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Abstract
The main aim of this paper is to give an improvement of the recent result on the
sharpness of the Jensen inequality. The results given here are obtained using different
Green functions and considering the case of the real Stieltjes measure, not necessarily
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1 Introduction
The Jensen inequality is one of the most famous and most important inequalities in math-
ematical analysis.

In [2], some estimates about the sharpness of the Jensen inequality are given. In partic-
ular, the difference

∫ 1

0
ϕ
(
f (x)

)
dx – ϕ

(∫ 1

0
f (x) dx

)

is estimated, where ϕ is a convex function of class C2.
The authors in [2] expanded ϕ(f (x)) around any given value of f (x), say around c = f (x0),

which can be arbitrarily chosen in the domain I of ϕ, such that c = f (x0) is in the interior
of I , and as their first result, they get the following inequalities:

0 ≤
∫ 1

0
ϕ
(
f (x)

)
dx – ϕ

(∫ 1

0
f (x) dx

)

≤ 1
2
∥∥ϕ′′∥∥

L∞(I2) · ‖f – c‖2
L2 +

1
2
∥∥ϕ′′∥∥

L∞(I2) · ‖f – c‖2
L1

=
1
2
∥∥ϕ′′∥∥

L∞(I2) · [‖f – c‖2
L2 + ‖f – c‖2

L1
]
,

where I2 denotes the domain of ϕ′′.
The main aim of our paper is to give an improvement of that result using various Green

functions and considering the case of the real Stieltjes measure, not necessarily positive.
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2 Preliminary results
Consider the Green functions Gk : [α,β] × [α,β] →R (k = 0, 1, 2, 3, 4) defined by

G0(t, s) =

⎧⎨
⎩

(t–β)(s–α)
β–α

for α ≤ s ≤ t,
(s–β)(t–α)

β–α
for t ≤ s ≤ β ,

(1)

G1(t, s) =

⎧⎨
⎩

α – s for α ≤ s ≤ t,

α – t for t ≤ s ≤ β ,
(2)

G2(t, s) =

⎧⎨
⎩

t – β for α ≤ s ≤ t,

s – β for t ≤ s ≤ β ,
(3)

G3(t, s) =

⎧⎨
⎩

t – α for α ≤ s ≤ t,

s – α for t ≤ s ≤ β ,
(4)

G4(t, s) =

⎧⎨
⎩

β – s for α ≤ s ≤ t,

β – t for t ≤ s ≤ β .
(5)

All these functions are convex and continuous with respect to both s and t.
We have the following lemma (see also [16] and [17]).

Lemma 1 For every function ϕ ∈ C2[α,β], we have the following identities:

ϕ(x) =
β – x
β – α

ϕ(α) +
x – α

β – α
ϕ(β) +

∫ β

α

G0(x, s)ϕ′′(s) ds, (6)

ϕ(x) = ϕ(α) + (x – α)ϕ′(β) +
∫ β

α

G1(x, s)ϕ′′(s) ds, (7)

ϕ(x) = ϕ(β) + (x – β)ϕ′(α) +
∫ β

α

G2(x, s)ϕ′′(s) ds, (8)

ϕ(x) = ϕ(β) – (β – α)ϕ′(β) + (x – α)ϕ′(α) +
∫ β

α

G3(x, s)ϕ′′(s) ds, (9)

ϕ(x) = ϕ(α) + (β – α)ϕ′(α) – (β – x)ϕ′(β) +
∫ β

α

G4(x, s)ϕ′′(s) ds, (10)

where the functions Gk (k = 0, 1, 2, 3, 4) are defined as before in (1)–(5).

Proof By integrating by parts we get

∫ β

α

G0(x, s)ϕ′′(s) ds =
∫ x

α

G0(x, s)ϕ′′(s) ds +
∫ β

x
G0(x, s)ϕ′′(s) ds

=
∫ x

α

(x – β)(s – α)
β – α

ϕ′′(s) ds +
∫ β

x

(s – β)(x – α)
β – α

ϕ′′(s) ds

=
x – β

β – α

∫ x

α

(s – α)ϕ′′(s) ds +
x – α

β – α

∫ β

x
(s – β)ϕ′′(s) ds

= ϕ(x) –
β – x
β – α

ϕ(α) –
x – α

β – α
ϕ(β).

