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1 Introduction
In this paper, we study the following problem:

u; + A2u=|u|%ulog|ul, x€£2,t>0,
u(x,t) = Au(x,t) =0, x€d2,t>0, (1.1)

u(x,0) = up(x), xe€42,

where §2 is abound domain in R” with smooth boundary,2 < g < 2+ %, uo(x) € H2($2)\{0}.
Many papers have been devoted to the fourth-order parabolic equation. Qu and Zhou
[1] studied the following fourth-order equation:

1
ue+D'u=ulPtu— — [ |ulP udx. (1.2)
1£2] Ja

Using the method of potential wells, they established a threshold result for the global ex-
istence and blow-up for the sign-changing weak solutions. Zhou [2] proved new blow-up
conditions and the maximum of the blow-up time for Eq. (1.2). Li, Gao and Han [3] con-

sidered

u + D — (|t P2 0y), = |ufPlu — ﬁ Jo lulfudx, xe$2,
Du=D%u=0, (x,t) €082 x (0, T),
u(x,0) = ug(x), xe€ 2.
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They obtained the existence, uniqueness and blow-up of solutions. Liu and Liu [4] con-
sidered the following equation:

(D
u, — D%u + D(a(Du)Dgu + # (D2u)2>
-1 1 -1
=ulf"u—— [ |ulP " udx, (xt)e2 x(0,T).
1£2] Jo

They combine the potential well method, the classical Galerkin method and the energy
method to give a threshold result for the global existence and non-existence of sign-
changing weak solutions to the problem. The relevant equations have also been studied in
[5, 6].

In this paper, we study a fourth-order parabolic equation with the logarithmic nonlin-
earity. The second-order parabolic equation with the logarithmic nonlinearity is diffusely
studied. Chen, Luo and Liu [7] studied the heat equation with the logarithmic nonlinearity.
Ji, Yin and Cao [8] established the existence of positive periodic solutions and discussed
the instability of such solutions for the semilinear pseudo-parabolic equation with the log-
arithmic source. Nahn and Truong [9] studied the following nonlinear equation:

e — Ay — div(|VulP > Vi) = [ulP*ulog(|ul). (1.3)

They obtained results as regards the existence or non-existence of global weak solutions.
He, Gao and Wang [10] considered the following equation:

w — Auy — div(IVul > Vu) = [ul?*ulog(|ul), (1.4)

where 2 <p<qg<p(l+ %), they proved the decay and the finite time blow-up for weak
solutions.

In this paper, we prove the existence of the unique global weak solution of the problem
(1.1) based on the potential well method. In addition, we also obtain some properties of
the solutions. This paper is organized as follows: in Sect. 2, we introduce some lemmas. In
Sect. 3, we mainly introduce the existence of the unique local weak solution of the problem
(1.1). In Sect. 4, under some conditions, we obtain the existence of the unique global weak
solution of the problem (1.1). Meanwhile, we find that the solution is decaying. In the last
section, we prove the blow-up theorem.

2 Some lemmas
We first consider the energy functional / and Nehari functional / defined on H3(£2) \ {0}

as follows:
1 , .1 1
](u):—/ |Au| dx——/ |u|qlog|u|dx+—2/ |u|? dx, (2.1)
2 /e qJa q° Ja
I(u)zf |Au|2dx—/ |u|?1og |u| dx. (2.2)
2 2

We can see that J and I are continuous from the Gagliardo—Nirenberg multiplicative em-
bedding inequality (see [11]).
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By (2.1) and (2.2), we have

1 1 1 1
J(w) = =1(u) + (— - —) f |Aul®dx + —2/ |u|? dx. (2.3)
q 2 q/)le q° Ja
Let A = {u € H3(£2) \ {0} : I(u) = 0}. Lemma 2.1 indicates ./ is not empty. Thus, we can
define
d= uler(l/f‘/](u). (2.4)

It is obvious that d > 0 by (2.3), (2.4),2<g <2+ % and the definition of .#". For a fixed
u € H3(£2) \ {0}, we consider the function j : A — J(Au) for A > 0.

Lemma 2.1 Let u € H3($2) \ {0}. Then the following results hold:
(1) lim,_,o+ ]()‘) =0, limka+ooj()\) =0;
(2) there exists a unique . > 0 such that j'(A) = 0;
(3) j(A) is increasing on (0, 1), decreasing on (A, +00) and attains the maximum at i;
(4) I(Au) >0 for 0 <A < A, I(At) < O for A < A < +00 and I(hu) = 0.

Proof For u € H3(£2) \ {0}, by the definition of j, we have
) 1 2 1 1
](k):]()»u):—/ |A(Au)| a’x——/ |Au|qlog|)»u|dx+—2/ |Au|? dx
2 /e qJe q° Ja
22 X el
:—/ |Au|2dx——/ Iulqlogluldx——logA/ |u|? dx
2 Je q Je q fe

PXd
+—2/ |u|? dx.
q° Ja

It is obvious that (1) holds dueto2 < g <2 + % and [, |u|?dx #0. We have

j’()»):k/ |Au|2dx—kq_1f |u|q10g|u|dx—kq_1logkf |ue|? dx
2 fo) 2
o o

- —/ lu|Tdx + — | |u|?dx
q Je q Jo
:A/ |Au|2dx—,\q-1/ |u|qlog|u|dx—/\q-1log)\/ |u|? dx.

