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Abstract
In this paper, we study a class of fourth-order parabolic equation with the logarithmic
nonlinearity. By using the potential well method, we obtain the existence of the
unique global weak solution. In addition, we also obtain results of decay and blow-up
in the finite time for the weak solution.
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1 Introduction
In this paper, we study the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut + �2u = |u|q–2u log |u|, x ∈ Ω , t > 0,

u(x, t) = �u(x, t) = 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), x ∈ Ω ,

(1.1)

where Ω is a bound domain inR
n with smooth boundary, 2 < q < 2+ 4

n , u0(x) ∈ H2
0 (Ω)\{0}.

Many papers have been devoted to the fourth-order parabolic equation. Qu and Zhou
[1] studied the following fourth-order equation:

ut + D4u = |u|p–1u –
1

|Ω|
∫

Ω

|u|p–1u dx. (1.2)

Using the method of potential wells, they established a threshold result for the global ex-
istence and blow-up for the sign-changing weak solutions. Zhou [2] proved new blow-up
conditions and the maximum of the blow-up time for Eq. (1.2). Li, Gao and Han [3] con-
sidered

⎧
⎪⎪⎨

⎪⎪⎩

ut + D4u – (|ux|p–2ux)x = |u|p–1u – 1
|Ω|

∫

Ω
|u|p–1u dx, x ∈ Ω ,

Du = D3u = 0, (x, t) ∈ ∂Ω × (0, T),

u(x, 0) = u0(x), x ∈ Ω .
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They obtained the existence, uniqueness and blow-up of solutions. Liu and Liu [4] con-
sidered the following equation:

ut – D6u + D
(

a(Du)D3u +
a′(Du)

2
(
D2u

)2
)

= |u|p–1u –
1

|Ω|
∫

Ω

|u|p–1u dx, (x, t) ∈ Ω × (0, T).

They combine the potential well method, the classical Galerkin method and the energy
method to give a threshold result for the global existence and non-existence of sign-
changing weak solutions to the problem. The relevant equations have also been studied in
[5, 6].

In this paper, we study a fourth-order parabolic equation with the logarithmic nonlin-
earity. The second-order parabolic equation with the logarithmic nonlinearity is diffusely
studied. Chen, Luo and Liu [7] studied the heat equation with the logarithmic nonlinearity.
Ji, Yin and Cao [8] established the existence of positive periodic solutions and discussed
the instability of such solutions for the semilinear pseudo-parabolic equation with the log-
arithmic source. Nahn and Truong [9] studied the following nonlinear equation:

ut – �ut – div
(|∇u|p–2∇u

)
= |u|p–2u log

(|u|). (1.3)

They obtained results as regards the existence or non-existence of global weak solutions.
He, Gao and Wang [10] considered the following equation:

ut – �ut – div
(|∇u|p–2∇u

)
= |u|q–2u log

(|u|), (1.4)

where 2 < p < q < p(1 + 2
n ), they proved the decay and the finite time blow-up for weak

solutions.
In this paper, we prove the existence of the unique global weak solution of the problem

(1.1) based on the potential well method. In addition, we also obtain some properties of
the solutions. This paper is organized as follows: in Sect. 2, we introduce some lemmas. In
Sect. 3, we mainly introduce the existence of the unique local weak solution of the problem
(1.1). In Sect. 4, under some conditions, we obtain the existence of the unique global weak
solution of the problem (1.1). Meanwhile, we find that the solution is decaying. In the last
section, we prove the blow-up theorem.

2 Some lemmas
We first consider the energy functional J and Nehari functional I defined on H2

0 (Ω) \ {0}
as follows:

J(u) =
1
2

∫

Ω

|�u|2 dx –
1
q

∫

Ω

|u|q log |u|dx +
1
q2

∫

Ω

|u|q dx, (2.1)

I(u) =
∫

Ω

|�u|2 dx –
∫

Ω

|u|q log |u|dx. (2.2)

We can see that J and I are continuous from the Gagliardo–Nirenberg multiplicative em-
bedding inequality (see [11]).
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By (2.1) and (2.2), we have

J(u) =
1
q

I(u) +
(

1
2

–
1
q

)∫

Ω

|�u|2 dx +
1
q2

∫

Ω

|u|q dx. (2.3)

Let N = {u ∈ H2
0 (Ω) \ {0} : I(u) = 0}. Lemma 2.1 indicates N is not empty. Thus, we can

define

d = inf
u∈N

J(u). (2.4)

It is obvious that d > 0 by (2.3), (2.4), 2 < q < 2 + 4
n and the definition of N . For a fixed

u ∈ H2
0 (Ω) \ {0}, we consider the function j : λ → J(λu) for λ > 0.

Lemma 2.1 Let u ∈ H2
0 (Ω) \ {0}. Then the following results hold:

(1) limλ→0+ j(λ) = 0, limλ→+∞ j(λ) = 0;
(2) there exists a unique λ > 0 such that j′(λ) = 0;
(3) j(λ) is increasing on (0,λ), decreasing on (λ, +∞) and attains the maximum at λ;
(4) I(λu) > 0 for 0 < λ < λ, I(λu) < 0 for λ < λ < +∞ and I(λu) = 0.

Proof For u ∈ H2
0 (Ω) \ {0}, by the definition of j, we have

j(λ) = J(λu) =
1
2

∫

Ω

∣
∣�(λu)

∣
∣2 dx –

1
q

∫

Ω

|λu|q log |λu|dx +
1
q2

∫

Ω

|λu|q dx

=
λ2

2

∫

Ω

|�u|2 dx –
λq

q

∫

Ω

|u|q log |u|dx –
λq

q
logλ

∫

Ω

|u|q dx

+
λq

q2

∫

Ω

|u|q dx.

It is obvious that (1) holds due to 2 < q < 2 + 4
n and

∫

Ω
|u|q dx �= 0. We have

j′(λ) = λ

∫

Ω

|�u|2 dx – λq–1
∫

Ω

|u|q log |u|dx – λq–1 logλ

∫

Ω

|u|q dx

–
λq–1

q

∫

Ω

|u|q dx +
λq–1

q

∫

Ω

|u|q dx

= λ

∫

Ω

|�u|2 dx – λq–1
∫

Ω

|u|q log |u|dx – λq–1 logλ

∫

Ω

|u|q dx.

We construct a function ϕ(λ) = λ–1j′(λ), thus we obtain

ϕ(λ) = λ–1j′(λ)

= λ–1
(

λ

∫

Ω

|�u|2 dx – λq–1
∫

Ω

|u|q log |u|dx – λq–1 logλ

∫

Ω

|u|q dx
)

=
∫

Ω

|�u|2 dx – λq–2
∫

Ω

|u|q log |u|dx – λq–2 logλ

∫

Ω

|u|q dx.