The other identities are proved analogously. �
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Remark 1 The result (7) given in the previous lemma represents a special case of the rep-
resentation of the function ϕ using the so-called “two-point right focal” interpolating poly-
nomial in the case where n = 2 and p = 0 (see [1]).

Using the results from the previous lemma, the authors in [16] and [17] gave the uniform
treatment of the Jensen-type inequalities, allowing the measure also to be negative. In this
paper, we give some further interesting results.

3 Main results
To simplify the notation, for functions g and λ, we denote

g =
∫ b

a g(x) dλ(x)∫ b
a dλ(x)

.

Theorem 1 Let g : [a, b] → R be a continuous function, and let ϕ ∈ C2[α,β], where the
image of g is a subset of [α,β]. Let λ : [a, b] → R be a continuous function or a function
of bounded variation such that λ(a) �= λ(b) and g ∈ [α,β]. Let the functions Gk : [α,β] ×
[α,β] →R (k = 0, 1, 2, 3, 4) be as defined in (1)–(5). Let p, q ∈R, 1 ≤ p, q ≤ ∞, be such that
1
p + 1

q = 1.
Then

∣∣∣∣
∫ b

a ϕ(g(x)) dλ(x)∫ b
a dλ(x)

– ϕ(g)
∣∣∣∣ ≤ Q · ∥∥ϕ′′∥∥

p, (11)

where

Q =

⎧⎪⎨
⎪⎩

[
∫ β

α
|
∫ b

a Gk (g(x),s) dλ(x)∫ b
a dλ(x)

– Gk(g, s)|q ds]
1
q for q �= ∞,

sups∈[α,β]{|
∫ b

a Gk (g(x),s) dλ(x)∫ b
a dλ(x)

– Gk(g, s)|} for q = ∞.
(12)

Proof From Lemma 1 we know that we can represent every function ϕ ∈ C2[α,β] in ade-
quate form using the previously defined functions Gk (k = 0, 1, 2, 3, 4). By some calculation
we can easily get that, for every function ϕ ∈ C2[α,β] and for any k ∈ {0, 1, 2, 3, 4}, we have

∫ b
a ϕ(g(x)) dλ(x)∫ b

a dλ(x)
– ϕ(g) =

∫ β

α

[∫ b
a Gk(g(x), s) dλ(x)∫ b

a dλ(x)
– Gk(g, s)

]
ϕ′′(s) ds. (13)

Taking the absolute value to (13), using the triangle inequality for integrals, and then ap-
plying the Hölder inequality, we get:

∣∣∣∣
∫ b

a ϕ(g(x)) dλ(x)∫ b
a dλ(x)

– ϕ(g)
∣∣∣∣

=
∣∣∣∣
∫ β

α

[∫ b
a Gk(g(x), s) dλ(x)∫ b

a dλ(x)
– Gk(g, s)

]
ϕ′′(s) ds

∣∣∣∣

≤
∫ β

α

∣∣∣∣
[∫ b

a Gk(g(x), s) dλ(x)∫ b
a dλ(x)

– Gk(g, s)
]
ϕ′′(s)

∣∣∣∣ds
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≤
(∫ β

α

∣∣∣∣
∫ b

a Gk(g(x), s) dλ(x)∫ b
a dλ(x)

– Gk(g, s)
∣∣∣∣
q

ds
) 1

q
·
(∫ β

α

∣∣ϕ′′(s)
∣∣p ds

) 1
p

,

and the statement of the theorem follows. �

Now consider the case q = 1, that is, p = ∞. If the positivity of the term
∫ b

a Gk (g(x),s) dλ(x)∫ b
a dλ(x)

–
Gk(g, s) does not change for all s ∈ [α,β], then we can calculate Q. We have the following
result.