2 o) 2

We construct a function ¢(1) = A71j'(1), thus we obtain

(M) =27 (0)

:A‘1<A/ |Au|2dx—)»q’1/ |u|q10g|u|dx—kq_llogkf |u|qu>
fo) o) fo)

=/ |Au|2dx—)\q’2f |u|qlog|u|dx—kq’2logkj |u|? dx.
2 2 2
Then

oM = (g - 2273 / el og |l dx
2
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—(q—Z)Aq‘BlogA/ |u|qu—)ﬂ_3/ |u|? dx
fo) o)

:-M3((q—2)/ |u|qlog|u|dx+(q—2)logkf |u|qu+/ |u|qu>,
fo) fo) fo)

which implies that there exists a A; > 0 such that ¢(A) is increasing on (0,1;), de-
creasing on (A1, +00). Using the Poincaré inequality and u € H2(£2) \ {0}, we have 0 <
Jo lul?dx < Cy [, |Dul*dx < C,C, [, |Au|? dx, where Cy,C, is the Poincaré constants.
Since lim; _, g+ @(A) = fg |Au|? dx > 0, lim,_, oo ¢(1) = —00, there exists a unique A > 0 such
that p() = 0, i.e. j/(*) = 0. So (2) holds. Thus j'(A) = (%) > 0 for 0 < A < A and j'(A) < O for
A < A < +00, which indicates j(1) is increasing on (0, 1), decreasing on (, +00) and attains
the maximum at A. So (3) holds. From (2.2), we have

I0w) = / |A(Au)|2dx—/ |Au|?log |Au| dx
2 2

=,\2/ |Au|2dx—kq/ |u|qlog|u|dx—kqlogA/ || dx
2 2 2

= A<A/ |Au|? dx — 2771 / |u|?1og |u| dx — 197! logk/ |u|qu)
2 2 I?)
=M (A).
Thus, I(A) >0 for 0 < A < A, I(Au) < 0 for A < A < +00 and I(Au) = 0. So (4) holds. O
Lemma 2.2 There exists a u >0 with u € N such that J(u) = d.
Proof By (2.4), we suppose {u}?2, C .4 is a minimizing sequence of J. Since {|ux|}32, C

A is also a minimizing sequence of J, we consider the case where u; >0 a.e.in 2, ke N
without loss of generality. Thus,

klim J(uy) = d, (2.5)

which implies that {J(ux)}72, is bounded, i.e. there exists a constant C3 > 0 such that
|J(ux)| < Cs. Using (2.3), I(ux) = 0 and |/ (ug)| < C3, we have

1 1 1
(———)/ |Auk|2dx+—2f lug|?dx < Cs. (2.6)
2 q))e q* Ja
Combining2<q<2+%with (2.6), we have
1 1\
/IAuklzdxs(———) Cs. (2.7)
2 2 q

Using (2.7) and the Poincaré inequality, we have

1 1\
/|Mk|2dxfc4/ |Duk|2dxsc465/ |Auk|2dxs(———) C3C4Cs,
2 Q Q 2 q

where Cy, Cs5 are the Poincaré constants. The above inequality implies that {uz}g2, is
bounded in H}(£2). Let 1 > 0 be sufficiently small such that g + u; < -2%. Since H}(£2) <
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L7+#1(£2) is a compact embedding, there exist a function # and a subsequence of {u}72,,
still denoted by {u4}32;, such that

ur — u, weaklyin Hg(.Q),

uip — u, strongly in L71(£2),

ur — u(x), a.e.in £2.

Then we have u# > 0 a.e. in £2. First, we prove u # 0. Using the dominated convergence
theorem, we obtain

/|u|qlog|u|dx: lim/|uk|q10g|uk|dx, (2.8)
Q k—oo Jo

/|u|qu: lim/ |ux|? dx. (2.9)
fo) k—co Jo

It follows from the weak lower semicontinuity of the L? norm that
/ |Au|2dx§1iminf/ | Au|* dx. (2.10)
Q k—oo Jo

Using (2.1), (2.5), (2.8), (2.9) and (2.10), we have

1 1 1
:5/ |Au|2dx——/ |u|qlog|u|dx+—2/ |u|? dx
2

< hmmf / | Aug|* dx — lnn / lug|?log |uy| dx + hm —/ |ux|? dx

_hmmf( /|Auk| d ——/ Iuquloglukldx+—/ Iuqudx)

= likminf](uk) =d. (2.11)