Then

ϕ′(λ) = –(q – 2)λq–3
∫

Ω

|u|q log |u|dx
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– (q – 2)λq–3 logλ

∫

Ω

|u|q dx – λq–3
∫

Ω

|u|q dx

= –λq–3
(

(q – 2)
∫

Ω

|u|q log |u|dx + (q – 2) logλ

∫

Ω

|u|q dx +
∫

Ω

|u|q dx
)

,

which implies that there exists a λ1 > 0 such that ϕ(λ) is increasing on (0,λ1), de-
creasing on (λ1, +∞). Using the Poincaré inequality and u ∈ H2

0 (Ω) \ {0}, we have 0 <
∫

Ω
|u|2 dx ≤ C1

∫

Ω
|Du|2 dx ≤ C1C2

∫

Ω
|�u|2 dx, where C1, C2 is the Poincaré constants.

Since limλ→0+ ϕ(λ) =
∫

Ω
|�u|2 dx > 0, limλ→+∞ ϕ(λ) = –∞, there exists a unique λ > 0 such

that ϕ(λ) = 0, i.e. j′(λ) = 0. So (2) holds. Thus j′(λ) = λϕ(λ) > 0 for 0 < λ < λ and j′(λ) < 0 for
λ < λ < +∞, which indicates j(λ) is increasing on (0,λ), decreasing on (λ, +∞) and attains
the maximum at λ. So (3) holds. From (2.2), we have

I(λu) =
∫

Ω

∣
∣�(λu)

∣
∣2 dx –

∫

Ω

|λu|q log |λu|dx

= λ2
∫

Ω

|�u|2 dx – λq
∫

Ω

|u|q log |u|dx – λq logλ

∫

Ω

|u|q dx

= λ

(

λ

∫

Ω

|�u|2 dx – λq–1
∫

Ω

|u|q log |u|dx – λq–1 logλ

∫

Ω

|u|q dx
)

= λj′(λ).

Thus, I(λu) > 0 for 0 < λ < λ, I(λu) < 0 for λ < λ < +∞ and I(λu) = 0. So (4) holds. �

Lemma 2.2 There exists a u > 0 with u ∈ N such that J(u) = d.

Proof By (2.4), we suppose {uk}∞k=1 ⊂ N is a minimizing sequence of J . Since {|uk|}∞k=1 ⊂
N is also a minimizing sequence of J , we consider the case where uk > 0 a.e. in Ω , k ∈ N

without loss of generality. Thus,

lim
k→∞

J(uk) = d, (2.5)

which implies that {J(uk)}∞k=1 is bounded, i.e. there exists a constant C3 > 0 such that
|J(uk)| ≤ C3. Using (2.3), I(uk) = 0 and |J(uk)| ≤ C3, we have

(
1
2

–
1
q

)∫

Ω

|�uk|2 dx +
1
q2

∫

Ω

|uk|q dx ≤ C3. (2.6)

Combining 2 < q < 2 + 4
n with (2.6), we have

∫

Ω

|�uk|2 dx ≤
(

1
2

–
1
q

)–1

C3. (2.7)

Using (2.7) and the Poincaré inequality, we have

∫

Ω

|uk|2 dx ≤ C4

∫

Ω

|Duk|2 dx ≤ C4C5

∫

Ω

|�uk|2 dx ≤
(

1
2

–
1
q

)–1

C3C4C5,

where C4, C5 are the Poincaré constants. The above inequality implies that {uk}∞k=1 is
bounded in H2

0 (Ω). Let μ1 > 0 be sufficiently small such that q + μ1 < 2n
n–2 . Since H2

0 (Ω) ↪→
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Lq+μ1 (Ω) is a compact embedding, there exist a function u and a subsequence of {uk}∞k=1,
still denoted by {uk}∞k=1, such that

uk → u, weakly in H2
0 (Ω),

uk → u, strongly in Lq+μ1 (Ω),

uk → u(x), a.e. in Ω .

Then we have u ≥ 0 a.e. in Ω . First, we prove u �= 0. Using the dominated convergence
theorem, we obtain

∫

Ω

|u|q log |u|dx = lim
k→∞

∫

Ω

|uk|q log |uk|dx, (2.8)
∫

Ω

|u|q dx = lim
k→∞

∫

Ω

|uk|q dx. (2.9)

It follows from the weak lower semicontinuity of the L2 norm that

∫

Ω

|�u|2 dx ≤ lim inf
k→∞

∫

Ω

|�uk|2 dx. (2.10)

Using (2.1), (2.5), (2.8), (2.9) and (2.10), we have

J(u) =
1
2

∫

Ω

|�u|2 dx –
1
q

∫

Ω

|u|q log |u|dx +
1
q2

∫

Ω

|u|q dx

≤ lim inf
k→∞

1
2

∫

Ω

|�uk|2 dx – lim
k→∞

1
q

∫

Ω

|uk|q log |uk|dx + lim
k→∞

1
q2

∫

Ω

|uk|q dx

= lim inf
k→∞

(
1
2

∫

Ω

|�uk|2 dx –
1
q

∫

Ω

|uk|q log |uk|dx +
1
q2

∫

Ω

|uk|q dx
)

= lim inf
k→∞

J(uk) = d. (2.11)

Using (2.2), (2.8), (2.10) and uk ∈ N , we have

I(u) =
∫

Ω

|�u|2 dx –
∫

Ω

|u|q log |u|dx

≤ lim inf
k→∞

∫

Ω

|�uk|2 dx – lim
k→∞

∫

Ω

|uk|q log |uk|dx

= lim inf
k→∞

(∫

Ω

|�uk|2 dx –
∫

Ω

|uk|q log |uk|dx
)

= lim inf
k→∞

I(uk) = 0. (2.12)

By uk ∈ N and using the Sobolev embedding inequality and the Poincaré inequality, we
have

∫

Ω

|�uk|2 dx =
∫

Ω

|uk|q log |uk|dx

≤ e–1

μ1

∫

Ω

|uk|q+μ1 dx
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≤ Cq+μ1
6

e–1

μ1

(∫

Ω

|Duk|2 dx
) q+μ1

2

≤ Cq+μ1
6 C

q+μ1
2

7
e–1

μ1

(∫

Ω

|�uk|2 dx
) q+μ1

2
, (2.13)

where C6 is the Sobolev embedding constant, C7 is the Poincaré constant.
By (2.13), we have, for some positive constant C8,

∫

Ω

|uk|q log |uk|dx =
∫

Ω

|�uk|2 dx ≥ C8. (2.14)