Corollary 1 Let g : [a, b] → R be a continuous function, and let ϕ ∈ C2([α,β]), where the
image of g is a subset of [α,β]. Let λ : [a, b] → R be a continuous function or a function
of bounded variation such that λ(a) �= λ(b) and g ∈ [α,β]. Let the functions Gk : [α,β] ×
[α,β] →R (k = 0, 1, 2, 3, 4) be as defined in (1)–(5). Suppose that, for any k ∈ {0, 1, 2, 3, 4},

∫ b
a Gk(g(x), s) dλ(x)∫ b

a dλ(x)
– Gk(g, s) ≥ 0 (14)

for all s ∈ [α,β] or that, for any k ∈ {0, 1, 2, 3, 4}, the reverse inequality in (14) holds for all
s ∈ [α,β]. Then

∣∣∣∣
∫ b

a ϕ(g(x)) dλ(x)∫ b
a dλ(x)

– ϕ(g)
∣∣∣∣ ≤ 1

2
· ∥∥ϕ′′∥∥∞ ·

∣∣∣∣
∫ b

a (g(x))2 dλ(x)∫ b
a dλ(x)

– (g)2
∣∣∣∣. (15)

Proof Let us start from the previous theorem and set q = 1, p = ∞. Consider any k ∈
{0, 1, 2, 3, 4}. Then (11) transforms into

∣∣∣∣
∫ b

a ϕ(g(x)) dλ(x)∫ b
a dλ(x)

– ϕ(g)
∣∣∣∣ ≤ ∥∥ϕ′′∥∥∞ ·

∫ β

α

∣∣∣∣
∫ b

a Gk(g(x), s) dλ(x)∫ b
a dλ(x)

– Gk(g, s)
∣∣∣∣ds. (16)

When the positivity of the term
∫ b

a Gk (g(x),s) dλ(x)∫ b
a dλ(x)

–Gk(g, s) for all s ∈ [α,β] does not change,
we can calculate the integral on the right side of (16):

∫ β

α

(∫ b
a Gk(g(x), s) dλ(x)∫ b

a dλ(x)
– Gk(g, s)

)
ds =

1
2

·
[∫ b

a (g(x))2 dλ(x)∫ b
a dλ(x)

– (g)2
]

. (17)

(For the proof, see [16] and [17].)
If inequality (14) holds for all s ∈ [α,β], then (16) becomes

∣∣∣∣
∫ b

a ϕ(g(x)) dλ(x)∫ b
a dλ(x)

– ϕ(g)
∣∣∣∣ ≤ 1

2
· ∥∥ϕ′′∥∥∞ ·

[∫ b
a (g(x))2 dλ(x)∫ b

a dλ(x)
– (g)2

]
. (18)

Also, if the reverse inequality in (14) holds for all s ∈ [α,β], then (16) becomes

∣∣∣∣
∫ b

a ϕ(g(x)) dλ(x)∫ b
a dλ(x)

– ϕ(g)
∣∣∣∣ ≤ 1

2
· ∥∥ϕ′′∥∥∞ ·

[
(g)2 –

∫ b
a (g(x))2 dλ(x)∫ b

a dλ(x)

]
. (19)

This means that if inequality (14) or the reverse inequality in (14) holds for all s ∈ [α,β],
then we have (15). �
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Remark 2 We can get the same result using the Lagrange mean-value theorems from [16]
and [17], as they state that, for the functions g , ϕ, λ, Gk (k = 0, 1, 2, 3, 4) defined as in the
previous theorem, if inequality (14) or the reverse inequality in (14) holds for all s ∈ [α,β],
then there exists ξ ∈ [α,β] such that

∫ b
a ϕ(g(x)) dλ(x)∫ b

a dλ(x)
–ϕ(g) =

1
2
ϕ′′(ξ )

[∫ b
a (g(x))2 dλ(x)∫ b

a dλ(x)
– (g)2

]
. (20)

The next result represents an improvement of the aforementioned result from [2].