Using (2.2), (2.8), (2.10) and uy € .4, we have

=/ |Au|2dx—[ |u|?log |u| dx

< llmlnf/ | Aug|* dx — llm/ |ug|? log |ug| dx

:liminf(f |Auk|2dx—/ |uk|qlog|uk|dx>
k—o0 Q Q

= likminfl(uk) =0. (2.12)

By u € .4/ and using the Sobolev embedding inequality and the Poincaré inequality, we
have

/|Auk|2dx=/ el log e dx
2 2

el
= | el d
M1

Page 5 of 21
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g+
2

e—l
gcg*’“—</ |Duk|2dx>
M1 2
VAo s
e 20)
<ctC T —|\ | lAwmldx) (2.13)
M1 2

where Cs is the Sobolev embedding constant, C; is the Poincaré constant.
By (2.13), we have, for some positive constant Cg,

/Iuquloglukldx:/ | Aug|* dx > Cs. (2.14)
2 2

Using (2.8) and (2.14), we have

—1

e .
— [ Ju|T™ dxz/ |u|?10g |u| dx = hm/ lure|?log |ux| dx > Cg,
M1 Jo 2 k=00 Jo

which indicates u# # 0. Next, we will study /(u) = 0. If (1) < 0, by Lemma 2.1, there exists a
A1 such that I(A;z) = 0and 0 < A; < 1. Thus, A;u € 4. By (2.3), (2.4), (2.9) and (2.10), we
have

d <J(nu)
1 1 1 — 1 _
=—1(A1u)+<———>/ |A(A1u)|2dx+—2/ [Aul?dx
q 2 q/)Ja q* Je
1 1 —_ 1 _
= <___)/ ’A(Alu)yzdx‘f'—z/ [Aul? dx
2 q)Ja q° Ja
1 1\- W
= <———))ﬁ/ |Au|2dx+—;/ |u|? dx
2 q Q q° Je
—2
1 1\— A
5(———)Af/ |Aul*dx + —;/ |u|? dx
2 ¢q Q q* Ja
— 1 1 1
(12 o e
2 q)Ja q° Ja
— 1 1 1
Skfliminf[(———)/ |Auk|2dx+—2/ |uk|qu]
k— 00 2 q Q 7 Jo
= o liminf ()
k—o00
=7d,

which indicates A, > 1 by d > 0. It contradicts 0 < A; < 1. Then, by (2.12), we have I(x) = 0.
Therefore, u € 4. By (2.4), we have J(u) > d. By (2.11), we have J(u) <d. So, J(u) =d. O

Lemma 2.3 ([9]) Foranyu € Wol’p(s?),p > 1, and r > 1, the inequality
llully < ClDullp |l

is valid, where

<1 1>(1 1 1)‘1
o=(--=)[=-=+=) ,
r q)\n p r

Page 6 of 21
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andforp>n=1,r<q<oo;forn>1landp<n,qe[r,p*lifr <p*andq e [p*,r]ifr > p*;
forp=n>1lr<qg<oo;forp>n>1,r<g<oo.

Here, the constant C depends on n, p, q and r.

Lemma 2.4 ([12]) Let h: R* — R* be a nonincreasing function. Assume that there is a
constant A > 0 such that

+00
f h(t)dt < Ah(s), 0<s<+oo.
S

Then h(t) < h(O)el’/tT,for all t > 0.
3 Local existence and uniqueness
Definition 3.1 (Weak solution) A function u is a solution of problem (1.1) over [0, T] if

u € L°(0, T; H2($2)) with u, € L*(0, T; L*(£2)), satisfies the initial condition #(0) = ug(x) €
H{(£2)\ {0}, and

/utwdx+/ Aqudx:/ |u|7 2 ulog |u|lwdx, (3.1)
fo) 2 fo)

for any w € H2(£2), and for a.e. t € [0, T].

Theorem 3.1 (Local existence) Let uy € HZ($2) \ {0}. Then there exists a positive constant
To such that the problem (1.1) has a unique weak solution u(x,t) on §2 x (0, Ty). Further-

more, u(x,t) satisfies the energy inequality

t
/ / uf dxds +](u(t)) <J(ug), tel0,Tol. (3.2)
0o Je
Proof In the space of H3(£2), we take a basis {w; j°=°1 and define the finite dimensional space
Vin = span{wy, wy, ..., wy,}.

Let 1,, be an element of V,,, such that

Uom = Zamjwj — up strongly in Hg(.Q), (3.3)
j=1

as m — o0o. We can find the approximate solution u,,(x, t) of the problem (1.1) in the form

(3,8 = Y ()W (), (3.4)

j=1

where a,,; (1 <j < m) satisfy the ordinary differential equations

/umtwidx+/ AumAwidx:/ || T2ty 108 14| W; A, (3.5)
I?) I?) I?)
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forie{1,2,...,m}, with
i(0) = @y, i€{1,2,...,m}. (3.6)
We find from Peano’s theorem that (3.5)—(3.6) has a local solution «,,;, and there exists a

positive T, > 0 such that a,,; € C1([0, T,.]), therefore u,, € C*([0, T,,]; H3(£2)). Multiplying
the ith equation in (3.5) by ¢,,,;, summing over i from 1 to m, we have