Using (2.8) and (2.14), we have

e–1

μ1

∫

Ω

|u|q+μ1 dx ≥
∫

Ω

|u|q log |u|dx = lim
k→∞

∫

Ω

|uk|q log |uk|dx ≥ C8,

which indicates u �= 0. Next, we will study I(u) = 0. If I(u) < 0, by Lemma 2.1, there exists a
λ1 such that I(λ1u) = 0 and 0 < λ1 < 1. Thus, λ1u ∈ N . By (2.3), (2.4), (2.9) and (2.10), we
have

d ≤ J(λ1u)

=
1
q

I(λ1u) +
(

1
2

–
1
q

)∫

Ω

∣
∣�(λ1u)

∣
∣2 dx +

1
q2

∫

Ω

|λ1u|q dx

=
(

1
2

–
1
q

)∫

Ω

∣
∣�(λ1u)

∣
∣2 dx +

1
q2

∫

Ω

|λ1u|q dx

=
(

1
2

–
1
q

)

λ
2
1

∫

Ω

|�u|2 dx +
λ

q
1

q2

∫

Ω

|u|q dx

≤
(

1
2

–
1
q

)

λ
2
1

∫

Ω

|�u|2 dx +
λ

2
1

q2

∫

Ω

|u|q dx

= λ
2
1

[(
1
2

–
1
q

)∫

Ω

|�u|2 dx +
1
q2

∫

Ω

|u|q dx
]

≤ λ
2
1 lim inf

k→∞

[(
1
2

–
1
q

)∫

Ω

|�uk|2 dx +
1
q2

∫

Ω

|uk|q dx
]

= λ
2
1 lim inf

k→∞
J(uk)

= λ
2
1d,

which indicates λ1 ≥ 1 by d > 0. It contradicts 0 < λ1 < 1. Then, by (2.12), we have I(u) = 0.
Therefore, u ∈ N . By (2.4), we have J(u) ≥ d. By (2.11), we have J(u) ≤ d. So, J(u) = d. �

Lemma 2.3 ([9]) For any u ∈ W 1,p
0 (Ω), p ≥ 1, and r ≥ 1, the inequality

‖u‖q ≤ C‖Du‖θ
p‖u‖1–θ

r ,

is valid, where

θ =
(

1
r

–
1
q

)(
1
n

–
1
p

+
1
r

)–1

,
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and for p ≥ n = 1, r ≤ q ≤ ∞; for n > 1 and p < n, q ∈ [r, p∗] if r ≤ p∗ and q ∈ [p∗, r] if r ≥ p∗;
for p = n > 1, r ≤ q ≤ ∞; for p > n > 1, r ≤ q ≤ ∞.

Here, the constant C depends on n, p, q and r.

Lemma 2.4 ([12]) Let h : R+ → R+ be a nonincreasing function. Assume that there is a
constant A > 0 such that

∫ +∞

s
h(t) dt ≤ Ah(s), 0 ≤ s < +∞.

Then h(t) ≤ h(0)e1– t
A , for all t > 0.

3 Local existence and uniqueness
Definition 3.1 (Weak solution) A function u is a solution of problem (1.1) over [0, T] if
u ∈ L∞(0, T ; H2

0 (Ω)) with ut ∈ L2(0, T ; L2(Ω)), satisfies the initial condition u(0) = u0(x) ∈
H2

0 (Ω) \ {0}, and

∫

Ω

utw dx +
∫

Ω

�u�w dx =
∫

Ω

|u|q–2u log |u|w dx, (3.1)

for any w ∈ H2
0 (Ω), and for a.e. t ∈ [0, T].

Theorem 3.1 (Local existence) Let u0 ∈ H2
0 (Ω) \ {0}. Then there exists a positive constant

T0 such that the problem (1.1) has a unique weak solution u(x, t) on Ω × (0, T0). Further-
more, u(x, t) satisfies the energy inequality

∫ t

0

∫

Ω

u2
s dx ds + J

(
u(t)

) ≤ J(u0), t ∈ [0, T0]. (3.2)

Proof In the space of H2
0 (Ω), we take a basis {wj}∞j=1 and define the finite dimensional space

Vm = span{w1, w2, . . . , wm}.

Let u0m be an element of Vm such that

u0m =
m∑

j=1

amjwj → u0 strongly in H2
0 (Ω), (3.3)

as m → ∞. We can find the approximate solution um(x, t) of the problem (1.1) in the form

um(x, t) =
m∑

j=1

αmj(t)wj(x), (3.4)

where αmj (1 ≤ j ≤ m) satisfy the ordinary differential equations

∫

Ω

umtwi dx +
∫

Ω

�um�wi dx =
∫

Ω

|um|q–2um log |um|wi dx, (3.5)
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for i ∈ {1, 2, . . . , m}, with

αmj(0) = amj, i ∈ {1, 2, . . . , m}. (3.6)

We find from Peano’s theorem that (3.5)–(3.6) has a local solution αmj, and there exists a
positive Tm > 0 such that αmj ∈ C1([0, Tm]), therefore um ∈ C1([0, Tm]; H2

0 (Ω)). Multiplying
the ith equation in (3.5) by αmi, summing over i from 1 to m, we have

∫

Ω

umtum dx +
∫

Ω

|�um|2 dx =
∫

Ω

|um|q log |um|dx. (3.7)

Integrating the above formula with respect to s over (0, t), we have

ym(t) = ym(0) +
∫ t

0

∫

Ω

|um|q log |um|dx ds, (3.8)

where

ym(t) =
1
2

∫

Ω

|um|2 dx +
∫ t

0

∫

Ω

|�um|2 dx ds. (3.9)

Choose μ2 such that 0 < μ2 < 2 + 4
n – q. Using Lemma 2.3, the Poincaré inequality and the

Young inequality, we have

∫

Ω

|um|q log |um|dx

≤ e–1

μ2

∫

Ω

|um|q+μ2 dx

≤ e–1

μ2
Cq+μ2

9 ‖Dum‖θ (q+μ2)
2 ‖um‖(1–θ )(q+μ2)

2

≤ e–1

μ2
Cq+μ2

9 C
θ (q+μ2)

2
10 ‖�um‖θ (q+μ2)

2 ‖um‖(1–θ )(q+μ2)
2

≤ ε‖�um‖2
2 +

(
εμ2

e–1Cq+μ2
9 C

θ (q+μ2)
2

10

)– θ (q+μ2)
2–θ (q+μ2) ‖um‖

2(1–θ )(q+μ2)
2–θ (q+μ2)

2 , (3.10)

where C9 is the constant of Lemma 2.3, C10 is the Poincaré constant, 0 < ε < 1, and θ =
n( 1

2 – 1
q+μ2

). Let γ = (1–θ )(q+μ2)
2–θ (q+μ2) and C11 = ( εμ2

e–1Cq+μ2
9 C

θ (q+μ2)
2

10

)– θ (q+μ2)
2–θ (q+μ2) , thus (3.10) becomes

∫

Ω

|um|q log |um|dx ≤ε

∫

Ω

|�um|2 dx + C11

(∫

Ω

|um|2 dx
)γ

. (3.11)