Corollary 2 Let g : [a, b] → R be continuous function, and let ϕ ∈ C2([α,β]), where the
image of g is a subset of [α,β]. Let λ : [a, b] → R be a continuous function or a function
of bounded variation such that λ(a) �= λ(b) and g ∈ [α,β]. Let the functions Gk : [α,β] ×
[α,β] → R (k = 0, 1, 2, 3, 4) be as defined in (1)–(5). Let x0 ∈ [a, b] be arbitrarily chosen,
and let g(x0) = c.

If for any k ∈ {0, 1, 2, 3, 4}, inequality (14) or the the reverse inequality in (14) holds for all
s ∈ [α,β], then

∣∣∣∣
∫ b

a ϕ(g(x)) dλ(x)∫ b
a dλ(x)

– ϕ(g)
∣∣∣∣ ≤ 1

2
· ∥∥ϕ′′∥∥∞ ·

[∣∣∣∣
∫ b

a (g(x) – c)2 dλ(x)∫ b
a dλ(x)

∣∣∣∣ +
∣∣(g – c)2∣∣

]
. (21)

Proof Let x0 ∈ [a, b] be arbitrarily chosen, and let g(x0) = c. We have:

∫ b
a (g(x) – g(x0))2 dλ(x)∫ b

a dλ(x)
–

(
g – g(x0)

)2 =
∫ b

a (g(x))2 dλ(x)∫ b
a dλ(x)

– (g)2. (22)

Under the prepositions of the previous corollary, applying (22) in (15) and then using the
triangle inequality, we get:

∣∣∣∣
∫ b

a ϕ(g(x)) dλ(x)∫ b
a dλ(x)

– ϕ(g)
∣∣∣∣ ≤ 1

2
· ∥∥ϕ′′∥∥∞ ·

∣∣∣∣
∫ b

a (g(x) – g(x0))2 dλ(x)∫ b
a dλ(x)

–
(
g – g(x0)

)2
∣∣∣∣

≤ 1
2

· ∥∥ϕ′′∥∥∞ ·
[∣∣∣∣

∫ b
a (g(x) – c)2 dλ(x)∫ b

a dλ(x)

∣∣∣∣ +
∣∣(g – c)2∣∣

]
. �

4 Discrete case
Discrete Jensen’s inequality states that

ϕ

(
1

Rn

n∑
i=1

rixi

)
≤ 1

Rn

n∑
i=1

riϕ(xi) (23)

for a convex function ϕ : I → R, I ⊆ R, an n-tuple x = (x1, . . . , xn) (n ≥ 2), and a nonnegative
n-tuple r = (r1, . . . , rn) such that

∑n
i=1 ri > 0.

In [16] and [17], we have a generalization of that result. It is allowed that ri can also be
negative with the sum different from 0, but there is given an additional condition on ri, xi

in terms of the Green functions Gk : [α,β] × [α,β] →R defined in (1)–(5).
To simplify the notation, we denote Rn =

∑n
i=1 ri and x = 1

Rn

∑n
i=1 rixi.
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As we already know (from Lemma 1) how to represent every function ϕ ∈ C2[α,β] in
an adequate form using the previously defined functions Gk (k = 0, 1, 2, 3, 4), by some cal-
culation it is easy to show that

1
Rn

n∑
i=1

riϕ(xi) – ϕ(x) =
∫ β

α

(
1

Rn

n∑
i=1

riGk(xi, s) – Gk(x, s)

)
ϕ′′(s) ds. (24)

Similarly to the integral case, applying the Hölder inequality to (24), we get the following
result.

