ()f< ())d“("’+6/ P y( 2009 )d“(")}

)
px)

7 fode
/% o) dut)

plx
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7 N e [ (@)= p(x))?
<(575) {[rol [
(t@) - p@)?| . p() + )\ :
+/w2 p(x) P( 2p(x) )} du(x)}
. [ / (t(x) - p(x))? V(p(x) +r<x>>
¥ p(x) 2p0(%)
Y GORVIO) V(@)
o p(x) p(x)

Adding inequalities (4.4) and (4.5) and then using the triangle inequality, we get the desired
result. O

2
du(x)

>4
du(x)] } (4.5)

4.2 Random variable

Suppose that for 0 < a < b, w: [a,b] — [0,+00) is a continuous probability density of a

atb

5 Also, for r € R, suppose that

continuous random variable X that is symmetric about

the rth moment
b
E.(X)= / x"w(x) dx (4.6)

is finite.

Since w is symmetric and fah w(x) dx = 1, we have

b
E(X) = / aw(x)dx = “T”’ (4.7)

which follows from

b b
/xw(x)dx:/ b+a-x)wb+a—-x)dx
b
:/ b+ a —x)w(x) dx.

Based on the above-mentioned derivations, we obtain the following estimates of the rth
moment.
(a) If we consider f(x) =" on [a, b] for r > 2, then the function |f'(x)|7 = r7x2~D with
q > 1 is a convex function. Therefore, using this function in Remark 2.3 with s = 1

and in Corollary 2.5, respectively, we have

[(EX)) - E,(X)|
- r(b - a)?

1-1
< =1 IWleneQ
223
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and

a+b 3
+ 2
8 4

(EX)" - E,(X)‘

1
<r(b—oz2 1+3P1 \»r
= ZZT“W”[a,b],oo W

(r-1)7 % (r-1) 1
fle (e
2 2

(b) If we consider f(x) = x” on [a, b] for r € R, then
m=ra "t <f'(x) =rx"! <rb™! = M, and so from (3.2) in Corollary 3.1 we have

a+b 3
+ J—
8 4

; r(9b 1 — a1 (b -a)
(EX) - Er(X)‘ < " .

(c) If we consider f(x) = x" on [a, b] for r € R, then the Lipschitz constant
L = sup,,p I (®)| = sup,(, ;) 2" is equivalent to

bl r>1,

rat, r<l.

So from (3.4) in Corollary 3.2 we have

3 By - B0 = Sl (e SR,z
8 4 e B [ECEOY O (U0 S S S
16 48 ’ :

Remark 4.1 Applications based on the obtained results to special means can be given, and
we omit the details.

5 Conclusions

Based on a new weighted Simpson-like type integral identity, we obtained certain
estimation-type results with respect to the weighted Simpson-like type inequality for the
first-order differentiable mappings. Some particular cases are considered, which can be
derived from the main results in the present paper. It is an interesting topic to apply these
estimations to f-divergence measures and to higher moments of continuous random vari-
ables.
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