It is easy to check γ > 1 according to 2 < q < 2 + 4
n . Using (3.3), (3.8), (3.9) and (3.11), we

have

ym(t) = ym(0) +
∫ t

0

∫

Ω

|um|q log |um|dx ds

≤ ym(0) +
∫ t

0

[

ε

∫

Ω

|�um|2 dx + C11

(∫

Ω

|um|2 dx
)γ ]

ds
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=
1
2

∫

Ω

∣
∣um(0)

∣
∣2 dx +

∫ t

0

∫

Ω

∣
∣�um(0)

∣
∣2 dx ds

+
∫ t

0

[

ε

∫

Ω

|�um|2 dx + C11

(∫

Ω

|um|2 dx
)γ ]

ds

≤ C12 +
∫ t

0

[

ε

∫

Ω

|�um|2 dx + C11

(∫

Ω

|um|2 dx
)γ ]

ds

≤ C12 + ε

∫ t

0

∫

Ω

|�um|2 dx ds + C11

∫ t

0

(∫

Ω

|um|2 dx
)γ

ds

≤ C12 +
ε

2

∫

Ω

|um|2 dx + ε

∫ t

0

∫

Ω

|�um|2 dx ds

+ C112γ

∫ t

0

(∫ s

0

∫

Ω

|�um|2 dx dy
)γ

ds

+ C112γ

∫ t

0

(
1
2

∫

Ω

|um|2 dx
)γ

ds

≤ C12 + εym(t) + C112γ

∫ t

0
ym(s)γ ds. (3.12)

Using 0 < ε < 1 and (3.12),

ym(t) ≤ C12

1 – ε
+

C112γ

1 – ε

∫ t

0
ym(s)γ ds. (3.13)

Using the integral inequality of Gronwall–Bellman–Bihari type and combining with
(3.13), there exists T0 such that

ym(t) ≤ C13(T0), t ∈ [0, T0], (3.14)

where C13(T0) is a positive constant dependent on T0. Multiplying equation (3.5) by α′
mi,

summing over i from 1 to m and integrating with respect to time variable on [0, t], we have

∫ t

0

∫

Ω

u2
ms dx ds + J

(
um(t)

)
= J

(
um(0)

)
, for all t ∈ [0, T0]. (3.15)

We find from (3.3) and the continuity of the J that there exists a constant C14 > 0 such that

J
(
um(0)

) ≤ C14, for all m. (3.16)

Using (2.1), (3.9), (3.11), (3.14), (3.15) and (3.16), we have

C14 ≥ J
(
um(t)

)

=
1
2

∫

Ω

∣
∣�um(t)

∣
∣2 dx –

1
q

∫

Ω

∣
∣um(t)

∣
∣q

log
∣
∣um(t)

∣
∣dx +

1
q2

∫

Ω

∣
∣um(t)

∣
∣q dx

≥ 1
2

∫

Ω

∣
∣�um(t)

∣
∣2 dx –

1
q

∫

Ω

∣
∣um(t)

∣
∣q

log
∣
∣um(t)

∣
∣dx

≥ 1
2

∫

Ω

∣
∣�um(t)

∣
∣2 dx –

ε

q

∫

Ω

∣
∣�um(t)

∣
∣2 dx –

C11

q

(∫

Ω

∣
∣um(t)

∣
∣2 dx

)γ
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=
(

1
2

–
ε

q

)∫

Ω

∣
∣�um(t)

∣
∣2 dx –

C11

q

(∫

Ω

∣
∣um(t)

∣
∣2 dx

)γ

≥
(

1
2

–
ε

q

)∫

Ω

∣
∣�um(t)

∣
∣2 dx –

C11

q
(
2C13(T0)

)γ , (3.17)

which implies that

∫

Ω

∣
∣�um(t)

∣
∣2 dx ≤

(
1
2

–
ε

q

)–1[

C14 +
C11

q
(
2C13(T0)

)γ

]

. (3.18)

By the Poincaré inequality and (3.18), we obtain

∫

Ω

∣
∣um(t)

∣
∣2 dx ≤ C15

∫

Ω

∣
∣Dum(t)

∣
∣2 dx ≤ C15C16

∫

Ω

∣
∣�um(t)

∣
∣2 dx

≤ C15C16

(
1
2

–
ε

q

)–1[

C14 +
C11

q
(
2C13(T0)

)γ

]

, (3.19)

where C15, C16 are the Poincaré constants. We can easily obtain from the above inequality

‖um‖L∞(0,T0;H2
0 (Ω)) ≤ C17(T0), (3.20)

where C17(T0) is a positive constant dependent on T0. Using (3.15)–(3.17), we have

(
1
2

–
ε

q

)∫

Ω

∣
∣�um(t)

∣
∣2 dx –

C11

q
(
2C13(T0)

)γ +
∫ t

0

∫

Ω

u2
ms dx ds ≤ C14, (3.21)

which implies that

‖umt‖L2(0,T0;L2(Ω)) ≤ C18(T0), (3.22)

where C18(T0) is a positive constant dependent on T0. It follows from (3.20) and (3.22) that
there exist a function u and a subsequence of {um}∞m=1 still denoted {um}∞m=1 such that

um → u weakly star in L∞(
0, T0; H2

0 (Ω)
)
, (3.23)

umt → ut weakly in L2(0, T0; L2(Ω)
)
. (3.24)

We obtain from the Aubin–Lions–Simon lemma (see [13]) together with (3.23) and (3.24)

um → u strongly in C
(
0, T0; L2(Ω)

)
. (3.25)

So, um → u a.e. (x, t) ∈ Ω × (0, T0). This implies that

|um|q–2um log |um| → |u|q–2u log |u| a.e. (x, t) ∈ Ω × (0, T0). (3.26)

According to 2 < q < 2 + 4
n , we can choose μ3 such that 1 < q(q–1+μ3)

q–1 < 2n
n–2 . Then, using the

Sobolev embedding inequality and combining (3.19), we have

∫

Ω

∣
∣|um|q–2um log |um|∣∣

q
q–1 dx
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=
∫

{x∈Ω :|um|≤1}

∣
∣|um|q–2um log |um|∣∣

q
q–1 dx

+
∫

{x∈Ω :|um|≥1}

∣
∣|um|q–2um log |um|∣∣

q
q–1 dx

≤ (
e(q – 1)

)– q
q–1 |Ω| +

(
e–1

μ3

)– q
q–1

∫

Ω

|um| q(q–1+μ3)
q–1 dx

≤ (
e(q – 1)

