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Abstract
Parameter estimation in multivariate analysis is important, particularly when
parameter space is restricted. Among different methods, the shrinkage estimation is
of interest. In this article we consider the problem of estimating the p-dimensional
mean vector in spherically symmetric models. A dominant class of Baranchik-type
shrinkage estimators is developed that outperforms the natural estimator under the
balance loss function, when the mean vector is restricted to lie in a non-negative
hyperplane. In our study, the components of the diagonal covariance matrix are
assumed to be unknown. The performance evaluation of the proposed class of
estimators is checked through a simulation study along with a real data analysis.
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1 Introduction
Shrinkage estimation is a method to improve a raw estimator in some sense, by combining
it with other information. Although the shrinkage estimator is biased, it is well known
that it has minimum quadratic risk compared to natural estimators (mostly the maximum
likelihood estimator).

Mean vector (location) parameter estimation is an important problem in the context
of shrinkage estimation, specially when some components of location parameter are re-
stricted to be situated in a specific space. In this respect, Fourdrinier and Ouassou [6] ini-
tiated the restricted estimation problem of the mean for the general spherical model with
known covariance and Fourdrinier et al. [7] studied the restricted estimation in the latter
specified general spherical model, under three different constraints; see also Fourdrinier et
al. [9]. Fourdrinier and Marchand [5] studied constraints with the form

∑p
i=1

(θi–τi)2

σ 2 ≤ m2,
with known τ1, . . . , τp, σ 2, and m when Xi ∼ N(θi,σ 2), i = 1, . . . , p on spheres of radius α

centered at (τ1, . . . , τp). Kortbi and Marchand [12] exhibited a truncated linear estimator
under the constraint ‖θ‖ ≤ m, in the multivariate normal model. Marchand and Strawder-
man [16] developed a unified approach for minimax estimation for a restricted parameter
space. Kubokawa et al. [13] considered minimax shrinkage estimation of a location vector
of a spherically symmetric distribution under a concave squared error loss. Also Chang
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and Strawderman [3] studied a shrinkage estimation of p positive normal means under
sum of squared errors loss. Recently, Hoque et al. [10] investigated the performance of the
shrinkage estimator of the parameters of a simple linear regression model under the asym-
metric loss (LINEX loss criterion). For more details on this topic, we refer to Marchand
and Strawderman [15], Silvapulle and Sen [18] and van Eeden [20], among others.

Here, we develop the approach of Fourdrinier et al. [7], in which they estimated loca-
tion parameter-vector when some components are non-negative, for unknown covariance
matrix under balance loss function. We specifically address the Baranchik-type estimators
for our purpose.

The paper is outlined as follows: In Sect. 2, some preliminary results are addressed.
Section 3 includes the main result, where we give the conditions under which the proposed
class of shrinkage estimators dominates the natural estimator under balance loss function,
while the numerical performance analysis is investigated by a simulation study in Sect. 4.
In Sect. 5, we use the air pollution dataset of USA cities to further demonstrate the superior
performance of the shrinkage estimation. The paper is concluded in Sect. 6.

2 Preliminaries
In this section, we consider the spherical distribution as the parent model, and introduce
the natural and the Baranchik-type shrinkage estimator for estimation of restricted param-
eter space. A p×1 random vector X is said to have a spherically symmetric distribution (or
simply spherical distribution) if X and ΛX have the same distribution for all p × p orthog-
onal matrices Λ. Important members are the multivariate normal (Np(0,σ 2Ip)), the “ε-
contaminated” normal, and multivariate t distributions. For evaluating the performance
of the estimators, we need to set a measure. In this paper, we use the balance loss function.

Definition 2.1 Suppose that X is a random vector having a spherical distribution with
unknown mean vector parameter θ and scalar variational component σ 2. the balance error
loss function, BEL(δ0) is defined as follows:

Lω,δ0 (θ , δ) = ω
‖δ – δ0‖2

σ 2 + (1 – ω)
‖δ – θ‖2

σ 2 , 0 ≤ ω < 1, (1)

where δ0 ia a target estimator.