/umtumdx+f |Aum|2dx:/ || T log |1y | dx. (3.7)
I?) 2 2

Integrating the above formula with respect to s over (0, ), we have

t
) =3O+ [ [ 110 | dndls (33)
0 Je
where
1 t
ym(t):—/ |um|2dx+/ / | Aty |* dx ds. (3.9)
2Ja e

Choose 1y such that 0 < pp <2 + % —g. Using Lemma 2.3, the Poincaré inequality and the
Young inequality, we have

/ |7 108 | 11] bt
2

-1

e
= — |um|q+M2 dx
M2 Je
-1
q+i 0(q+u2) g+
E—Cg 21Dt 157 1 ?
o)
q+ (q+m (1-0)(g+u2)
<= C usz A2 15972 24,115 2
0(g+12)
- 2(1-0)(g+19)
EU 2-0(q+12) T3 B(g+ng)
2 o
<ellAuml; + < Gy ) 122l e (3.10)

B s
e1Cy "0,

where Cy is the constant of Lemma 2.3, Cjg is the Poincaré constant, 0 < ¢ <1, and 0 =
0(g+ip)

1 1 (1-6)(g+12) 2 T 20(g+ug)
n(s — ). Let y = 5=~ and Cy = (79) a+12) | thus (3.10) becomes
2 gt 2-60(q+u2) —lcq+”2C (g+19) ’

%
/|um|q10g|um|dx§e/ |Aum|2dx+Cn</ |um|2dx> . (3.11)
Q 2 2

It is easy to check y > 1 accordingto 2 < g <2+ %. Using (3.3), (3.8), (3.9) and (3.11), we
have

Y () = ¥, (0 //|um|qlog|um|dxds

< yn(0) + /[ /|Aum| dx+C11</ ] dx> ]

Page 8 of 21
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1 t
=—/ |um(0)|2dx+/ /|Aum(0)|2dxds
2 Ja 0o Je
t Y
+/ [8/ |Aum|2dx+C11</ |um|2dx> ]ds
0 2 2
t y
§C12+/ |:s/ |Aum|2dx+Cn</ Ium|2dx) ]ds
0 Q 2
¢ t %
§C12+8/ / |Aum|2dxds+C11/ </ Iumlzdx) ds
0 Je o \Jg
e t
§C12+—/ |um|2dx+8/ / | Aty |* dx ds
2Ja 0 Je
t s Y
+C112y/ (/ / |Aum|2dxdy> ds
o \Jo Je
t 1 Y
+C112V/ (—/ |um|2dx> ds
o \2Jo
t
§C12+8ym(t)+C112Vf Y (s)” ds. (3.12)

0

Using 0 < ¢ <1 and (3.12),

Cnn Cn2

m(t) < ——
Iml®) 1—8+ 1-¢

/ tym(s)y ds. (3.13)
0

Using the integral inequality of Gronwall-Bellman—Bihari type and combining with
(3.13), there exists T, such that

ym(t) < Ci3(To), te 0, Ty, (3.14)

’
mi’

where C;3(Tp) is a positive constant dependent on T,. Multiplying equation (3.5) by «
summing over i from 1 to m and integrating with respect to time variable on [0, t], we have

/Ot/Qufm dxds +](um(t)) :](um(O)), forall ¢ € [0, Tp). (3.15)
We find from (3.3) and the continuity of the J that there exists a constant C14 > 0 such that

](um(O)) < Cu, forallm. (3.16)
Using (2.1), (3.9), (3.11), (3.14), (3.15) and (3.16), we have

Ciy > ](Mm(t))

1 1 1
:E/Q|Aum(t)|2dx—;I/Q‘um(t)‘qlog|um(t)|dx+?/;Z‘Ltm(t”qu

z%/ﬂ|Aum(t)|2d -$/Q|um(t)|qlogyum(t)|dx

1 2 £ 2 Cu 2 Y
2§/S2|Aum(t)| dx—;/g|Aum(t)| dx—7</g|um(t)| dx)
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(1) e [t

> (% - 2) /Q|Aum(t)|2dx— %(2C13(T0))V, (3.17)

which implies that

-1
f |Aum(t)|2dx =< (% - f) |:C14 + &(chg(To))y} (318)
2 q q

By the Poincaré inequality and (3.18), we obtain

f|um(t)|2dx§ C15/ ‘Dum(t)‘2dx§ C15C16/ ’Aum(t)|2dx
2 I?) 7

1 ¢

1
< C15C16<§ - —) |:C14 + &(2C13(T0))y:|, (3.19)
q q

where Ci5, Cj6 are the Poincaré constants. We can easily obtain from the above inequality
”Mm”LOO(o,TO;Hg(Q)) < Ci7(Ty), (3.20)

where C17(Tp) is a positive constant dependent on Tj. Using (3.15)—(3.17), we have