Theorem 2 Let xi ∈ [a, b] ⊆ [α,β] and ri ∈ R (i = 1, . . . , n) be such that Rn �= 0 and x ∈
[α,β], and let ϕ ∈ C2[α,β]. Let the functions Gk : [α,β] × [α,β] →R (k = 0, 1, 2, 3, 4) be as
defined in (1)–(5). Furthermore, let p, q ∈R, 1 ≤ p, q ≤ ∞, be such that 1

p + 1
q = 1. Then

∣∣∣∣∣
1

Rn

n∑
i=1

riϕ(xi) – ϕ(x)

∣∣∣∣∣ ≤ Q · ∥∥ϕ′′∥∥
p, (25)

where

Q =

⎧⎨
⎩

[
∫ β

α
| 1

Rn

∑n
i=1 riGk(xi, s) – Gk(x, s)|q ds]

1
q for q �= ∞;

sups∈[α,β]{| 1
Rn

∑n
i=1 riGk(xi, s) – Gk(x, s)|} for q = ∞.

(26)

Set q = 1, p = ∞. If the positivity of the term 1
Rn

∑n
i=1 riGk(xi, s) – Gk(x, s) for all s ∈ [α,β]

does not change, then we can calculate Q and we get the following result.

Corollary 3 Let xi ∈ [a, b] ⊆ [α,β] and ri ∈ R (i = 1, . . . , n), be such that Rn �= 0 and x ∈
[α,β], and let ϕ ∈ C2[α,β]. Let the functions Gk : [α,β] × [α,β] →R (k = 0, 1, 2, 3, 4) be as
defined in (1)–(5). If for any k ∈ {0, 1, 2, 3, 4}, the inequality

1
Rn

n∑
i=1

riGk(xi, s) – Gk(x, s) ≥ 0 (27)

or the reverse inequality in (27) holds for all s ∈ [α,β], then
∣∣∣∣∣

1
Rn

n∑
i=1

riϕ(xi) – ϕ(x)

∣∣∣∣∣ ≤ 1
2

· ∥∥ϕ′′∥∥∞ ·
∣∣∣∣∣

1
Rn

n∑
i=1

rix2
i – x2

∣∣∣∣∣. (28)

Let c ∈ [a, b] ⊆ [α,β] be arbitrarily chosen. Then

1
Rn

n∑
i=1

ri(xi – c)2 – (x – c)2 =
1

Rn

n∑
i=1

rix2
i – x2, (29)

and we have the following result.

Corollary 4 Let xi ∈ [a, b] ⊆ [α,β] and ri ∈ R (i = 1, . . . , n) be such that Rn �= 0 and x ∈
[α,β], and let ϕ ∈ C2[α,β]. Let the functions Gk : [α,β] × [α,β] →R (k = 0, 1, 2, 3, 4) be as
defined in (1)–(5). Let c ∈ [a, b] ⊆ [α,β] be arbitrarily chosen.
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If for any k ∈ {0, 1, 2, 3, 4}, inequality (27) or the reverse inequality in (27) holds for all
s ∈ [α,β], then

∣∣∣∣∣
1

Rn

n∑
i=1

riϕ(xi) – ϕ(x)

∣∣∣∣∣ ≤ 1
2

· ∥∥ϕ′′∥∥∞ ·
[∣∣∣∣∣

1
Rn

n∑
i=1

ri(xi – c)2

∣∣∣∣∣ +
∣∣(x – c)2∣∣

]
. (30)

5 Some applications
5.1 Applications to Csiszár f -divergence
Divergences between probability distributions have been introduced to measure the dif-
ference between them. A lot of different types of divergences exist, for example, the
f -divergence, Rényi divergence, Jensen–Shannon divergence, and so on (see, e.g., [8]
and [18]). There are numerous applications of divergences in many fields: anthropology
and genetic, economics, ecological studies, music, signal processing, and pattern recogni-
tion.

The Jensen inequality plays an important role in obtaining inequalities for divergences
between probability distributions, and there are many papers dealing with inequalities for
divergences and entropies (see, e.g., [7, 9, 12]).

In this section, we give some applications of our results, and we first introduce the basic
notions.

Csiszár [3, 4] defined the f -divergence functional as follows.

