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Abstract
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1 Introduction and preliminaries
In 1912 S.N. Bernstein [1] constructed positive linear operators for continuous functions
defined on the interval [0, 1]. The Bernstein operators preserve a simpler, more elegant,
and constructive way that proves the first Weierstrass approximation theorem for the case
[0, 1]. In 1950 O. Szász [2] gave an extension to operators and constructed positive linear
operators defined on [0,∞) for continuous functions defined on [0,∞). Presently working
at pathways of the approximation process, several authors have obtained a Dunkl type
generalization of Szász operators. This type of Dunkl generalization is a very recent work
and it plays a crucial role in approximation theory. Firstly, the Dunkl type generalization
was obtained by Sucu [3] who proposed an exponential generalization of the function
given by [4]. They improved the Szász operators for a continuous function f defined on
[0,∞), denoted as f ∈ C[0,∞) in which x ≥ 0, υ ≥ 0, n ∈ N, and constructed the following
Dunkl type operators:

S∗
n (f ; x) :=

1
eυ (nx)

∞∑

r=0

(nx)r

γυ (r)
f
(

r + 2υθr

n

)
, (1.1)

where

eυ (x) =
∞∑

k=0

xk

γυ (k)
, (1.2)

γυ (2r) =
22rr!Γ (r + υ + 1

2 )
Γ (υ + 1

2 )
, γυ (2r + 1) =

22r+1r!Γ (r + υ + 3
2 )

Γ (υ + 1
2 )

. (1.3)
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This type of generalization by exponential function was introduced, and it is a generaliza-
tion of Hermite type polynomials, expressed in a form of the confluent hypergeometric
function Φ (see [4]). For r = 0, 1, 2, . . . , a recursion for γυ

γυ (r + 1)
(r + 1 + 2υθr+1)

= γυ (r),

θr =

⎧
⎨

⎩
0 if r = 2n, n ∈N,

1 if r = 2n + 1, n ∈N.
(1.4)

In the last quarter of the twentieth century, the quantum calculus, known as q-calculus,
was studied by Jackson, Euler, and Jakobi (see [5, 6]). The application of q-calculus has
most significance and efficiency in the field of sciences such as mathematics, physics, and
chemistry which provide energetic ways to researchers. In recent times, the Dunkl type
generalization of exponential functions attracted considerable attention to q-calculus and
has been attractive to mathematicians. The Dunkl type generalizations of Szász opera-
tors have given an improvement to rise the q-calculus in approximation theory. For more
details, we mention here some recent papers of Dunkl type generalization (see [7–13]).
Moreover, in the recent years in the field of approximation theory the (p, q)-generalization
of Bernstein operators was obtained by Mursaleen et al. [14], and then various operators
have been generalized in (p, q)-analogue by different authors (see [15–23]).

The Dunkl type generalizations is a very recent crucial work of Szász operators to the
approximation processes. Our work is to study and find the uniform approximation prop-
erties by Dunkl type generalizations to the Phillips operators [24]. The main ideas of our
research methodologies include the estimations of degrees of Phillips approximating op-
erators by using the properties of the modulus of continuity, Lipschitz functions, Peetre’s
K-functional, and second order modulus of continuity. We have used a technique devel-
oped in [2, 3] and studied several uniform approximation properties of the Phillips op-
erators by Dunkl generalizations; moreover, see also some of the recent papers [25–29].
In the present article the approximation obtained by these operators designed by Dunkl
type provides a better generalization depending on υ and an educational platform to the
researcher.

2 Construction of operators and estimation of moments
For θr defined in (1.4) and each f ∈ Cζ (R+) = {f ∈ C[0,∞) : f (t) = O(tζ )} as t → ∞, x ∈
[0,∞), ζ > n, n ∈N, υ ≥ 0, we define

P∗
n,υ (f ; x) =

n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (k)

∫ ∞

0

e–ntnk+2υθr–1tr+2υθr

γυ (r)
f (t) dt. (2.1)

Lemma 2.1 Let e� = t�–1 for � = 1, 2, 3, 4, 5. Then the operators P∗
n (·; ·) defined by (2.1) sat-

isfy the following identities:

(1) P∗
n,υ (e1; x) = 1,

(2) P∗
n,υ (e2; x) = x +

1
n

,
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(3) P∗
n,υ (e3; x) =

2
n2 +

2
n

(
2 + υ

eυ (–nx)
eυ (nx)