)– q
q–1 |Ω| +

(
e–1

μ3

)– q
q–1

C
q(q–1+μ3)

q–1
19

(∫

Ω

|Dum|2 dx
) q(q–1+μ3)

2(q–1)

≤ (
e(q – 1)

)– q
q–1 |Ω| +

(
e–1

μ3

)– q
q–1

C
q(q–1+μ3)

q–1
19

×
(

C16

(
1
2

–
ε

q

)–1[

C14 +
C11

q
(
2C13(T0)

)γ

]) q(q–1+μ3)
2(q–1)

, (3.27)

where C19 is the embedding constant. Using (3.26), (3.27) and Lion’s lemma (see [13]), we
obtain

|um|q–2um log |um| → |u|q–2u log |u| weakly∗ in L∞(
0, T0; L

q
q–1 (Ω)

)
. (3.28)

Passing to the limit in (3.5) and (3.6) as m → ∞, by (3.23), (3.24) and (3.28), we see that u
satisfies the initial condition u(0) = u0 and

∫

Ω

ut(t)w dx +
∫

Ω

�u(t)�w dx =
∫

Ω

∣
∣u(t)

∣
∣q–2u(t) log

∣
∣u(t)

∣
∣w dx, (3.29)

for all w ∈ H2
0 (Ω), and for a.e. t ∈ [0, T0]. So, u is a desired solution of problem (1.1).

Next, we will study uniqueness of the solution. We obtain from (3.29) for any v ∈
L2(0, T0; H2

0 (Ω))
∫

Ω

ut(t)v dx +
∫

Ω

�u(t)�v dx =
∫

Ω

∣
∣u(t)

∣
∣q–2u(t) log

∣
∣u(t)

∣
∣v dx. (3.30)

We suppose there are two solutions u1 and u2. Let w = u1 – u2, thus we have w(0) = 0,
w ∈ L2(0, T0; H2

0 (Ω)) and wt ∈ L2(0, T0; L2(Ω)). We set

v(s) =

⎧
⎨

⎩

u1(s) – u2(s), s ∈ [0, t],

0, s ∈ [t, T0].

From (3.30), it follows that

∫ t

0

∫

Ω

wsw dx ds +
∫ t

0

∫

Ω

|�w|2 dx ds

=
∫ t

0

∫

Ω

(|u1|q–2u1 log |u1| – |u2|q–2u2 log |u2|
)
w dx ds. (3.31)

According to 0 ≤ ∫ t
0
∫

Ω
|�w|2 dx ds, (3.31) becomes

∫ t

0

∫

Ω

wsw dx ds ≤
∫ t

0

∫

Ω

(|u1|q–2u1 log |u1| – |u2|q–2u2 log |u2|
)
w dx ds. (3.32)
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We construct a function f : R∗ → R, f (s) = |s|q–2s log |s|. Thus, we find that there exists a
positive constant C20 such that

∣
∣|u1|q–2u1 log |u1| – |u2|q–2u2 log |u2|

∣
∣ ≤ C20|w|. (3.33)

By (3.32) and (3.33),

∫ t

0

∫

Ω

wsw dx ds ≤ C20

∫ t

0

∫

Ω

w2 dx ds,

i.e.,

1
2

∫

Ω

w2 dx ≤ 1
2

∫

Ω

w(0)2 dx + C20

∫ t

0

∫

Ω

w2 dx ds ≤ C20

∫ t

0

∫

Ω

w2 dx ds. (3.34)

Using Gronwall’s inequality and combining with (3.34), we have

∫

Ω

w2 dx ≤ 0.

So, the uniqueness is derived.
Finally, we will study (3.2). Let φ(t) is a nonnegative function which belongs to C([0, T0]).

From (3.15), we can obtain

∫ T0

0
φ(t) dt

∫ t

0

∫

Ω

u2
ms dx ds +

∫ T0

0
J
(
um(t)

)
φ(t) dt

=
∫ T0

0
J
(
um(0)

)
φ(t) dt. (3.35)

As m → ∞,

∫ T0

0
J
(
um(0)

)
φ(t) dt →

∫ T0

0
J(u0)φ(t) dt

and

∫ T0

0
φ(t) dt

∫ t

0

∫

Ω

u2
ms dx ds →

∫ T0

0
φ(t) dt

∫ t

0

∫

Ω

u2
s dx ds

hold. Since
∫ T0

0 J(um(t))φ(t) dt is lower semi-continuous with respect to the weak topology
of L2(0, T0; H2

0 (Ω)), we know that

∫ T0

0
J
(
u(t)

)
φ(t) dt ≤ lim inf

m→∞

∫ T0

0
J
(
um(t)

)
φ(t) dt.

Hence, by (3.35), it follows that

∫ T0

0
φ(t) dt

∫ t

0

∫

Ω

u2
s dx ds +

∫ T0

0
J
(
u(t)

)
φ(t) dt ≤

∫ T0

0
J(u0)φ(t) dt,
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as m → ∞. φ(t) is arbitrary nonnegative function, so we have

∫ t

0

∫

Ω

u2
s dx ds + J

(
u(t)

) ≤ J(u0), t ∈ [0, T0]. �

4 Global existence and decay estimates
Now as in [9], we introduce the following sets: W1 = {u ∈ H2

0 (Ω) \ {0} : J(u) < d}, W2 = {u ∈
H2

0 (Ω) \ {0} : J(u) = d}, W +
1 = {u ∈ W1 : I(u) > 0}, W +

2 = {u ∈ W2 : I(u) > 0}, W –
1 = {u ∈ W1 :

I(u) < 0}, W –
2 = {u ∈ W2 : I(u) < 0}, W = W1 ∪ W2, W + = W +

1 ∪ W +
2 , W – = W –

1 ∪ W –
2 .

Definition 4.1 (Maximal existence time) Let u(t) be a solution of problem (1.1). We define
the maximal existence time Tmax as follows:

Tmax = sup
{

T > 0 : u(t) exists on [0, T]
}

.

Then:
(i) if Tmax < +∞, we say that u(t) blows up in finite time and Tmax is the blow-up time;

(ii) if Tmax = +∞, we say that u(t) is global.

Theorem 4.1 Let u0 ∈ W +. Then the problem of (1.1) admits a unique global weak solution
such that

u(t) ∈ W +, t ∈ [0,∞),

and

∫ t

0

∫

Ω

u2
s dx ds + J

(
u(t)

) ≤ J(u0), t ∈ [0,∞). (4.1)

Furthermore, if u0 ∈ W +
1 , the solution u(t) decays exponentially.