(_ - _>/ |Aum(t)| dx - — 2C13 TO) / / u sdxdsS Cay (321)

which implies that

24\l 120, 7p52252)) < C18(T0)s (3.22)

where Ci5(7)) is a positive constant dependent on Tj. It follows from (3.20) and (3.22) that
there exist a function # and a subsequence of {u,,}5,_; still denoted {u,,}5,_; such that

Uy — u  weakly star in L™ (O, TO;H(%(.Q)), (3.23)

U — ;- weakly in L*(0, To; L*(£2)). (3.24)
We obtain from the Aubin-Lions—Simon lemma (see [13]) together with (3.23) and (3.24)

wm — u  strongly in C(0, To; L*(£2)). (3.25)
So, u,, > u a.e. (x,t) € 2 x (0, Tp). This implies that

|2 14, 10 |1ty — |7 ulog |u|  ace. (x,£) € 2 x (0, T). (3.26)

According to 2 < g < 2+ %, we can choose 113 such that 1 < q(q—qius)

< % Then, using the
Sobolev embedding inequality and combining (3.19), we have

q
-2 1
/Mumrf b 08 [t | 7T dix
2
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9
_ / |4 L0g [t1n]| 7T
{xe2:lum|<1}
2 A
. 42t og [t ]| 7T
{xef2:|um|>1}

__4_ e’1 ‘% q(g-1+p3)
<(elg-1)) “|9|+(E) /|um|Tl dx
2

q q(q-1+p3)

g e 1\ g1 da-ltuz) -1
< (e(q— 1)) 12| + (—) Cio [ </ |Dum|2dx>
2

M3

L qlq-1+n3)
=

—1\ — 71
< (elg-1)"71|2] + (2—3) T,

q(g-1+p3)

1 e\ C 2q-1)
X (Cm(— - —> |:C14 + i(2(713(7"0))]/]) , (3.27)
2 q q
where Cy9 is the embedding constant. Using (3.26), (3.27) and Lion’s lemma (see [13]), we
obtain
|14, 10g |thy| — 6|7 ulog ||  weakly* in L® (0, TO;L‘%(Q)). (3.28)

Passing to the limit in (3.5) and (3.6) as m — 00, by (3.23), (3.24) and (3.28), we see that u
satisfies the initial condition %(0) = u# and

/ ut(t)wdx+/ Au(t) Awdx :/ |u(t)|q_2u(t) log|u(t)|wdx, (3.29)

2 2 2

for all w € H3(£2), and for a.e. ¢ € [0, To]. So, u is a desired solution of problem (1.1).
Next, we will study uniqueness of the solution. We obtain from (3.29) for any v €

L*(0, To; Hy(£2))

/ut(t)vdx+/ Au(t)Avdx:/ !u(t)|q_2u(t)log|u(t)|vdx. (3.30)
I?) I?) 2

We suppose there are two solutions u; and u,. Let w = u; — u,, thus we have w(0) = 0,
w e L*(0, To; H3(2)) and w; € L2(0, To; L*(£2)). We set

u1(s) —us(s), se[0,t],
0, se [t, To]

v(s) =

From (3.30), it follows that

t t
/ / wswdxds+/ / |Aw|? dx ds
0 Jo 0 Je

t
:/ /(|u1|q_2u110g|u1|—|u2|q_2u210g|u2|)wdxds. (3.31)
0 Je

According to 0 < fot [o |Aw[* dxds, (3.31) becomes

t t
/ / wswdxdsﬁf /(Iullq‘Zulloglull—qulq‘zuzlogluzl)wdxds. (3.32)
0 Jo 0 Jo

Page 11 of 21
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We construct a function f : R* — R, f(s) = |s|72slog |s|. Thus, we find that there exists a

positive constant Cyg such that
|17 w1 log [y | = |ua | uz log |ua || < Caolwl. (3.33)

By (3.32) and (3.33),

t t
/ / wawdxds < C20/ / w? dx ds,
0 Je 0 Je

ie.,

1
5/ wrdx < = / O)de+C20/ / w dxds<C20/ / w? dx dis. (3.34)
I?)

Using Gronwall’s inequality and combining with (3.34), we have

/ w?dx < 0.
2

So, the uniqueness is derived.
Finally, we will study (3.2). Let ¢(¢) is a nonnegative function which belongs to C([0, To]).
From (3.15), we can obtain

To To
d dxd. m d
\ o(t) tf/u xs+/ J (wm(2))p(0) dt
= / J(4m(0)) 9 (2) dt. (3.35)
0

As m — oo,

To

To
fo (@)@ dt — [ Jauo)p(e)de

0

and

To
¢t)dt/ / umsdxds—> qb(t)dt/ f U 2 dxds
0

hold. Since fOTO J(um(t))@(2) dt is lower semi-continuous with respect to the weak topology
of L*(0, To; H3(£2)), we know that

To To
/ J(u(2))$(t) dt < liminf f J (1m(2)) 9 (2) dt.
0 0

m— 00

Hence, by (3.35), it follows that

0T0¢ )dt/ / u? dxds+/ J (u(2)) ¢(t)dt</ J(uo)p(t) dt,
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as m — 00. ¢(t) is arbitrary nonnegative function, so we have

ft/ MS2 dxds +](u(t)) <J(ug), tel0,Ty]. O
0 Jg2

4 Global existence and decay estimates

Now as in [9], we introduce the following sets: #4 = {u € H3(2)\ {0} : J(u) <d}, #» = {u €
HYQ)\(0):J() = d), W3t = (w e Wi 1w) > 0}, #y' = (w e Wa: L) > O}, #; = (u € ¥4 :
Hu) <L Hy ={ue Wy l(u) <0, W =W UWa, W =W UNG, W =W UH;.