)
x + x2,

(4) P∗
n,υ (e4; x) =

6
n3 +

2
n2

(
9 + 2υ + 8υ

eυ (–nx)
eυ (nx)

)
x +

1
n

(
9 – 2υ

eυ (–nx)
eυ (nx)

)
x2 + x3,

(5) P∗
n,υ (e5; x) =

24
n4 +

2
n3

(
63 + 26υ2 + 2υ

(
29 + 2υ2)eυ (–nx)

eυ (nx)

)
x

+
4
n2

(
18 + υ2 – 7υ

eυ (–nx)
eυ (nx)

)
x2 +

4
n

(
4 + υ

eυ (–nx)
eυ (nx)

)
x3 + x4.

Proof Take f (t) = e1, then

P∗
n,υ (e1; x) =

n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
dt

=
1

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ttr+2υθr

γυ (r)
dt =

1
eυ (nx)

∞∑

r=0

(nx)r

γυ (r)
Γ (r + 2υθr + 1)

γυ (r)

=
1

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)
= 1.

Take f (t) = e2, then

P∗
n,υ (e2; x) =

n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1t+2υθr + 1
γυ (r)

dt

=
1

neυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ttr+2υθr+1

γυ (r)
dt

=
1

neυ (nx)

∞∑

r=0

(nx)r

γυ (r)
Γ (r + 2υθr + 2)

γυ (r)
=

1
neυ (nx)

∞∑

r=0

(nx)r

γυ (r)
(r + 2υθr + 1)

=
1

neυ (nx)

∞∑

r=0

(nx)r

γυ (r)
+

1
neυ (nx)

∞∑

r=0

(nx)r

γυ (r)
(r + 2υθr)

= x +
1
n

.

Take f (t) = e3, then

P∗
n,υ (e3; x) =

n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr+2

γυ (r)
dt

=
1

n2eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ttr+2υθr+2

γυ (r)
dt

=
1

n2eυ (nx)

∞∑

r=0

(nx)r

γυ (r)
Γ (r + 2υθr + 3)

γυ (r)

=
1

n2eυ (nx)

∞∑

r=0

(nx)r

γυ (r)
(r + 2υθr + 2)(r + 2υθr + 1)
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=
1

n2eυ (nx)

∞∑

r=0

(nx)r

γυ (r)
(
(r + 2υθr)2 + 3(r + 2υθr) + 2

)

=
1

n2eυ (nx)

∞∑

r=0

(nx)r

γυ (r)
(r + 2υθr)2

+
3

n2eυ (nx)

∞∑

r=0

(nx)r

γυ (r)
(r + 2υθr) +

2
n2eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

=
2
n2 +

2
n

(
2 + υ

eυ (–nx)
eυ (nx)

)
x + x2.

By the simple calculation, other results can easily be obtained. �

Lemma 2.2 For e� = t�–1, � = 1, 2, 3, 4, 5, suppose ηj = (e2 – x)j for j = 1, 2, 3, 4. The operators
P∗

n,υ (·; ·) defined by (2.1) satisfy the following identities:

1◦ P∗
n,υ(η1; x) =

1
n

,

2◦ P∗
n,υ(η2; x) =

2
n2 +

2
n

(
1 + υ

eυ (–nx)
eυ (nx)

)
x,

3◦ P∗
n,υ(η4; x) =

24
n3 +

2
n3

(
51 + 26υ2 + 2υ

(
29 + 2υ2)eυ (–nx)

eυ (nx)

)
x

+
4
n2

(
3 – 4υ + υ2 – 23υ

eυ (–nx)
eυ (nx)

)
x2 +

24
n

υ
eυ (–nx)
eυ (nx)

x3.

Proof We use the linearity property P∗
n,υ(η1; x) = P∗

n,υ(e2; x) – xP∗
n,υ(e1; x), P∗

n,υ (η2; x) =
P∗

n,υ (e3; x) – 2xP∗
n,υ(e2; x) + x2P∗

n,υ (e1; x) and P∗
n,υ (η4; x) = P∗

n,υ (e5; x) – 4xP∗
n,υ (e4; x) +

6x2P∗
n,υ (e3; x) – 4x3P∗

n,υ (e2; x) + x4P∗
n,υ (e1; x). �

3 Convergence in Korovkin and weighted Korovkin space
The Korovkin’ type approximation theory has many useful connections with the classical
approximation theory as well as with other branches of mathematics. In the present sec-
tion the results related to uniform convergence of the operators defined by (2.1) via the
well-known Korovkin’ and weighted Korovkin’ type theorems are obtained.