Definition 1 Let f : [0,∞〉 → [0,∞〉 be a convex function, and let p := (p1, . . . , pn) and
q := (q1, . . . , qn) be positive probability distributions. The f -divergence functional is

Df (p, q) :=
n∑

i=1

qif
(

pi

qi

)
.

The undefined expressions can be interpreted by

f (0) := lim
t→0+

f (t); 0f
(

0
0

)
:= 0; 0f

(
a
0

)
:= lim

t→0+
tf

(
a
t

)
, a > 0.

This definition of the f -divergence functional can be generalized for a function f : I →R,
I ⊂R, where pi

qi
∈ I for i = 1, . . . , n, as follows (see also [7]).

Definition 2 Let I ⊂R be an interval, and let f : I →R be a function. Let p := (p1, . . . , pn) ∈
R

n and q := (q1, . . . , qn) ∈ 〈0,∞〉n be such that

pi

qi
∈ I, i = 1, . . . , n.

Then let

D̂f (p, q) :=
n∑

i=1

qif
(

pi

qi

)
.

Now we apply Theorem 2 to D̂f (p, q) and get the following result.



Pečarić et al. Journal of Inequalities and Applications        (2018) 2018:337 Page 8 of 12

Theorem 3 Let p := (p1, . . . , pn) ∈R
n, and q := (q1, . . . , qn) ∈ 〈0,∞〉n be such that

pi

qi
∈ [a, b] ⊆ [α,β] for i = 1, . . . , n and

∑n
i=1 pi∑n
i=1 qi

∈ [α,β].

Let the functions Gk : [α,β] × [α,β] →R (k = 0, 1, 2, 3, 4) be as defined in (1)–(5). Further-
more, let p, q ∈R, 1 ≤ p, q ≤ ∞, be such that 1

p + 1
q = 1.

(a) If f : [α,β] →R, f ∈ C2[α,β], then

∣∣∣∣ 1∑n
i=1 qi

D̂f (p, q) – f
(∑n

i=1 pi∑n
i=1 qi

)∣∣∣∣ ≤ Q · ∥∥f ′′∥∥
p, (31)

where

Q =

⎧⎪⎨
⎪⎩

[
∫ β

α
| 1∑n

i=1 qi
D̂Gk (·,s)(p, q) – Gk(

∑n
i=1 pi∑n
i=1 qi

, s)|q ds]
1
q for q �= ∞,

sups∈[α,β]{| 1∑n
i=1 qi

D̂Gk (·,s)(p, q) – Gk(
∑n

i=1 pi∑n
i=1 qi

, s)|} for q = ∞.

(b) If id · f ∈ C2[α,β], then

∣∣∣∣ 1∑n
i=1 qi

D̂id·f (p, q) –
∑n

i=1 pi∑n
i=1 qi

f
(∑n

i=1 pi∑n
i=1 qi

)∣∣∣∣ ≤ Q · ∥∥(id · f )′′
∥∥

p, (32)

where id is the identity function, D̂id·f (p, q) =
∑n

i=1pif ( pi
qi

), and

Q =

⎧⎪⎨
⎪⎩

[
∫ β

α
| 1∑n

i=1 qi
D̂Gk (·,s)(p, q) – Gk(

∑n
i=1 pi∑n
i=1 qi

, s)|q ds]
1
q for q �= ∞,

sups∈[α,β]{| 1∑n
i=1 qi

D̂Gk (·,s)(p, q) – Gk(
∑n

i=1 pi∑n
i=1 qi

, s)|} for q = ∞.

Proof (a) The result follows directly from Theorem 2 by substitution ϕ := f ,

ri :=
qi∑n
i=1qi

, xi :=
pi

qi
, i = 1, . . . , n.

(b) The result follows from (a) by substitution f := id · f . �

Let us mention two particular cases of the previous result.
The first one corresponds to the entropy of a positive probability distribution.

Definition 3 The Shannon entropy of a positive probability distribution p := (p1, . . . , pn)
is defined by

H(p) := –
n∑

i=1

pi log(pi).