The special case of the balanced error loss function is weighted quadratic loss when
ω = 0. The balance loss function was introduced by Zellner [21] to reflect two criteria:
goodness of fit and precision of estimation. Then the associated risk function with respect
to (1), will be R(θ , δ) = Eθ [L(θ , δ)]. For more details about the use of this loss, we refer to
Zinodiny et al. [22], Peng et al. [17], Cao and He [2] and Zinodiny et al. [23], to mention a
few.

Assume (X, U) is a p + k random vector having a spherically symmetric distribution
around the p + k vector (θ , 0), dim X = dim θ = p and dim U = dim 0 = k. Further, suppose
that the scalar variational component σ 2 is unknown which will be posed for X. We wish
to estimate θ = (θ1, . . . , θp)T by δ = (δ1, . . . , δp)T under the balance loss function. Here, we
consider the cases where the members of a subset of θi ≥ 0, i = 1, . . . , p, are non-negative,
i.e., θ1 ≥ 0, θ2 ≥ 0, . . . , θq ≥ 0 and where θq+1, θq+2, . . . , θp are unrestricted. Further, let the
scale matrix be equal to σ 2Ip with unknown σ 2 and S2 is an unbiased estimator of σ 2,
independent of X.
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Define γq(X) = (γq,1(X), . . . ,γq,p(X)), for j = 1, 2, . . . , q, as

γq,j(X) =

⎧
⎨

⎩

–Xj, Xj < 0,

0, Xj ≥ 0,
(2)

and γq,j(X) = 0 if j > q. Then the natural and Baranchik-type shrinkage estimators are,
respectively, defined as

δ(1)
q (X) = X + γq(X), (3)

δ(2)
q (X, U) = X + γq(X) + UT Ug(X, S), (4)

where g(X, S) has the form

g(X, S) = –
cS2r( ‖X‖2

S2 )
‖X‖2 X, (5)

for some constant c. Furthermore, suppose that the function r : R+ → [0, 1] is twice differ-
entiable and concave. To see the original form of the Baranchik-type shrinkage estimators,
refer to Baranchik [1]. In the sequel, we need the following results.

Definition 2.2 A continuous function f : Rp →R is super-harmonic at a point x0 ∈R
p if,

for every r > 0, the average of f over the surface of the sphere Sr(x0) = {x : ‖x – x0‖ = r} is
less than or equal to f (x0). The function f is super-harmonic in R

p if it is super-harmonic
at each x0 ∈R

p.

Lemma 2.1 If f : Rp →R is twice differentiable, then f is super-harmonic in R
p if and only

if for all x ∈R
p,

∇ · f (x) =
p∑

i=1

∂2

∂x2
i

f (x) ≤ 0. (6)

Lemma 2.2 Let Y be a random variable, and g(y) and h(y) any functions for which E[g(Y )],
E[(h(Y )], and E[g(Y )h(Y )] exist. Then:

(a) If one of the functions g(·) and h(·) is nonincreasing and the other is nondecreasing,

E
[
g(Y )h(Y )

] ≤ E
[
g(Y )

]
E
[
h(Y )

]
.

(b) If both functions are either nondecreasing or nonincreasing,

E
[
g(Y )h(Y )

] ≥ E
[
g(Y )

]
E
[
h(Y )

]
.

For the proofs of Lemmas 2.1 and 2.2, see Lehmann and Casella [14].

3 Main result
In this section, we propose the superiority conditions for which the specified shrinkage
estimator (4) outperforms the natural one (3). For our purpose, we consider unimodal
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spherical distributions. Similar to Jafari Jozani et al. [11], the target estimator can be the
part of the shrinkage estimator. Let

δ
(1)
0 (X, U) = X + (1 – ω)UT Ug(X, S). (7)

δ
(2)
0 (X) = X + (1 – ω)γq(X). (8)

Hence

δ(1)
q (X) = δ

(1)
0 (X, U) + γq(X) – (1 – ω)UT Ug(X, S)

= δ
(2)
0 (X) + ωγq(X),

δ(2)
q (X, U) = δ

(1)
0 (X, U) + γq(X) + ωUT Ug(X, S)

= δ
(2)
0 (X) + ωγq(X) + UT Ug(X, S).