In the present article, the set of all functions which are bounded and continuous on
[0,∞) = R

+, denoted by CB[0,∞) and C[0,∞), denotes the set of all continuous functions
in CB[0,∞). Also the linear normed space with the supremum norm is defined as follows:

‖f ‖CB[0,∞) = sup
x≥0

∣∣f (x)
∣∣.

Let

E :=
{

f : x ∈ [0,∞)
}

for which the function f (x)
1+x2 is uniformly convergent as it approaches ∞.
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Theorem 3.1 Let the function f ∈ C[0,∞) ∩ E and the operators P∗
n,υ (·; ·) be defined by

(2.1). Then

lim
n→∞P∗

n,υ(f ; x) = f (x)

is uniform on each compact subset of [0,∞).

Proof To prove the uniformity of the operators P∗
n,υ , the well-known Korovkin theorem

is used. So, for � = 1, 2, 3, as n approaches ∞, we prove the three conditions. Therefore,
limn→∞ P∗

n,υ ((e�; x) → x� is uniformly convergent on [0,∞). Clearly, as (n → ∞), then
1
n → 0. Hence we have

lim
n→∞P∗

n,υ(t; x) = x, lim
n→∞P∗

n,υ
(
t2; x

)
= x2,

which completes the proof. �

Take σ (x) = 1 + x2 is a weight function and the functions f ∈ C[0,∞) are defined in
weighted spaces for which

Pσ (x)
∣∣
x∈[0,∞) =

{
f :

∣∣f (x)
∣∣ ≤ Mf σ (x)

}
,

Qσ (x)
∣∣
x∈[0,∞) =

{
f : f ∈ Pσ (x) ∩ C[0,∞)

}
,

Qm
σ (x)

∣∣
x∈[0,∞) =

{
f : f ∈ Qσ (x) and lim

x→∞
f (x)
σ (x)

= m
}

,

where Mf depends only on f and is a constant. It should be noted that, for x ∈ [0,∞),
Qσ (x) is a normed space defined with the norm of ‖f ‖σ = supx∈[0,∞)

|f (x)|
σ (x) .

Theorem 3.2 Let P∗
n,υ (·; ·) be the operators defined by (2.1). Then, for f ∈ Qm

σ (x)|x∈[0,∞), we
have

lim
n→∞

∥∥P∗
n,υ (f ; x) – f

∥∥
σ

= 0.

Proof Suppose f (t) ∈ Cm
σ (R+), and if we take f (t) = tτ , then by the Korovkin theorem if it

satisfies P∗
n,υ (tτ ; x) → xτ , for τ = 0, 1, 2 uniformly, whenever n → ∞, then from the case

when τ = 0, by applying Lemma 2.1, since P∗
n,υ (1; x) = 1, we have

∥∥P∗
n,υ (1; x) – 1

∥∥
σ

= 0. (3.1)

For τ = 1, we have

∥∥P∗
n,υ (t; x) – x

∥∥
σ

= sup
x∈[0,∞)

|P∗
n,υ(t; x) – x|

1 + x2 =
1
n

sup
x∈[0,∞)

1
1 + x2 .

As n → ∞, then

∥∥P∗
n,υ (t; x) – x

∥∥
σ

= 0. (3.2)
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In a similar way, for τ = 2,

∥∥P∗
n,υ

(
t2; x

)
– x2∥∥

σ
= sup

x∈[0,∞)

|P∗
n,υ (t2; x) – x2|

1 + x2

=
2
n

(
2 + υ

eυ (–nx)
eυ (nx)

)
sup

x∈[0,∞)

x
1 + x2 +

2
n2 sup

x∈[0,∞)

1
1 + x2 ,

∥∥P∗
n,υ

(
t2; x

)
– x2∥∥

σ
= 0 (whenever n → ∞), (3.3)

which completes the proof. �

4 Order of approximation
Let H = {f |f ∈ C̃[0,∞)}, whenever C̃[0,∞) is the space of uniformly continuous functions
on [0,∞) and ω̃(f ; δ̃) is the modulus of continuity of the function f ∈ C̃[0,∞) which are
enabled to give a maximum oscillation of f for δ̃ > 0. One has