Definition 4.1 (Maximal existence time) Let u(£) be a solution of problem (1.1). We define

the maximal existence time Ty, as follows:
Tnax = sup{ T > 0: u(t) exists on [0, T'] }
Then:
(i) if Timax < +00, we say that u(¢) blows up in finite time and T,y is the blow-up time;

(ii) if Tmax = +00, we say that u(t) is global.

Theorem4.1 Letug € #'*. Then the problem of (1.1) admits a unique global weak solution
such that

ult)e #*, tel0,00),

and
/t/ u’dxds +](u(t)) <J(ug), te[0,00). (4.1)
0 Je

Furthermore, if ug € #1*, the solution u(t) decays exponentially.

Proof We will consider the following two cases.

First we address the case of the initial data uy € #;*.

Let {w;}72), {#om} -1, and {u, ), be the same as those stated in the proof of the local
existence in the second section. Multlplylng the (3.5) by «;,,(£), summing over i from 1 to
m and integrating with respect to time variable on [0, ¢], we have

/ / w2 dxds+] (um(®) =T (4m(0)), £ € [0, Trmax), (4.2)

where T« is the maximal existence time of solution u,, (x, t). We will prove that T, = 00.
By (3.3), (3.6) and the continuity of /, we have

J(um(0)) = J(uo) as m — oo. (4.3)

Using (4.2) and (4.3) and combining with J (i) < d, we have

t
/ / ufns dxds +](um(t)) <d, te€]l0, Tmax) (4.4)
0o Jo



Li and Liu Journal of Inequalities and Applications (2018) 2018:328 Page 14 of 21

for sufficiently large m. Next, we will study
um(t) € W+: te [Oy Tmax)) (4.5)

for sufficiently large m. We assume that (4.5) does not hold and think that there exists a
smallest time £, such that u,,(f) ¢ #;*. Then, we have u,,(t)) € 0#;*. So, we have

or

I(um(to)) = 0. (4.7)
(4.6) contradicts with (4.4). If (4.7) holds, from (2.4) we can obtain

J (m(to)) = inf J(u) = d,

which contradicts with (4.4). Hence, we have (4.5), i.e., J(u,,(¢)) < d, and I(u,,(t)) > 0, for
any ¢ € [0, Thay), for sufficiently large m. Then, by (2.3), we have

d > J(un(0)) = 6111(um(t)) + (% - ;) /Q|Aum(t)|2dx+ %/ﬂwm(tﬂqu

Z(l—l)/ ’Aum(t)‘zdx+i2/ ‘um(t)‘qu
2 q/)Je 9" Je

1 1 2

Using (4.8) and combining with the Poincaré inequality, we have

/|um(t)|2dx§C21/ |Dum(t)|2dx§C21C22/ | Ay (0)|” dx
2 2 2

1

-1
< (— - —) C1Cod, (4.9)
2 q

where Cy; and Cy; are the Poincaré constants. By (4.4) and (4.8), we have

¢ 1 1
/ / ansdxdﬁ(———)/ | A, ()| dx < d. (4.10)
) 2 q)l)e

Equations (4.9) and (4.10) imply that T},,.x = co. Then the rest is similar to the proof of the
local existence, and we see that there exists a unique global weak solution u(f) € #;* of
the problem (1.1), and

/t/ uf dxds +](u(t)) <J(up), te0,00).
0o Je

Now we address the case of the initial data uo € #5".
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First, we can choose a sequence {p,,}%.; C (0,1) and lim,,—, o, o1 = 1. Next, we consider
the following problem:

u; + A2u = |u|%ulog |ul, x€2,t>0,

u(x,t) = Au(x,t) =0, x€038,t>0, (4.11)

u(x,0) = up(x), x€ 82,
where 1o, = ptto. By I(1) > 0 and Lemma 2.1, we see that there exists a A, > 1. Hence,
I(uom) = I(pmuto) > 0 and J (uom) = J(Pmto) < J(#4o) = d hold. So, we have u,,, € #;*. Similar
to the previous case, we see that the problem (4.11) admits that, for any positive m, there

exists a unique global u,, which satisfies u,, € L>(0,00; H3(£2)), t; € L*(0,00;L%*($2)),
U (0) = Uoy = Pty — Uo strongly in HZ($2), and

/ UpyW dx + / Au,, Awdx = / |t |72ty 10G 14| W dix, (4.12)
I?) 2 2
for any w € H2(£2), and for a.e. t € [0,00). Moreover, we have

u,,(t) e #;*, tel0,00)

and
t
//ufnsdxd5+/(um(t))SI(MOm)<d, £ €[0,00).
0 J

The remainder of the proof can be processed as the previous case.