Considering these two estimators, the difference in risk for i = 1, 2 has the form

�R
ω,δ(i)

0
(θ , δ) = R

ω,δ(i)
0

(
θ , δ(2)

q
)

– R
ω,δ(i)

0

(
θ , δ(1)

q
)

=
1
σ 2 Eθ

[
ω

(∥
∥δ(2)

q – δ
(i)
0

∥
∥2 –

∥
∥δ(1)

q – δ
(i)
0

∥
∥2)

+ (1 – ω)
(∥
∥δ(2)

q – θ
∥
∥2 –

∥
∥δ(1)

q – θ
∥
∥2)]

=
1
σ 2 Eθ

[
ω

(∥
∥X + γq(X) + UT Ug(X, S) – δ

(i)
0

∥
∥2

–
∥
∥X + γq(X) – δ

(i)
0

∥
∥2)

+ (1 – ω)
(∥
∥X + γq(X) + UT Ug(X, S) – θ

∥
∥2

–
∥
∥X + γq(X) – θ

∥
∥2)]

=
1
σ 2 Eθ

[(
UT U

)2∥∥g(X, S)
∥
∥2 + 2(1 – ω)UT UgT (X, S)(X – θ )

+ 2(1 – ω)UT UgT (X, S)γq(X)

+ 2ωUT UgT (X, S)
(
X + γq(X) – δ

(i)
0

)]
. (9)

Replacing the estimators δ
(1)
0 (X) and δ

(2)
0 (X) in (9), the risk differences for i = 1, 2 are given

by the following:

�R(1) = �R
ω,δ(1)

0
(θ , δ)

=
1
σ 2 Eθ

[(
UT U

)2∥∥g(X, S)
∥
∥2 + 2(1 – ω)UT UgT (X, S)(X – θ )

+ 2(1 – ω)UT UgT (X, S)γq(X)

+ 2ωUT UgT (X, S)
(
γq(X) – (1 – ω)UT Ug(X, S)

)]

=
1
σ 2 Eθ

[(
1 – 2ω + 2ω2)(UT U

)2∥∥g(X, S)
∥
∥2

+ 2(1 – ω)UT UgT (X, S)(X – θ )

+ 2UT UgT (X, S)γq(X)
]
; (10)
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�R(2) = �R
ω,δ(2)

0
(θ , δ)

=
1
σ 2 Eθ

[(
UT U

)2∥∥g(X, S)
∥
∥2 + 2(1 – ω)UT UgT (X, S)(X – θ )

+ 2(1 – ω)UT UgT (X, S)γq(X) – 2ω2UT UgT (X, S)γq(X)
]

=
1
σ 2 Eθ

[(
UT U

)2∥∥g(X, S)
∥
∥2 + 2(1 – ω)UT UgT (X, S)(X – θ )

+ 2
(
1 – ω + ω2)UT UgT (X, S)γq(X)

]
. (11)

Inside the expectations (10) and (11), the second term depends on θ . To avoid this, we use
the following lemmas.

Lemma 3.1 (Fourdrinier and Strawderman [8]) For every weakly differentiable function
g : Rp →R

p, for every integer s and for every θ ∈R
p we have

Eθ

[(
UT U

)sg(X, S)T (X – θ )
]

=
1

k + 2s
Eθ

[(
UT U

)s+1∇ · g(X, S)
]

provided these expectations exist.

Lemma 3.2 (Stein [19]) Suppose that X ∼ Np(θ ,σ 2Ip) and g : Rp → R
p with known σ 2,

then

Eθ

[
(X – θ )T g(X, S)

]
= σ 2E

[∇ · g(X, S)
]
.

Taking s = 1 in Lemma 3.1, for weakly differentiable function g , the risk differences (10)
and (11) become

�R(1) =
1
σ 2 Eθ

[
(
1 – 2ω + 2ω2)(UT U

)2∥∥g(X, S)
∥
∥2

+
2(1 – ω)

k + 2
(
UT U

)2∇ · g(X, S)

+ 2UT UgT (X, S)γq(X)
]

, (12)

�R(2) =
1
σ 2 Eθ

[
(
UT U

)2∥∥g(X, S)
∥
∥2 +

2(1 – ω)
k + 2

(
UT U

)2∇ · g(X, S)

+ 2
(
1 – ω + ω2)UT UgT (X, S)γq(X)

]

. (13)

In order to further analyze the risk difference, we need the following results.