ω̃(f ; δ̃) = sup
|x1–x2|≤δ̃

∣∣f (x1) – f (x2)
∣∣; x1, x2 ∈ [0,∞). (4.1)

It should be noted that, for f ∈ C̃[0,∞), δ̃ > 0, we have limδ̃→0+ ω̃(f ; δ̃) = 0,

∣∣f (x1) – f (x2)
∣∣ ≤

( |x1 – x2|
δ̃

+ 1
)

ω̃(f ; δ̃). (4.2)

Theorem 4.1 Let the function f ∈ H , x ∈ [0,∞) and the operators P∗
n,υ(·; ·) be defined by

(2.1). Then

∣∣P∗
n,υ (f ; x) – f (x)

∣∣ ≤
{

1 +

√
2
n

+ 2
(

1 + υ
eυ (–nx)
eυ (nx)

)
x
}
ω̃(f ; δ̃n).

Proof We used the Cauchy–Schwarz inequality and the results defined by (4.1), (4.2).
Hence

∣∣P∗
n,υ(f ; x) – f (x)

∣∣

≤ n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
∣∣f (t) – f (x)

∣∣dt

≤ n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)

(
1 +

1
δ̃
|t – x|

)
ω̃(f ; δ̃) dt

=

{
1 +

1
δ̃

(
n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
|t – x|dt

)}
ω̃(f ; δ̃)

≤
{

1 +
1
δ̃

(
n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
(t – x)2 dt

) 1
2 (
P∗

n,υ (1; x)
) 1

2

}

× ω̃(f ; δ̃)

= ω̃(f ; δ̃) +
1
δ̃

(
P∗

n,υ (η2; x)
) 1

2 ω̃(f ; δ̃).

Choose δ̃ =
√

1
n = δ̃n, then we get our result. �
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Corollary 4.2 For f ∈ H , x ∈ [0,∞) and δ̃n = P∗
n,υ(η2; x),

∣∣P∗
n,υ (f ; x) – f (x)

∣∣ ≤ 2ω̃(f ; δ̃n).

5 Rate of convergence
In the present section we use the usual class of Lipschitz functions and obtain the rate
of convergence of the sequence of positive linear operators P∗

n,υ (f ; x) (2.1) for which the
operators uniformly converge to the continuous function f on [0,∞).

For C > 0, 0 < ν ≤ 1, and for the continuous functions f on [0,∞), the class of Lipschitz
functions LipC,ν(f ) is

LipC,ν(f ) =
{

f :
∣∣f (ς1) – f (ς2)

∣∣ ≤ C|ς1 – ς2|ν ;
(
ς1,ς2 ∈ [0,∞)

)}
. (5.1)

Theorem 5.1 Let f ∈ LipC,ν , for C > 0, 0 < ν ≤ 1. Suppose that P∗
n,υ (·; ·) are the positive

linear operators defined in (2.1). Then

∣∣P∗
n,υ (f ; x) – f (x)

∣∣ ≤ C
(

2
n2 +

2
n

(
1 + υ

eυ (–nx)
eυ (nx)

)
x
) ν

2
.

Proof By applying the Hölder inequality and (5.1), we get

∣∣P∗
n,υ(f ; x) – f (x)

∣∣ ≤ ∣∣P∗
n,υ

(
f (t) – f (x); x

)∣∣

≤P∗
n,υ

(∣∣f (t) – f (x)
∣∣; x

)

≤ CP∗
n,υ

(|t – x|ν ; x
)
.

Therefore,

∣∣P∗
n,υ(f ; x) – f (x)

∣∣

≤ C n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
|t – x|dt

≤ C n2

eυ (nx)

∞∑

r=0

(
(nx)r

γυ (r)

) 2–ν
2

(
(nx)r

γυ (r)

) ν
2
∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
|t – x|dt

≤ C
(

n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
dt

) 2–ν
2

×
(

n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
|t – x|2 dt

) ν
2

= C
(
P∗

n,υ (t – x)2; x
) ν

2 = C
(
P∗

n,υ(η2; x)
) ν

2 ,

which completes the proof. �

The space of all the functions that are continuous and bounded onR
+ = [0,∞) is denoted

by CB(R+). Hence one has

C2
B
(
R

+)
=

{
ψ ∈ CB

(
R

+)
: ψ ′,ψ ′′ ∈ CB

(
R

+)}
, (5.2)
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with the norm defined on C2
B(R+), written as