Corollary 5 Let [α,β] ⊆ 〈0,∞〉, and let q := (q1, . . . , qn) ∈ 〈0,∞〉n be such that

1
qi

∈ [a, b] ⊆ [α,β] for i = 1, . . . , n and
n∑n
i=1 qi

∈ [α,β].
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Let the functions Gk : [α,β] × [α,β] →R (k = 0, 1, 2, 3, 4) be as defined in (1)–(5). Further-
more, let p, q ∈R, 1 ≤ p, q ≤ ∞, be such that 1

p + 1
q = 1. Then

∣∣∣∣ 1∑n
i=1 qi

H(q) – log

(
n∑n
i=1 qi

)∣∣∣∣ ≤ Q · ∥∥log′′∥∥
p, (33)

where

Q =

⎧⎪⎨
⎪⎩

[
∫ β

α
| 1∑n

i=1 qi

∑n
i=1 qiGk( 1

qi
, s) – Gk( n∑n

i=1 qi
, s)|q ds]

1
q for q �= ∞,

sups∈[α,β]{| 1∑n
i=1 qi

∑n
i=1 qiGk( 1

qi
, s) – Gk( n∑n

i=1 qi
, s)|} for q = ∞.

Proof The result follows directly from Theorem 3(a) by substitution f := log and p :=
(1, . . . , 1). �

The second one corresponds to the relative entropy or Kullback–Leibler divergence be-
tween two probability distributions.

Definition 4 The Kullback–Leibler divergence between two positive probability distri-
butions p := (p1, . . . , pn) and q := (q1, . . . , qn) is defined by

D(p � q) :=
n∑

i=1

pi log

(
pi

qi

)
.

Corollary 6 Let [α,β] ⊆ 〈0,∞〉, and let p := (p1, . . . , pn) ∈ R
n and q := (q1, . . . , qn) ∈

〈0,∞〉n be such that

pi

qi
∈ [a, b] ⊆ [α,β] for i = 1, . . . , n and

∑n
i=1 pi∑n
i=1 qi

∈ [α,β].

Let the functions Gk : [α,β] × [α,β] →R (k = 0, 1, 2, 3, 4) be as defined in (1)–(5). Further-
more, let p, q ∈R, 1 ≤ p, q ≤ ∞, be such that 1

p + 1
q = 1.

Then
∣∣∣∣ 1∑n

i=1 qi
D(p � q) –

∑n
i=1 pi∑n
i=1 qi

log

(∑n
i=1 pi∑n
i=1 qi

)∣∣∣∣ ≤ Q · ∥∥(id · log)′′
∥∥

p,

where id is the identity function, and

Q =

⎧⎪⎨
⎪⎩

[
∫ β

α
| 1∑n

i=1 qi

∑n
i=1 qiGk( pi

qi
, s) – Gk(

∑n
i=1 pi∑n
i=1 qi

, s)|q ds]
1
q for q �= ∞,

sups∈[α,β]{| 1∑n
i=1 qi

∑n
i=1 qiGk( pi

qi
, s) – Gk(

∑n
i=1 pi∑n
i=1 qi

, s)|} for q = ∞.

Proof The result follows from Theorem 3(b) by substitution f := log. �

5.2 Applications to Zipf–Mandelbrot law
The forthcoming results deal with the so called Zipf–Mandelbrot law.

George Kingsley Zipf (1902–1950) was a linguist who investigated the frequencies of
different words in the text. The Zipf law is one of the basic laws in information science,
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bibliometrics, and linguistics (see [5]). In certain fields, like economics and econometrics,
this distribution is known as Pareto’s law. There it analyzes the distribution of the wealthi-
est members of the community (see [5], p. 125). Though, in the mathematical sense, these
two laws are the same; the only difference is that they are applied in different contexts (see
[6], p. 294). The same kind of distribution can be also found in other scientific disciplines,
such as physics, biology, earth and planetary sciences, computer science, demography, and
social sciences. For more information, we refer [15].