Lemma 3.3 (Fourdrinier et al. [7]) If r is a non-negative, differentiable and concave real-
valued function, then r is nondecreasing on R

+ and the function r(t)/t is nonincreasing on
R

+. Furthermore, if in addition r is twice differentiable, then the function r(‖x‖2)/‖x‖2 is
super-harmonic for p ≥ 4.
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Lemma 3.4 Assume X is a real-valued random variable with symmetric unimodal distri-
bution about θ ∈R

+. If f is a non-negative function on R
+, then

Eθ

[

f
(
X2)X2

σ 2 I[X<0]

]

≤ 1
2

Eθ

[
(X – θ )2

σ 2 f
(
X2)

]

.

Proof According to the symmetry and unimodality of the distribution, X has a density of
the form h((X – θ )2) with h nonincreasing. Thus, we can write

Eθ

[
f (X2)
σ 2

{

X2I[X<0] –
1
2
(
X2 – 2θX + θ2)

}]

= Eθ

[
f (X2)
σ 2

{

X2I[X<0] –
1
2
(
X2 + 2θX + θ2)I[X<0] –

1
2
(
X2 – 2θX + θ2)I[X≥0]

}]

= Eθ

[
f (X2)
σ 2

{(
1
2

X2 + θX –
1
2
θ2

)

I[X<0] –
(

1
2

X2 – θX +
1
2
θ2

)

I[X≥0]

}]

. (14)

By the conditioning expectation (14) on |X| we have the following expectation:

= Eθ

[
f (X2)
σ 2

(
1
2

X2 + θX –
1
2
θ2

)

I[X<0]

∣
∣
∣
∣ |X|

]

– Eθ

[
f (X2)
σ 2

(
1
2

X2 – θX +
1
2
θ2

)

I[X≥0]

∣
∣
∣
∣ |X|

]

=
∫

I[ 1
2 X2–θ |x|– 1

2 θ2>0]

f (x2)
σ 2

(
1
2

x2 – θ |x| –
1
2
θ2

)

h
((

–|x| – θ
)2)dx

–
∫

I[ 1
2 x2–θ |x|– 1

2 θ2>0]

f (x2)
σ 2

(
1
2

x2 – θ |x| +
1
2
θ2

)

h
((|x| – θ

)2)dx

≤
∫

I[ 1
2 x2–θ |x|– 1

2 θ2>0]

f (x2)
σ 2

(
–θ2)h

((|x| – θ
)2)dx

= Eθ

[
f (x2)
σ 2 I[ 1

2 x2–θ |x|– 1
2 θ2>0]

(
–θ2)

]

≤ 0. (15)

The result follows since in (15), for all θ > 0, we have (–|X| – θ )2 ≥ (|X| – θ )2 and h((–|X| –
θ )2) ≤ h((|X| – θ )2). �

We now state the main result.

Theorem 3.1 The shrinkage estimator δ
(2)
q (X, U) dominates the natural estimator δ

(1)
q (X)

under the BEL(δ(1)
0 ), if the following conditions hold:

1. p > q(k+2)
2(1–ω)(k–2) + 2,

2. 0 < c ≤ (2(1–ω) p–2
k+2 – q

k–2 )
(1–2ω+2ω2)

Eσ=1(S2)
Eσ=1(S4) .

Proof Since 0 ≤ r(·) ≤ 1 is a non-negative, differentiable and concave function by
Lemma 3.3, we have r′(·) ≥ 0. Using Lemma 3.1 and by the conditioning risk difference
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�R(1) on (S = s), we have the following inequality:

1
σ 2 ES2

(

Eθ

[

c2(1 – 2ω + 2ω2)(UT U
)2 r2( ‖X‖2

S2 )S4

‖X‖2

– 4c(1 – ω)
(UT U)2r′( ‖X‖2

S2 )
k + 2

– 2c(1 – ω)
(p – 2)(UT U)2r( ‖X‖2

S2 )S2

(k + 2)‖X‖2

+ 2c
(
UT U

) r( ‖X‖2

S2 )S2

‖X‖2

q∑

i=1

X2
i I[Xi≤0]

] ∣
∣
∣
∣
∣

S = s

)