Finally, we discuss the decay results.

Since uo € #/*, similar to the first case, we obtain u(t) € #;* for any ¢ € [0, 00). By (2.3)
and (4.1), we obtain

J(uo0) >](u(t)) = j;](u(t)) + (% - ;1) /Q‘Au(t)‘zdx+ %/g’u(t)’qu

1 1 1
> <— - —>/ | Au)|” dx + —2/ |u(®)| dx. (4.13)
2 q)le q° Je
By I(u(t)) > 0, (2.4) and Lemma 2.1, there exists a A3 > 1 such that I(A3u(t)) = 0. We have

d <J(Asu(t))

zéz(xgump(%_;) /ﬂ |A(X3u(t))|2dx+% /Q o)

- (%_ ;)L|A(X3u(t))|2dx+%/ﬂﬁsu(f”qu
_ (% _ é)x;/ﬂym(t)yzdm %ngfg\u(tﬂqu
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§A3q<(§—6—1)/g|Au(t)|2dx+?/;|u(t)|qu).
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Using (4.13) and (4.14), we have

d <73 (uo),

which implies that

n ()’
>~ \Ulwo))

It follows from (2.2) that

0 =I(A3u(t)) :/Q|A(X3u(t))|2dx—/Q|X3u(t)|qlog’x3u(t)’dx

:ngf |Au(t)|2dx—xgqlogng |u(t)|qu
2 2

— 5T /Q ’u(t)|q 10g|u(t)’ dx

=T 1(u() + s /ﬂ | Au(@)|” dx - 75" /9 | Au@)|” dx

S / |u(t)|” dx
o

=T 1) + (5 - T /Q | Au(o)| dx

7 log T / u(t)| d.
2

Using (4.15) and (4.16), we have

L () = (7" -7 f | Au()[>dx + T log Ty / ()| dx
2 2

> ("= 7)) / | Au(e)>dx,
2

which implies that

1(®) = (1 -7 /Q | Au(®)[ dx.

It follows from (4.15) and (4.17) that

I(u(®) = (1- ng_q) /Q|Au(t)’2dx

e
- J(u0)

i

4
J(uo)

2
)q :|/|Au(t)|2dx
I?)

21
)q ]/|Du(t)|2dx
2

Page 16 of 21

(4.14)

(4.15)

(4.16)

(4.17)
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d \i!
Zcis}cgi[l—(m) ]/Q|M(t)|2dx, (4.18)

where Cy3 and Cy, are the Poincaré inequality constants. Hence, by (4.18), we obtain

1 d %_1 2
I(u(®)) = §|:1— <](Mo)) ]/Q‘Au(t)‘ dx
1 1 d %_1 2
o) ]
L d %_1 2
+ 30 G [1_(1(%)) ]/J““)' dx
2Czs(/Q|Au(t)|2dx+/Q|Du(t)|2dx+‘/ﬂ|u(t)|2dx>

= Cos |1(®) 33y (4.19)

where

B 1 d \i! Gyl d
ca=mnls[1- (i)} S Gi)
sl () )
3 J(u0) ’

Integrating the I(u(s)) with respect to s over (¢, T) and using the embedding HZ($2) <
L%*(£2), we obtain

T T
/t I(u(s))ds:—/t /Qus(s)u(s)dxds=—%/gu(T)zdx+%Lu(t)zdx

1 2
55/914(1.‘) dx

1
< 5 Colluto) ||,21§(Q), (4.20)

Qo

1

where Cyg is the embedding constant. From (4.19) and (4.20), we have

T
1
ft C25||u(t)||i[3(mds§§C§6Hu(t)||i[g(m, forall £ € [0, T]. (4.21)

Let T — oo in (4.21), we can get

o 1
ft [0y 5 = 5 o2 ol ) (4.22)

From Lemma 2.4, we have

-2
[}z = 11O [fpye %%, el0,00).

The above inequality implies that the solution u(t) decays exponentially. O

Page 17 of 21
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5 Blow up
Theorem 5.1 If uy € W, the unique local weak solution u(t) of the problem (1.1) blows

up in finite time, i.e., there exists a T, > 0 such that

tgr}l;fg|u(t)|2dx = 00.