Proof We will consider the following two cases.
First we address the case of the initial data u0 ∈ W +

1 .
Let {wj}∞j=1, {u0m}∞m=1, and {um}∞m=1 be the same as those stated in the proof of the local

existence in the second section. Multiplying the (3.5) by α′
mi(t), summing over i from 1 to

m and integrating with respect to time variable on [0, t], we have

∫ t

0

∫

Ω

u2
ms dx ds + J

(
um(t)

)
= J

(
um(0)

)
, t ∈ [0, Tmax), (4.2)

where Tmax is the maximal existence time of solution um(x, t). We will prove that Tmax = ∞.
By (3.3), (3.6) and the continuity of J , we have

J
(
um(0)

) → J(u0) as m → ∞. (4.3)

Using (4.2) and (4.3) and combining with J(u0) < d, we have

∫ t

0

∫

Ω

u2
ms dx ds + J

(
um(t)

)
< d, t ∈ [0, Tmax), (4.4)
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for sufficiently large m. Next, we will study

um(t) ∈ W +
1 , t ∈ [0, Tmax), (4.5)

for sufficiently large m. We assume that (4.5) does not hold and think that there exists a
smallest time t0 such that um(t0) /∈ W +

1 . Then, we have um(t0) ∈ ∂W +
1 . So, we have

J
(
um(t0)

)
= d, (4.6)

or

I
(
um(t0)

)
= 0. (4.7)

(4.6) contradicts with (4.4). If (4.7) holds, from (2.4) we can obtain

J
(
um(t0)

) ≥ inf
u∈N

J(u) = d,

which contradicts with (4.4). Hence, we have (4.5), i.e., J(um(t)) < d, and I(um(t)) > 0, for
any t ∈ [0, Tmax), for sufficiently large m. Then, by (2.3), we have

d > J
(
um(t)

)
=

1
q

I
(
um(t)

)
+

(
1
2

–
1
q

)∫

Ω

∣
∣�um(t)

∣
∣2 dx +

1
q2

∫

Ω

∣
∣um(t)

∣
∣q dx

≥
(

1
2

–
1
q

)∫

Ω

∣
∣�um(t)

∣
∣2 dx +

1
q2

∫

Ω

∣
∣um(t)

∣
∣q dx

≥
(

1
2

–
1
q

)∫

Ω

∣
∣�um(t)

∣
∣2 dx. (4.8)

Using (4.8) and combining with the Poincaré inequality, we have

∫

Ω

∣
∣um(t)

∣
∣2 dx ≤ C21

∫

Ω

∣
∣Dum(t)

∣
∣2 dx ≤ C21C22

∫

Ω

∣
∣�um(t)

∣
∣2 dx

≤
(

1
2

–
1
q

)–1

C21C22d, (4.9)

where C21 and C22 are the Poincaré constants. By (4.4) and (4.8), we have

∫ t

0

∫

Ω

u2
ms dx ds +

(
1
2

–
1
q

)∫

Ω

∣
∣�um(t)

∣
∣2 dx < d. (4.10)

Equations (4.9) and (4.10) imply that Tmax = ∞. Then the rest is similar to the proof of the
local existence, and we see that there exists a unique global weak solution u(t) ∈ W +

1 of
the problem (1.1), and

∫ t

0

∫

Ω

u2
s dx ds + J

(
u(t)

) ≤ J(u0), t ∈ [0,∞).

Now we address the case of the initial data u0 ∈ W +
2 .
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First, we can choose a sequence {ρm}∞m=1 ⊂ (0, 1) and limm→∞ ρm = 1. Next, we consider
the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut + �2u = |u|q–2u log |u|, x ∈ Ω , t > 0,

u(x, t) = �u(x, t) = 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0m(x), x ∈ Ω ,

(4.11)

where u0m = ρmu0. By I(u0) > 0 and Lemma 2.1, we see that there exists a λ2 > 1. Hence,
I(u0m) = I(ρmu0) > 0 and J(u0m) = J(ρmu0) < J(u0) = d hold. So, we have u0m ∈ W +

1 . Similar
to the previous case, we see that the problem (4.11) admits that, for any positive m, there
exists a unique global um which satisfies um ∈ L∞(0,∞; H2

0 (Ω)), umt ∈ L2(0,∞; L2(Ω)),
um(0) = u0m = ρmu0 → u0 strongly in H2

0 (Ω), and

∫

Ω

umtw dx +
∫

Ω

�um�w dx =
∫

Ω

|um|q–2um log |um|w dx, (4.12)

for any w ∈ H2
0 (Ω), and for a.e. t ∈ [0,∞). Moreover, we have

um(t) ∈ W +
1 , t ∈ [0,∞)

and

∫ t

0

∫

Ω

u2
ms dx ds + J

(
um(t)

) ≤ J(u0m) < d, t ∈ [0,∞).

The remainder of the proof can be processed as the previous case.
Finally, we discuss the decay results.
Since u0 ∈ W +

1 , similar to the first case, we obtain u(t) ∈ W +
1 for any t ∈ [0,∞). By (2.3)

and (4.1), we obtain

J(u0) > J
(
u(t)

)
=

1
q

I
(
u(t)

)
+

(
1
2

–
1
q

)∫

Ω

∣
∣�u(t)

∣
∣2 dx +

1
q2

∫

Ω

∣
∣u(t)

∣
∣q dx

≥
(

1
2

–
1
q

)∫

Ω

∣
∣�u(t)

∣
∣2 dx +

1
q2

∫

Ω

∣
∣u(t)

∣
∣q dx. (4.13)

By I(u(t)) > 0, (2.4) and Lemma 2.1, there exists a λ3 > 1 such that I(λ3u(t)) = 0. We have

d ≤ J
(
λ3u(t)

)

=
1
q

I
(
λ3u(t)

)
+

(
1
2

–
1
q

)∫

Ω

∣
∣�

(
λ3u(t)

)∣
∣2 dx +

1
q2

∫

Ω

∣
∣λ3u(t)

∣
∣q dx

=
(

1
2

–
1
q

)∫

Ω

∣
∣�

(
λ3u(t)

)∣
∣2 dx +

1
q2

∫

Ω

∣
∣λ3u(t)

∣
∣q dx

=
(

1
2

–
1
q

)

λ3
2
∫

Ω

∣
∣�u(t)

∣
∣2 dx +

1
q2 λ3

q
∫

Ω

∣
∣u(t)

∣
∣q dx

= λ3
q
((

1
2

–
1
q

)

λ3
2–q

∫

Ω

∣
∣�u(t)

∣
∣2 dx +

1
q2

∫

Ω

∣
∣u(t)

∣
∣q dx

)
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≤ λ3
q
((

1
2

–
1
q

)∫

Ω

∣
∣�u(t)

∣
∣2 dx +

1
q2

∫

Ω

∣
∣u(t)

∣
∣q dx

)

. (4.14)