‖ψ‖C2
B(R+) =

∥∥ψ ′′∥∥
CB(R+) +

∥∥ψ ′∥∥
CB(R+) + ‖ψ‖CB(R+), (5.3)

where the norm is defined on CB[0,∞),

‖ψ‖CB(R+) = sup
x∈[0,∞)

∣∣ψ(x)
∣∣. (5.4)

Theorem 5.2 Let the operators P∗
n,υ (·; ·) be defined in (2.1). Then, for every ψ ∈ C2

B(R+)
defined by (5.2), we have

∣∣P∗
n,υ (ψ ; x) – ψ(x)

∣∣ ≤ (Θn + Λn,x)‖ψ‖C2
B(R+),

where Θn = 1
n + 1

n2 and Λn,x = 1
n (1 + υ eυ (–nx)

eυ (nx) )x.

Proof Let ψ ∈ C2
B(R+). From the expansion of Taylor series, the generalized mean value

theorem, we have

ψ(t) = ψ(x) + (t – x)ψ ′(x) +
(t – x)2

2
ψ ′′(ϕ)

(t – x)2

2
, ϕ ∈ (x, t).

A small calculation leads to linearity on P∗
n,υ , we have

P∗
n,υ (ψ ; x) – ψ(x) = ψ ′(x)P∗

n,υ
(
(t – x); x

)
+

ψ ′′(ϕ)
2

P∗
n,υ

(
(t – x)2; x

)
,

which implies that

∣∣P∗
n,υ(ψ ; x) – ψ(x)

∣∣ ≤
(

1
n

)∥∥ψ ′∥∥
CB(R+) +

{
2
n2 +

2
n

(
1 + υ

eυ (–nx)
eυ (nx)

)
x
}‖ψ ′′‖CB(R+)

2
.

From (5.3) we have ‖ψ ′‖CB[0,∞) ≤ ‖ψ‖C2
B[0,∞) and ‖ψ ′′‖CB(R+) ≤ ‖ψ‖C2

B(R+).

∣∣P∗
n,υ(ψ ; x) – ψ(x)

∣∣ ≤
(

1
n

)
‖ψ‖C2

B(R+) +
{

2
n2 +

2
n

(
1 + υ

eυ (–nx)
eυ (nx)

)
x
}‖ψ‖C2

B(R+)

2
. �

6 Convergence properties of some direct theorem
A potential influences work to obtain a well-known functional known as Peetre’s K-
functional, given by J. Peetre in 1968. The conflict of interest for K-functional to inves-
tigate the interpolation spaces between two Banach spaces and interactions to the real
interpolation is based on K-functional.

This well-known functional property, which is known as K-functional, was defined by
Peetre as follows:

K2(f , δ̆) = inf
C2

B(R+)

{(‖f – ψ‖CB([0,∞)) + δ̆‖ψ‖C2
B([0,∞))

)
: ψ ∈ C2

B
(
R

+)}
. (6.1)
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For any δ̆ > 0, there exists a positive constant C > 0 such that K2(f , δ̆) ≤ Cω2(f , δ̆ 1
2 ), where

the second order modulus of continuity is given by

ω2
(
f , δ̆

1
2
)

= sup
0<h<δ̆

1
2

sup
t∈[0,∞)

∣∣f (t + 2h) – 2f (t + h) + f (t)
∣∣. (6.2)

Theorem 6.1 Let f ∈ C2
B(R+), x ∈ [0,∞), and the operators P∗

n,υ (·; ·) be defined by (2.1).
Then we have

∣∣P∗
n,υ (f ; x) – f (x)

∣∣ ≤ 2D
{
ω2

(
f ;

√
Θn + Λn,x

2

)
+ min

(
1,

Θn + Λn,x

2

)
‖f ‖CB(R+)

}
,

where ω2(f ; δ̆) is defined in (6.2) and D is a nonnegative constant.

Proof We use the results obtained in Theorem (5.2) and get

∣∣P∗
n,υ(f ; x) – f (x)

∣∣ ≤ ∣∣P∗
n,υ (f – ψ ; x)

∣∣ +
∣∣P∗

n,υ(ψ ; x) – ψ(x)
∣∣ +

∣∣f (x) – ψ(x)
∣∣

≤ 2‖f – ψ‖CB(R+) + (Θn + Λn,x)‖ψ‖C2
B(R+)

= 2
(

‖f – ψ‖CB(R+) +
Θn + Λn,x

2
‖ψ‖C2

B(R+)

)
.