≤ 1
σ 2 ES2

(

Eθ

[
(
UT U

)2 r( ‖X‖2

S2 )
‖X‖2 c

(

c
(
1 – 2ω + 2ω2)S4 – 2(1 – ω)S2 p – 2

k + 2

+ 2S2
∑q

i=1 X2
i I[Xi≤0]

UT U

)] ∣
∣
∣
∣ S = s

)

. (16)

Suppose Xq
1 = (X1, . . . , Xq), η = (θ1, . . . , θq), Xp

q+1 = (Xq+1, . . . , Xp), μ = (θq+1, . . . , θp), Z =
σ –1(X – θ ), V = (Z1, . . . , Zq) and T = (Zq+1, . . . , Zp). Hence, V = σ –1(Xq

1 – η) and T =
σ –1(Xp

q+1 – μ). Since ‖X‖2 = ‖Xq
1‖2 + ‖Xp

q+1‖2, Xq
1 = σV + η and Xp

q+1 = σT + μ. Let
W 2 = V ′V + U ′U . Then, assuming σ = 1, an upper bound on the conditional expression
(16) by Lemma 3.4 is given by

ES2

{

Eθ

[
(
W 2 – V T V

)2 r((‖Xq
1‖2 + ‖Xp

q+1‖2)/S2)
‖Xq

1‖2 + ‖Xp
q+1‖2

c
(

c
(
1 – 2ω + 2ω2)S4

– 2(1 – ω)S2 p – 2
k + 2

+ S2 V T V
W 2 – V T V

)] ∣
∣
∣
∣ S = s

}

. (17)

Using Lemma 3.3,
r((‖Xq

1 ‖2+‖Xp
q+1‖2)/S2)

‖Xq
1 ‖2+‖Xp

q+1‖2 for p ≥ 4 is super-harmonic and as a result, in ‖X‖2

S2 ,

is nondecreasing. Therefore, the conditional risk difference (17) given W 2 and T is

cEθ

[
(
W 2 – V T V

)2 r((‖Xq
1‖2 + ‖Xp

q+1‖2)/s2)
‖Xq

1‖2 + ‖Xp
q+1‖2

×
(

c
(
1 – 2ω + 2ω2)s4 – 2(1 – ω)s2 p – 2

k + 2
+ s2 V T V

W 2 – V T V

) ∣
∣
∣
∣ W 2, T

]

≤ cEθ

[
(
W 2 – V T V

)2 r((‖Xq
1‖2 + ‖Xp

q+1‖2)/s2)
‖Xq

1‖2 + ‖Xp
q+1‖2

∣
∣
∣
∣ W 2, T

]

× Eθ

[(

c
(
1 – 2ω + 2ω2)s4 – 2(1 – ω)s2 p – 2

k + 2

+ s2 V T V
W 2 – V T V

) ∣
∣
∣
∣ W 2, T

]

. (18)

In equality (18), by Lemma 2.2, for fixed W 2 and T , we see that Eθ [
r((‖Xq

1 ‖2+‖Xp
q+1‖2)/s2)

‖Xq
1 ‖2+‖Xp

q+1‖2 |
W 2, T] is nonincreasing in V T V by Lemma A.4 of Fourdrinier et al. [7]. It suffices to show
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that the second conditional expectation in (18) is non-positive. Since UT U and V T V have
distributions χ2

k and χ2
q , respectively, (V T V )/W 2 is distributed according to Beta( q

2 , k
2 ) and

hence we get

E
[
V T V /

(
W 2 – V T V

)]
= q/(k – 2).

Then the risk difference is non-positive if

0 < c ≤ (2(1 – ω) p–2
k+2 – q

k–2 )
(1 – 2ω + 2ω2)

Eσ=1(S2)
Eσ=1(S4)

.

Simple calculations show that c is positive if and only if

k >
4(1 – ω)(p – 2) + 2q
2(1 – ω)(p – 2) – q

.

This completes the proof. �

In a similar fashion, we have the following result, stated without proof.

Theorem 3.2 The shrinkage estimator δ
(2)
q (X, U) dominates the natural estimator δ

(1)
q (X)

under the BEL(δ(2)
0 ), if the following conditions hold:

1. p > q(1–ω+ω2)(k+2)
2(1–ω)(k–2) + 2,

2. 0 < c ≤ (2(1 – ω) p–2
k+2 – (1 – ω + ω2) q

k–2 ) Eσ=1(S2)
Eσ=1(S4) .