The mathematician Benoit Mandelbrot (1924–2010) introduced a more general model
of this law (see [11]). The new Zipf–Mandelbrot law has many different applications, for
example, in information sciences [6], linguistics [13], ecology [14], music [10], and so on.

Definition 5 ([7]) The Zipf–Mandelbrot law is a discrete probability distribution, de-
pending on three parameters N ∈ {1, 2, . . .}, t ∈ [0,∞〉, and v > 0 and defined by

f (i; N , t, v) :=
1

(i + t)vHN ,t,v
, i = 1, . . . , N ,

where

HN ,t,v :=
N∑

j=1

1
(j + t)v .

When t = 0, then the Zipf–Mandelbrot law becomes the Zipf law.

Now, we will apply our results for distributions given in Theorem 3 to the Zipf–
Mandelbrot law, a sort of discrete probability distributions.

Corollary 7 Let p1, p2 be two Zipf–Mandelbrot laws with parameters N ∈ {1, 2, . . .},
t1, t2 ∈ [0,∞〉, and v1, v2 > 0, respectively, such that

(i + t2)v2 HN ,t2,v2

(i + t1)v1 HN ,t1,v1
∈ [a, b] ⊆ [α,β] for i = 1, . . . , N

and
A1

A2
∈ [α,β], where Aj :=

N∑
i=1

1
(i + tj)vj HN ,tj ,vj

(j = 1, 2).

Let the functions Gk : [α,β] × [α,β] →R (k = 0, 1, 2, 3, 4) be as defined in (1)–(5). Further-
more, let p, q ∈R, 1 ≤ p, q ≤ ∞, be such that 1

p + 1
q = 1.

(a) If f : [α,β] →R, f ∈ C2([α,β]), then

∣∣∣∣ 1
A2

D̂f (p1, p2) – f
(

A1

A2

)∣∣∣∣ ≤ Q · ∥∥f ′′∥∥
p,

and
(b) if id · f ∈ C2[α,β], then

∣∣∣∣ 1
A2

D̂id·f (p1, p2) –
A1

A2
f
(

A1

A2

)∣∣∣∣ ≤ Q · ∥∥(id · f )′′
∥∥

p,
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where id is the identity function, and

Q =

⎧⎨
⎩

[
∫ β

α
| 1

A2
D̂Gk (·,s)(p1, p2) – Gk( A1

A2
, s)|q ds]

1
q for q �= ∞,

sups∈[α,β]{| 1
A2

D̂Gk (·,s)(p1, p2) – Gk( A1
A2

, s)|} for q = ∞.

Although it is a particular case of the result just given, here we also present a result for
the Shannon entropy.

Corollary 8 Let [α,β] ⊆ 〈0,∞〉, let q be the Zipf–Mandelbrot law as defined in Defini-
tion 5 such that

(i + t)vHN ,t,v ∈ [a, b] ⊆ [α,β] for i = 1, . . . , N

and
N
B

∈ [α,β], where B :=
N∑

i=1

1
(i + t)vHN ,t,v

.

Let the functions Gk : [α,β] × [α,β] → R (k = 0, 1, 2, 3, 4) be as defined in (1)–(5). Fur-
thermore, let p, q ∈ R, 1 ≤ p, q ≤ ∞, be such that 1

p + 1
q = 1.

Then

∣∣∣∣ 1
B

H(q) – log

(
N
B

)∣∣∣∣ ≤ Q · ∥∥log′′∥∥
p,

where

Q =

⎧⎪⎨
⎪⎩

[
∫ β

α
| 1

B
∑N

i=1
1

(i+t)vHN ,t,v
Gk((i + t)vHN ,t,v; s) – Gk( N

B , s)|q ds]
1
q for q �= ∞,

sups∈[α,β]{| 1
B

∑N
i=1

1
(i+t)vHN ,t,v

Gk((i + t)vHN ,t,v; s) – Gk( N
B , s)|} for q = ∞.
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