Proof Since ugy € #;7, it follows from the local existence that there exists a unique local
weak solution u(¢) of the problem (1.1) such that

/t/ us2 dxds +](u(t)) <J(ug) <d, te€]0, Tmaxl- (5.1)
0 Je

Next, we prove u(t) € #; for t € [0, Tnax]. We assume u(t) leaves #* at time ¢ = t;, then
there exists a sequence {¢,} such that I(u(t,)) <0 as t, — ¢]. It follows from lower semi-
continuity of L? norm that

I(u(t1)) <liminfI(u(t,)) <0. (5.2)

n—0oQ

We have I(u(t1)) = 0 according to u(t1) ¢ #,*. By (2.4) and (5.1), we have

d= inf J(u) < J(u(t1)) <d,
which is a contradiction. So, u(t) € #;~ for t € [0, Tmax]. Next, we will study that u(t) blows

up in finite time by contradiction. Thus, we assume u(t) is global. We contract a function
@ :[0,00) — R*, and

(1) :/O‘tfguz dxds. (5.3)

We can easily obtain
d'(t) = / u?® dx. (5.4)
o)
By (2.2) and (5.4), we have
D" (t) = 2/ uu, dx = 2/ lu|Tulog |u| dx — 2/ |Au|* dx = —21(u). (5.5)
fo) o) fo)
From u(t) € #;~ and (5.5), we can obtain
@"(t) > 0. (5.6)
Thus, it follows from o € #;~ and (5.4) that

'(t) > @'(0) = / uydx > 0. (5.7)
2
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Using the Holder inequality and combining (5.5), we have

i(f(t)—dy(o))z:%( / @' s)ds) ( / f uusdxds)
//u dxds/ / U, 2 dx ds. (5.8)

By (2.3) and (5.5), we have
, 1 1 9 2
@"(t) = -2I(u) = 2qJ(u) +2q| = — — |[Aul"dx+— [ |u|fdx
2 q)Ja qJe
t
= -2q/(up) + Zq/ / usz dxds
0 Je

1 1 2
+261<———)/ |Au|2dx+—/ |u|? dx. (5.9)
2 q)J)e qJe

Since u(t) € #;", I(u(t)) < 0. By Lemma 2.1, there exists a A4, 0 < A4 < 1 such that
I(uau(t))) = 0. It follows from (2.3) and (2.4) that

d= inf J(u) <] 7))

_ é](ﬂu(t)) . (% - ;) /Q |8 GLa®) P + % /9 Raul)| dx

:(%_1>/ |A(X4u(t)){2dx+i2/ hau(t)|” da
<__—)/’Au | dx + A —/’u(t |” dx
< (%%) / dute* -+ f u(t)|” (5.10)

Combining (5.9) with (5.10), we have

¢ 1 1 2
@”(t):—Zq](u0)+2qf / ufdxds+2q(———)f |Au|? dx + —/ |u|? dx
0o Je 2 q))e qJa

=—261/(uo)+2q/0t/9ufdxd5
1 1
+2q[<§—5>/ |Au(t| dx+q—/ |u(t)|qu}
ZZq(d—](uo))+2q/0 /Qufdxds. (5.11)

Using (5.3), (5.8) and (5.11), we have

" (t) = /otfguzdxdsd’(t)
> /ot/;?uzdxds[2q(d—](uo))+2q/0t/9ufdxds:|
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> @ (2q(d - /() + 2(¢'(6) - '(0)". (5.12)

We fix a £, > 0. It follows from (5.7) that we have

D(t) > () = ‘/0 ’ /Q Wdxds >t /9 ué dx >0, fort e [ty,o0). (5.13)
Hence, by (5.12) and (5.13), we have
Q(H)P"(t) - g(d’/(t) - 4"(0))2 > ®(8)2q(d - ] (uo))

>t / u% dx >0, forte [t;,00). (5.14)
2
We choose T > ¢, sufficiently large and contract a function ¥ (¢) as follows:
lI/(t):q)(t)+(T—t)/ uzdx, telty,T). (5.15)
2

From (5.13) and (5.15), we can easily see that for any ¢ € [t,, T], ¥ (t) > @(t) > 0 holds. It
follows from (5.4) and (5.14) that, for any ¢ € [£;, T], ¥'(t) = @'(¢t) — ©'(0) holds, thus we
also have ¥ (t) = @”(¢) > 0 from (5.6). Thus, we can obtain from (5.14)

W)W (t) - gwt)Z > D)D" (1) + g(cb/(t) ~'(0))’
> & (£)2q(d - J (o))

>t / u% dx >0, (5.16)
I?)

for ¢ € [ty, T]. Let x(£) = ()2 . Thus,

x' () = —L;W(t)‘%dﬂ(t). (5.17)

From (5.16) and (5.17), we have

q(g-2)
4
q-—2

- Twar# [gllf/(t)z - u/(t)w”(t)] <0, (5.18)

x"(0)= v w1 2w e

for t € [t,, T]. This shows that, for any sufficiently large T > £, x(¢) is a concave function
in [t, T]. x(2) >0 and x"(t2) <0, so there exists a finite time T > £, > 0 such that

tg% x(@) =0,
which implies

tl_l)rg_ ¥ (t) = 0.
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Hence, we have

t
lim u? dxds = 0o,
=Ty Jo Jo

ie.,
lim [ u*dx=oo.
=Ty Jo
This is a contradiction to our assumption. d
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