Using (4.13) and (4.14), we have

d ≤ λ3
qJ(u0),

which implies that

λ3 ≥
(

d
J(u0)

) 1
q

. (4.15)

It follows from (2.2) that

0 = I
(
λ3u(t)

)
=

∫

Ω

∣
∣�

(
λ3u(t)

)∣
∣2 dx –

∫

Ω

∣
∣λ3u(t)

∣
∣q

log
∣
∣λ3u(t)

∣
∣dx

= λ3
2
∫

Ω

∣
∣�u(t)

∣
∣2 dx – λ3

q
logλ3

∫

Ω

∣
∣u(t)

∣
∣q dx

– λ3
q
∫

Ω

∣
∣u(t)

∣
∣q

log
∣
∣u(t)

∣
∣dx

= λ3
qI

(
u(t)

)
+ λ3

2
∫

Ω

∣
∣�u(t)

∣
∣2 dx – λ3

q
∫

Ω

∣
∣�u(t)

∣
∣2 dx

– λ3
q

logλ3

∫

Ω

∣
∣u(t)

∣
∣q dx

= λ3
qI

(
u(t)

)
+

(
λ3

2 – λ3
q)

∫

Ω

∣
∣�u(t)

∣
∣2 dx

– λ3
q

logλ3

∫

Ω

∣
∣u(t)

∣
∣q dx. (4.16)

Using (4.15) and (4.16), we have

λ3
qI

(
u(t)

)
=

(
λ3

q – λ3
2)

∫

Ω

∣
∣�u(t)

∣
∣2 dx + λ3

q
logλ3

∫

Ω

∣
∣u(t)

∣
∣q dx

≥ (
λ3

q – λ3
2)

∫

Ω

∣
∣�u(t)

∣
∣2 dx,

which implies that

I
(
u(t)

) ≥ (
1 – λ3

2–q)
∫

Ω

∣
∣�u(t)

∣
∣2 dx. (4.17)

It follows from (4.15) and (4.17) that

I
(
u(t)

) ≥ (
1 – λ3

2–q)
∫

Ω

∣
∣�u(t)

∣
∣2 dx

≥
[

1 –
(

d
J(u0)

) 2
q –1]∫

Ω

∣
∣�u(t)

∣
∣2 dx

≥ C–1
23

[

1 –
(

d
J(u0)

) 2
q –1]∫

Ω

∣
∣Du(t)

∣
∣2 dx
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≥ C–1
23 C–1

24

[

1 –
(

d
J(u0)

) 2
q –1]∫

Ω

∣
∣u(t)

∣
∣2 dx, (4.18)

where C23 and C24 are the Poincaré inequality constants. Hence, by (4.18), we obtain

I
(
u(t)

) ≥ 1
3

[

1 –
(

d
J(u0)

) 2
q –1]∫

Ω

∣
∣�u(t)

∣
∣2 dx

+
1
3

C–1
23

[

1 –
(

d
J(u0)

) 2
q –1]∫

Ω

∣
∣Du(t)

∣
∣2 dx

+
1
3

C–1
23 C–1

24

[

1 –
(

d
J(u0)

) 2
q –1]∫

Ω

∣
∣u(t)

∣
∣2 dx

≥ C25

(∫

Ω

∣
∣�u(t)

∣
∣2 dx +

∫

Ω

∣
∣Du(t)

∣
∣2 dx +

∫

Ω

∣
∣u(t)

∣
∣2 dx

)

= C25
∥
∥u(t)

∥
∥2

H2
0 (Ω), (4.19)

where

C25 = max

{
1
3

[

1 –
(

d
J(u0)

) 2
q –1]

,
C–1

21
3

[

1 –
(

d
J(u0)

) 2
q –1]

,

C–1
21 C–1

22
3

[

1 –
(

d
J(u0)

) 2
q –1]}

.

Integrating the I(u(s)) with respect to s over (t, T) and using the embedding H2
0 (Ω) ↪→

L2(Ω), we obtain

∫ T

t
I
(
u(s)

)
ds = –

∫ T

t

∫

Ω

us(s)u(s) dx ds = –
1
2

∫

Ω

u(T)2 dx +
1
2

∫

Ω

u(t)2 dx

≤ 1
2

∫

Ω

u(t)2 dx

≤ 1
2

C2
26

∥
∥u(t)

∥
∥2

H2
0 (Ω), (4.20)

where C26 is the embedding constant. From (4.19) and (4.20), we have

∫ T

t
C25

∥
∥u(t)

∥
∥2

H2
0 (Ω) ds ≤ 1

2
C2

26
∥
∥u(t)

∥
∥2

H2
0 (Ω), for all t ∈ [0, T]. (4.21)

Let T → ∞ in (4.21), we can get

∫ ∞

t

∥
∥u(t)

∥
∥2

H2
0 (Ω) ds ≤ 1

2
C–1

25 C2
26

∥
∥u(t)

∥
∥2

H2
0 (Ω). (4.22)

From Lemma 2.4, we have

∥
∥u(t)

∥
∥2

H2
0 (Ω) ≤ ∥

∥u(0)
∥
∥2

H2
0 (Ω)e

1– 2t
C–1

25 C2
26 , t ∈ [0,∞).

The above inequality implies that the solution u(t) decays exponentially. �
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5 Blow up
Theorem 5.1 If u0 ∈ W –

1 , the unique local weak solution u(t) of the problem (1.1) blows
up in finite time, i.e., there exists a T∗ > 0 such that

lim
t→T–∗

∫

Ω

∣
∣u(t)

∣
∣2 dx = ∞.

Proof Since u0 ∈ W –
1 , it follows from the local existence that there exists a unique local

weak solution u(t) of the problem (1.1) such that

∫ t

0

∫

Ω

u2
s dx ds + J

(
u(t)

) ≤ J(u0) < d, t ∈ [0, Tmax]. (5.1)

Next, we prove u(t) ∈ W –
1 for t ∈ [0, Tmax]. We assume u(t) leaves W +

1 at time t = t1, then
there exists a sequence {tn} such that I(u(tn)) ≤ 0 as tn → t–

1 . It follows from lower semi-
continuity of L2 norm that

I
(
u(t1)

) ≤ lim inf
n→∞ I

(
u(tn)

) ≤ 0. (5.2)

We have I(u(t1)) = 0 according to u(t1) /∈ W +
1 . By (2.4) and (5.1), we have

d = inf
u∈N

J(u) ≤ J
(
u(t1)

)
< d,

which is a contradiction. So, u(t) ∈ W –
1 for t ∈ [0, Tmax]. Next, we will study that u(t) blows

up in finite time by contradiction. Thus, we assume u(t) is global. We contract a function
Φ : [0,∞) →R

+, and

Φ(t) =
∫ t

0

∫

Ω

u2 dx ds. (5.3)