By taking infimum over all ψ ∈ C2
B(R+) and using the results obtained by (6.1), we get

∣∣P∗
n,υ (f ; x) – f (x)

∣∣ = 2K2

(
f ;

Θn + Λn,x

2

)
.

Now, from the article [30] an absolute constant D > 0 exists, so we use here

K2(f ; δ̆) ≤D
{
min(1, δ̆)‖f ‖CB(R+) + ω2(f ;

√
δ̆)

}
.

This completes the proof. �

Atakut and Ispir [31] introduced the weighted modulus of continuity and defined it as
follows: for an arbitrary f ∈ Qm

σ (x),

Ω̄(f ; δ̂) = sup
|h|≤δ̂,x∈[0,∞)

|f (x + h) – f (x)|
(1 + x2)(1 + h2)

, (6.3)

with the properties defined as

lim
δ̂→0

Ω̄(f ; δ̂) = 0, (6.4)

∣∣f (t) – f (x)
∣∣ ≤ 2

( |t – x|
δ̂

+ 1
)(

1 + δ̂2)(1 + x2)((t – x)2 + 1
)
Ω̄(f ; δ̂), (6.5)

where f ∈ Qm
σ (x) and t, x ∈ [0,∞).
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Theorem 6.2 Let f ∈ Qm
σ (x), x ∈ [0,∞), then for the operators P∗

n,υ(·; ·) defined by (2.1), we
have

sup
x∈[0,∞)

|P∗
n,υ (f ; x) – f (x)|

(1 + x2) 3
2

≤ 2Mυ

(
1 + Wυ (n)

)
Ω̄

(
f ;

√
Wυ (n)

)
,

where the constant Mυ does not depend on n and Wυ (n) = max { 2
n2 , 2

n (1 + υ eυ (–nx)
eυ (nx) )}.

Proof We prove it by using (6.3), (6.5), and the Cauchy–Schwarz inequality.

∣∣P∗
n,υ(f ; x) – f (x)

∣∣

≤ n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
∣∣f (t) – f (x)

∣∣dt

≤ 2
(
1 + δ̂2)(1 + x2)Ω(f ; δ̂)

n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

×
∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)

(
1 +

1
δ̂
|t – x|

)(
1 + (t – x)2)dq(t)

= 2
(
1 + δ̂2)(1 + x2)Ω̄(f ; δ̂)

n2

eυ (nx)

∞∑

r=0

(nx)r

γυ (r)

∫ ∞

0

e–ntnr+2υθr–1tr+2υθr

γυ (r)
∣∣f (t) – f (x)

∣∣dt

×
(

1 + (t – x)2 +
1
δ̂
|t – x| +

1
δ̂
|t – x|(t – x)2

)

≤ 2
(
1 + δ̂2)(1 + x2)Ω̄(f ; δ̂)

×
(

1 + P∗
n,υ(η2; x) +

1
δ̂

√
P∗

n,υ (η2; x) +
1
δ̂

√
P∗

n,υ(η2; x)P∗
n,υ (η4; x)

)
.

From Lemma 2.2, we easily see that

P∗
n,υ (η2; x) ≤M1,υO

(
Wυ (n)

)(
1 + x2)

≤M2,υ
(
1 + x2),

where the constants M1,υ > 0, M2,υ > 0 and Wυ (n) = max { 2
n2 , 2

n (1 + υ eυ (–nx)
eυ (nx) )}.

And for the constants M3,υ > 0 and M4,υ > 0, we have

P∗
n,υ (η4; x) ≤M3,υ

(
1 + x + x2 + x3) ≤M4,υ .

If we choose δ̂ =
√
Wυ (n), Mυ = 1 + M2,υ + M1,υM4,υ , which easily leads to the result

asserted by Theorem 6.2. �

7 Conclusion
The present research article has an ample experience in applying appropriate properties
to obtain uniform approximation results and an assessment of research methodologies
to the approximation process. We establish a generalized version of the classic Phillips
operators [24] by a Dunkl type generalization to the continuous functions connected with
an extended exponential function. The point should be noted that in case of υ = 0, the
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operators (2.1) reduce to the classical Phillips operators given by [24]. The approximation
obtained by these operators designed by Dunkl type provides a better generalization and
an educational platform to the researcher to obtain the error estimations of the uniform
convergence depending on υ .
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