The following result is for the p-variate normal distribution, a particular member of the
spherical class.

Proposition 3.1 Assume the parent distribution Np(θ ,σ 2Ip) with unknown σ 2. Then the
shrinkage estimator X + γq(X) + g(X, S) dominates the natural estimator X + γq(X) under
the BEL(δ(i)

0 ), if the following conditions hold:
1. For BEL(δ(1)

0 ): p > q
2(1–ω) + 2, 0 < c ≤ (2(1–ω)(p–2)–q)

(1–2ω+2ω2)
Eσ=1(S2)
Eσ=1(S4) .

2. For BEL(δ(2)
0 ): p > (1–ω+ω2)q

2(1–ω) + 2, 0 < c ≤ (2(1 – ω)(p – 2) – (1 – ω + ω2)q) Eσ=1(S2)
Eσ=1(S4) .

Proof The proof is similar to that of Theorem 3.1. However, we use Lemma 3.2, instead of
Lemma 3.1. �

4 Simulation
To evaluate the performance of a Baranchik-type shrinkage estimator, in this section, we
conduct a Monte Carlo simulation study to compare its risk with that of the natural estima-
tor for the 14-variate t distribution with 13 degrees of freedom. Risk values are obtained
from 1000 Monte Carlo replications, and plotted in Figs. 1 and 2, for different values q
and w. In these figures θ is selected as (j, 0, . . . , 0) and j = 0, 0.1, 0.2, . . . , 10. In this case,
‖θ‖ = θTθ =

∑p
i=1 θi = j2.

In Figs. 1 and 2, the (Baranchik-type) shrinkage estimator risk curve is below that of the
natural estimator, i.e., the shrinkage estimator dominates the natural estimator. Further, it
is seen by increasing the amount of w, the risk difference gets larger, which is a bonus in
our study.
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Figure 1 Risk curve for δ(1)0 (X), p = 14, black line for q = 5 and red line for q = 10 for different values of ω

Figure 2 Risk curve for δ(2)0 (X), p = 14, black line for q = 5 and red line for q = 10 for different values of ω

Table 1 Values of risk difference for p = 7

(ω,q) (0.3, 5) (0.5, 3) (0.7, 2)

�R(1) –0.0004641284 –0.0003845636 –0.0000994561
�R(2) –0.0004105216 –0.0002643874 –0.0000819120

5 Air pollution data
In this section, we further investigate the superior performance of the Baranchik-type
shrinkage estimator compared to the natural estimator. For this sake, we use the air pol-
lution dataset of USA cities in 1981, from Everitt and Hothorn [4]. They fitted a p-variate
normal distribution to this dataset. Here, we have the following list of variables: SO2 con-
tent of air in micrograms per cubic meter (SO2), average annual temperature in degrees
Fahrenheit (temp), number of manufacturing enterprises employing 20 or more workers
(manu), population size (1970 census) in thousands (popul), average annual wind speed
in miles per hour (wind), average annual precipitation in inches (precip), average number
of days with precipitation per year (predays). We have implemented a bootstrap analysis
to evaluate the risk functions. Table 1 lists the values of risk difference (�R(i)) for different
values of w and σ 2, for targeted estimators δ

(1)
0 (X) and δ

(2)
0 (X), respectively. All the values

in these tables are negative. (A negative value is a sign of R
ω,δ(i)

0
(θ , δ(2)

q ) ≤ R
ω,δ(i)

0
(θ , δ(1)

q ).) The
same conclusions as for the figures in the previous section can also be obtained.

6 Conclusion
In this paper, the estimation of a restricted parameter space is considered using a class of
general shrinkage type estimators under a balance loss function. The class of Baranchik-
type shrinkage estimators is considered as a competitor to the well-known James–Stein
ones. Since the scalar scale component was unknown, we used another random variable,
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S2 say, independent from the model under study. Theoretical findings of this paper are fur-
ther supported by some numerical analyses. It is observed that the Baranchik-type shrink-
age estimator is always superior to the natural estimator, regardless of the weight value in
balance loss function. The result of this paper can stimulate the research in the direction
of the mean estimation in restricted parameter space.
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