We can easily obtain

Φ ′(t) =
∫

Ω

u2 dx. (5.4)

By (2.2) and (5.4), we have

Φ ′′(t) = 2
∫

Ω

uut dx = 2
∫

Ω

|u|q–2u log |u|dx – 2
∫

Ω

|�u|2 dx = –2I(u). (5.5)

From u(t) ∈ W –
1 and (5.5), we can obtain

Φ ′′(t) > 0. (5.6)

Thus, it follows from u0 ∈ W –
1 and (5.4) that

Φ ′(t) ≥ Φ ′(0) =
∫

Ω

u2
0 dx > 0. (5.7)
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Using the Hölder inequality and combining (5.5), we have

1
4
(
Φ ′(t) – Φ ′(0)

)2 =
1
4

(∫ t

0
Φ ′′(s) ds

)2

=
(∫ t

0

∫

Ω

uus dx ds
)2

≤
∫ t

0

∫

Ω

u2 dx ds
∫ t

0

∫

Ω

u2
s dx ds. (5.8)

By (2.3) and (5.5), we have

Φ ′′(t) = –2I(u) = –2qJ(u) + 2q
(

1
2

–
1
q

)∫

Ω

|�u|2 dx +
2
q

∫

Ω

|u|q dx

= –2qJ(u0) + 2q
∫ t

0

∫

Ω

u2
s dx ds

+ 2q
(

1
2

–
1
q

)∫

Ω

|�u|2 dx +
2
q

∫

Ω

|u|q dx. (5.9)

Since u(t) ∈ W –
1 , I(u(t)) < 0. By Lemma 2.1, there exists a λ4, 0 < λ4 < 1 such that

I(λ4u(t))) = 0. It follows from (2.3) and (2.4) that

d = inf
u∈N

J(u) ≤ J
(
λ4u(t)

)

=
1
q

I
(
λ4u(t)

)
+

(
1
2

–
1
q

)∫

Ω

∣
∣�

(
λ4u(t)

)∣
∣2 dx +

1
q2

∫

Ω

∣
∣λ4u(t)

∣
∣q dx

=
(

1
2

–
1
q

)∫

Ω

∣
∣�

(
λ4u(t)

)∣
∣2 dx +

1
q2

∫

Ω

∣
∣λ4u(t)

∣
∣q dx

= λ
2
4

(
1
2

–
1
q

)∫

Ω

∣
∣�u(t)

∣
∣2 dx + λ

q
4

1
q2

∫

Ω

∣
∣u(t)

∣
∣q dx

≤
(

1
2

–
1
q

)∫

Ω

∣
∣�u(t)

∣
∣2 dx +

1
q2

∫

Ω

∣
∣u(t)

∣
∣q dx. (5.10)

Combining (5.9) with (5.10), we have

Φ ′′(t) = –2qJ(u0) + 2q
∫ t

0

∫

Ω

u2
s dx ds + 2q

(
1
2

–
1
q

)∫

Ω

|�u|2 dx +
2
q

∫

Ω

|u|q dx

= –2qJ(u0) + 2q
∫ t

0

∫

Ω

u2
s dx ds

+ 2q
[(

1
2

–
1
q

)∫

Ω

∣
∣�u(t)

∣
∣2 dx +

1
q2

∫

Ω

∣
∣u(t)

∣
∣q dx

]

≥ 2q
(
d – J(u0)

)
+ 2q

∫ t

0

∫

Ω

u2
s dx ds. (5.11)

Using (5.3), (5.8) and (5.11), we have

Φ(t)Φ ′′(t) =
∫ t

0

∫

Ω

u2 dx dsΦ ′′(t)

≥
∫ t

0

∫

Ω

u2 dx ds
[

2q
(
d – J(u0)

)
+ 2q

∫ t

0

∫

Ω

u2
s dx ds

]
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≥ Φ(t)2q
(
d – J(u0)

)
+

q
2
(
Φ ′(t) – Φ ′(0)

)2. (5.12)

We fix a t2 > 0. It follows from (5.7) that we have

Φ(t) ≥ Φ(t2) =
∫ t2

0

∫

Ω

u2 dx ds ≥ t2

∫

Ω

u2
0 dx > 0, for t ∈ [t2,∞). (5.13)

Hence, by (5.12) and (5.13), we have

Φ(t)Φ ′′(t) –
q
2
(
Φ ′(t) – Φ ′(0)

)2 ≥ Φ(t)2q
(
d – J(u0)

)

≥ t2

∫

Ω

u2
0 dx > 0, for t ∈ [t2,∞). (5.14)

We choose T > t2 sufficiently large and contract a function Ψ (t) as follows:

Ψ (t) = Φ(t) + (T – t)
∫

Ω

u2
0 dx, t ∈ [t2, T]. (5.15)

From (5.13) and (5.15), we can easily see that for any t ∈ [t2, T], Ψ (t) ≥ Φ(t) > 0 holds. It
follows from (5.4) and (5.14) that, for any t ∈ [t2, T], Ψ ′(t) = Φ ′(t) – Φ ′(0) holds, thus we
also have Ψ ′′(t) = Φ ′′(t) > 0 from (5.6). Thus, we can obtain from (5.14)

Ψ (t)Ψ ′′(t) –
q
2
Ψ ′(t)2 ≥ Φ(t)Φ ′′(t) +

q
2
(
Φ ′(t) – Φ ′(0)

)2

≥ Φ(t)2q
(
d – J(u0)

)

≥ t2

∫

Ω

u2
0 dx > 0, (5.16)

for t ∈ [t2, T]. Let χ (t) = Ψ (t)– q–2
2 . Thus,

χ ′(t) = –
q – 2

2
Ψ (t)– q

2 Ψ ′(t). (5.17)

From (5.16) and (5.17), we have

χ ′′(t) =
q(q – 2)

4
Ψ (t)– q+2

2 Ψ ′(t)2–
q – 2

2
Ψ (t)– q

2 Ψ ′′(t)

=
q – 2

2
Ψ (t)– q+2

2

[
q
2
Ψ ′(t)2 – Ψ (t)Ψ ′′(t)

]

< 0, (5.18)

for t ∈ [t2, T]. This shows that, for any sufficiently large T > t2, χ (t) is a concave function
in [t2, T]. χ (t2) > 0 and χ ′′(t2) < 0, so there exists a finite time T∗ > t2 > 0 such that

lim
t→T–∗

χ (t) = 0,

which implies

lim
t→T–∗

Ψ (t) = ∞.
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Hence, we have

lim
t→T–∗

∫ t

0

∫

Ω

u2 dx ds = ∞,

i.e.,

lim
t→T–∗

∫

Ω

u2 dx = ∞.

This is a contradiction to our assumption. �
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